
Intelligenza Artificiale 1 (2019) 1–16 1
IOS Press

Ontology-based Data Access – Beyond
Relational Sources
Elena Botoeva a, Diego Calvanese b,∗, Benjamin Cogrel b, Julien Corman b, and Guohui Xiao b

a Department of Computing, Imperial College London, 180 Queen’s Gate London SW7 2AZ, U.K.
E-mail: e.botoeva@imperial.ac.uk
b Faculty of Computer Science, Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
E-mail: {calvanese,cogrel,corman,xiao}@inf.unibz.it

Abstract. The database (DB) landscape has been significantly diversified during the last decade, resulting in the emergence of
a variety of non-relational (also called NoSQL) DBs, e.g., XML and JSON-document DBs, key-value stores, and graph DBs. To
enable access to such data, we generalize the well-known ontology-based data access (OBDA) framework so as to allow for
querying arbitrary data sources using SPARQL. We propose an architecture for a generalized OBDA system implementing the
virtual approach. Then, to investigate feasibility of OBDA over non-relational DBs, we compare an implementation of an OBDA
system over MongoDB, a popular JSON-document DB, with a triple store.

This article is an extended and revised version of an article that appeared in the proceedings of the 17th International Conference
of the Italian Association for Artificial Intelligence (AI*IA) [4].

Keywords: Ontology-based data access, NoSQL, JSON, MongoDB, query optimization

1. Introduction

To cope with the requirements of a variety of mod-
ern applications and their differing needs with respect
to data management, in the last decade we have wit-
nessed a strong diversification in the landscape of
database (DB) management systems (DBMSs). Tradi-
tional relational DBMSs now coexist with so-called
NoSQL (“not only” SQL) DBs, which redefine the for-
mat of the stored data, and how it is queried. These
non-relational DBs usually adopt one of four main
data models: (i) Column-oriented DBMSs maintain
data tables similarly to traditional relational DBMSs,
but store such tables by column, rather than by row.
This allows for executing queries, which are expressed
in traditional query languages like SQL, more effi-
ciently for certain workloads. (ii) graph databases or-
ganize data in the form of elements (i.e., the nodes)
connected by various relations (i.e., the edges), and are

*Corresponding author. E-mail: calvanese@inf.unibz.it.

equipped with query languages based on graph nav-
igation, such as SPARQL. (iii) Key-value stores rep-
resent data as a collection of key-value pairs, where
keys are unique in a collection and are used to ac-
cess the data. (iv) Document stores organize the data
in documents, which have a hierarchical structure, are
accessed via a key, and are encoded in some stan-
dard format, such as XML or JSON. Typically, they
offer ad-hoc, in some cases quite expressive querying
mechanisms (e.g., the aggregation framework of Mon-
goDB), or even require writing JavaScript functions
(e.g., CouchDB1). This wider choice of DBMSs of-
fers the possibility to match application needs more
closely, allowing for instance for more flexible data
schemas, or more efficient (though simple) queries.

As a result, accessing data using native query lan-
guages is getting more and more involved for users.
In this article, we rely on the ontology-based data ac-
cess (OBDA) framework as a uniform solution to this

1http://couchdb.apache.org/

1724-8035/19/$27.50 © 2019 – IOS Press and the authors. All rights reserved

2 E. Botoeva et al. / Ontology-based Data Access – Beyond Relational Sources

problem. The OBDA paradigm [20,26] has emerged
as a proposal to simplify access to relational data for
end-users, by letting them formulate high-level queries
over a conceptual representation of the domain of in-
terest, provided in terms of an ontology. In the clas-
sical virtual OBDA approach, data is not material-
ized at the conceptual level (which justifies the term
“virtual”), and instead queries are translated automat-
ically from the conceptual level into lower-level ones
that DB engines can directly evaluate. The transla-
tion exploits a declarative specification of the relation-
ship between the ontology and the data at the sources,
provided in terms of mapping assertions. This sepa-
ration of concerns between query formulation at the
conceptual level and query execution at the DB level
has proven successful in practice, notably when data
sources have a complex structure, and end-users have
domain knowledge, but not necessarily data manage-
ment expertise [1,7,12]. Traditionally, in OBDA, the
DB is assumed to be relational, the ontology is ex-
pressed in the OWL 2 QL profile of the Web Ontol-
ogy Language OWL 2 [17], the mapping is specified in
R2RML [9], and queries are formulated in SPARQL, the
Semantic Web query language [13].

Extending the classical OBDA setting to arbitrary
DBs requires to generalize some of its components.
The first contribution of this work is to present such
a generalized approach that enjoys all benefits already
offered by OBDA. In particular, it allows for hiding
from the user low-level concerns such as data storage
and direct access to data (using the native query lan-
guage of each data source), and it provides users with
a high-level querying interface, closer to application
needs. One could argue that OBDA is even more valu-
able in the NoSQL case compared to the relational one,
as the gap between these low and high-level concerns
tends to be wider. However, this extension also car-
ries its own challenges, such as handling different data
formats, the need for more advanced query optimiza-
tion techniques due to lower-level query languages, or
a possibly increased need for post-processing.

A second contribution is to investigate the applica-
bility of the generalized OBDA framework in the prac-
tically significant case where the data source is a doc-
ument store that offers rich querying capabilities, so
that it is in principle feasible to fully delegate query an-
swering to the source DB engine. In our investigation,
we focus on MongoDB, a document-based DBMS,
and one of the most popular NoSQL DBMSs as of to-
day. MongoDB can be queried via a very expressive
language, the so-called MongoDB aggregation frame-

work, which has a more procedural flavor than SQL
or SPARQL, and therefore can be complex to manip-
ulate. Such a setting appears particularly well-suited
for exploiting the added value offered by the OBDA
paradigm.

Document-based DBMSs can also leverage the de-
normalized structure of their data: a document-based
DB instance (i.e., a collection of documents) can often
be seen as a denormalized version of a relational DB
instance (where some joins are pre-computed). There-
fore a natural question is whether OBDA over Mon-
goDB can take advantage of such structure in order to
answer queries efficiently, while at the same time of-
fering a more user-friendly query language. As a third
contribution of this work, we provide support for a pos-
itive answer. We do so by instantiating the generalized
OBDA framework over MongoDB as an extension of
the OBDA system Ontop [6], and comparing its per-
formance with a triple store, which does not benefit
from such denormalization. We adopt the triple store
Virtuoso [11], using as dataset an instance of the well-
known Berlin SPARQL Benchmark (BSBM) [3].

The rest of the article is structured as follows. In
Section 2, we recall the standard OBDA framework
over relational data sources. In Section 3, we introduce
our proposal for generalizing OBDA to access arbi-
trary DBs, and present the architecture of a generalized
OBDA system. In Section 4, we introduce MongoDB,
describe our extension of Ontop over MongoDB, and
illustrate the generalized OBDA architecture with a
running example. In Section 5, we evaluate the per-
formance of this system and compare it to the triple
store Virtuoso using BSBM as dataset. In Section 6,
we discuss related work, and we conclude the article
with Section 7.

2. Ontology-based Data Access

We recall the traditional OBDA paradigm for ac-
cessing relational DBs through an ontology [26]. An
OBDA specification is a triple P = 〈T ,M,S〉, where
T is an ontology modeling the domain of interest in
terms of classes and properties, S is a relational DB
schema, andM is a mapping consisting of a finite set
of mapping assertions. We note that here we use the
term “ontology” to denote a set of axioms involving
only classes and properties, but not mentioning indi-
viduals. In other words, T consists only of the inten-
sional part (typically called TBox) of an ontology in
the sense of OWL 2. This choice is motivated by the

E. Botoeva et al. / Ontology-based Data Access – Beyond Relational Sources 3

fact that in OBDA, the extensional component (typi-
cally called ABox) is provided by the DB instance via
the mappings, as illustrated below.

To define mapping assertions, we make use of
(RDF) term constructors, each of which is a function
f(x1, . . . , xn) mapping a tuple of DB values to an IRI
or to an RDF literal. Given a DB schema S and an on-
tology T , a mapping assertion between S and T is an
expression of one of the forms

ϕ(x) (f(x) rdf:type A), or
ϕ(x,x′) (f(x) P f ′(x′)),

where A is a class name in T , P is a (data or object)
property name in T , ϕ(x) and ϕ(x,x′) are arbitrary
(SQL) queries expressed over S, and f and f ′ are term
constructors [15,20]. Mapping assertions allow one to
define how classes and properties in T should be pop-
ulated with values in a DB instance of S and with ob-
jects constructed from such values via the term con-
structors.

An OBDA instance is a pair 〈P, D〉, where P =
〈T ,M,S〉 is an OBDA specification and D is a DB
instance satisfying S. The semantics of 〈P, D〉 is given
with respect to the RDF graph M(D) induced by M
and D, defined by

{(f(o) rdf:type A) | ϕ (f(x) rdf:type A) inM}
and o ∈ ans(ϕ,D)

∪
{(f(o) P f ′(o′)) | ϕ (f(x) P f ′(x′)) inM}

and (o,o′) ∈ ans(ϕ,D),

where ans(ϕ,D) denotes the result of the evaluation
of ϕ over D. Then, we define a model of 〈P, D〉 to be
simply a model of T ∪M(D), i.e., a first-order inter-
pretation that satisfies all axioms in T and all facts in
M(D). We observe thatM(D) provides a set of ex-
tensional facts, but such facts are typically kept virtual,
i.e., they are not actually materialized.

Queries are usually formulated in SPARQL, the Se-
mantic Web query language that allows for formulat-
ing expressive high-level queries over an RDF graph
[13,19]. Such queries are answered over an OBDA in-
stance 〈P, D〉 according to the semantics of the cho-
sen SPARQL entailment regime, considering T as the
ontology, and M(D) as the RDF graph. Typically,
in OBDA, the ontology T is expressed in OWL 2 QL,
and the corresponding entailment regime is that of
OWL 2 QL [14]. We denote with ansQL(q, 〈P, D〉) the
answers to a SPARQL query q over an OBDA instance
〈P, D〉 according to the OWL 2 QL entailment regime.

3. Generalized OBDA Framework

In this section, we introduce a generalization of the
OBDA framework to arbitrary DBs, and then propose
an architecture for a generalized OBDA system.

3.1. OBDA over Arbitrary Databases

We assume to deal with a class D of DBs, e.g., re-
lational DBs, XML DBs, or JSON stores, such as Mon-
goDB. Moreover, we assume that D comes equipped
with:

– Suitable forms of constraints, which might ex-
press both information about the structure of the
stored data, e.g., the relational schema informa-
tion in relational DBs, and “constraints” in the
usual sense of relational DBs, e.g., primary and
foreign keys. We call a collection of such con-
straints a D-schema (or simply, schema).

– A way to provide a (flat) relational view to
D-schemas and D-instances satisfying such
schemas: for a D-schema S, [[S]] is the corre-
sponding relational schema, and for a D-instance
D satisfying S, [[D]] is a relational DB over [[S]].
The function [[·]] is called relational wrapper.

– A native query languageQ, such that, for a query
ϕ ∈ Q and for a D-instance D, the answer
ans(ϕ,D) to ϕ over D is defined (and is itself a
D-instance).

Now, given an ontology T and a D-schema S, a
mapping M is a set of classical mapping assertions
ϕ h between [[S]] and T , i.e., ϕ is a SQL query
over [[S]]. Then, an OBDA specification is a triple
〈T ,M,S〉. This is analogous to the relational case, ex-
cept that now S is a D-schema (equipped with a re-
lational wrapper) as opposed to a relational schema.
An OBDA instance consists of an OBDA specification
〈T ,M,S〉 and a D-instance D satisfying S. The se-
mantics of such an instance is derived naturally from
the relational instance [[D]] corresponding to D via the
relational wrapper [[·]].

Note that our assumption that a relational wrapper is
available for the class D of DBs is not restrictive in any
way, since any form of data can be represented using
relations, independently of how it is structured. Ob-
serve also that the source query in a mapping assertion
in our generalized setting is not a native Q query, but
a SQL query. Our framework has the advantage of hav-
ing a uniform and expressive mapping language that is
independent of D and Q. It does not mean, however,

4 E. Botoeva et al. / Ontology-based Data Access – Beyond Relational Sources

Ontology T

MappingM

Schema S

Database D

q SPARQL

qr SPARQL

ψ Q-query

rψ D-result

rq SPARQL-result

Rewriting
a

Translationb

Evaluationc

Post-processing
d

Fig. 1. Query Answering in OBDA

that the concrete user mapping language must strictly
follow this specification. When it does not, the system
should only be able to transform user mapping asser-
tions into classical ones.

When referring to OBDA, we typically assume that
it follows the virtual approach, in which materializ-
ing the RDF graph is avoided, and instead (part of)
query answering is delegated to the DB. In this ap-
proach, the query answering process can be depicted
as in Figure 1, and consists of 4 main steps: (a) An in-
put SPARQL query q is first rewritten with respect to
the ontology T into qr (according to the semantics of
the entailment regime, this step only rewrites the ba-
sic graph patterns (BGPs) in q [14]). (b) The rewrit-
ten SPARQL query qr is translated into one or several
native queries ψ ∈ Q. When the DB engine does not
support (efficiently) some SPARQL operators, multi-
ple native queries might be required, and the evalua-
tion of the unsupported operators may be postponed to
the final post-processing step. (c) The native queries ψ
are evaluated by the DB engine to produce D-results
rψ . (d) The results rψ of all queries ψ are combined
and converted into the SPARQL result rq in the post-
processing step. In the generalized OBDA framework
the post-processing step may be more involved than in
the classical relational case, mostly due to the fact that
the DB system may offer limited querying capabili-
ties. In particular, some NoSQL DBs do not support
joins. Another reason for not delegating certain query
constructs to the DB is efficiency. For instance, in the
case of nested data (e.g., JSON documents containing
arrays), the unnesting (i.e., flattening) of nested objects
into tuples may produce output objects that are much
larger than the input, and so it may be preferable to

SPARQL

IQ

Q

i

ii

D

Fig. 2. SPARQL to native query translation

perform unnesting as a post-processing step, so as to
reduce network load between DB and client.

For the generalized OBDA framework, we propose
to translate SPARQL queries to native queries in two
steps (cf. Figure 2): first translate the input SPARQL

query to an intermediate query, subject to transforma-
tions, and then translate the (transformed) intermedi-
ate query to a native query. The intermediate query
language, denoted IQ, is expected to be a more high-
level language than Q, and can vary depending on Q,
but also on the considered fragment of SPARQL. On
the one hand, it should at least capture such fragment
(e.g., for BGPs, joins are sufficient, while for a frag-
ment with property paths, IQ should include some form
of recursion). On the other hand, IQ may include other
operators that are present/expressible in Q (e.g., an
unnest operator for dealing with nested data). Note that
Relational Algebra (RA) as IQ is sufficient for the first-
order fragment of SPARQL and for relational DBs. Our
framework, relying on the use of IQ, provides several
advantages: (i) it offers a better support for query op-
timization, since IQ, unlike SPARQL, can take into ac-
count the structure of the data, without necessarily be-
ing as low-level as Q; (ii) the optimization techniques
devised for IQ are independent of Q; (iii) the transla-
tion from SPARQL to IQ is standard and depends only
on the mapping (since IQ subsumes RA, such a trans-
lation has to extend the well-known translation from
SPARQL to RA).

3.2. Architecture of an OBDA System over
Heterogeneous Data Sources

We propose an architecture for an OBDA system
able to answer SPARQL queries over heterogeneous
data sources. This architecture, depicted in Figure 3,
is composed of an offline stage, independent from the
input SPARQL queries, and an online stage, dedicated
to query answering.

E. Botoeva et al. / Ontology-based Data Access – Beyond Relational Sources 5

Ontology
classification

i

Mapping
saturation

ii

Rewriting
1

Unfolding w.r.t.
mappings

2
Structural/semantic

optimization

3

IQ-to-native
query translation

4
Evaluation

5
Post-processing

6

ONTOLOGY

T
MAPPING M

SCHEMA S
Classified T

Sat. Mapping MT

SPARQL

q
Rewritten
SPARQL qT

q1 ∈ IQ

q2 ∈ IQ

Native
queries

Native
results

SPARQL

result

Fig. 3. Proposed architecture for an OBDA system

The offline stage consisting of steps i and ii ,
takes as input the ontology, mapping, and schema, and
produces two elements, to be used during the online
stage: the classified ontology, and the saturated map-
ping [21,23]. The former makes also implied inclusion
assertions between classes and between properties ex-
plicit, while the latter is constructed by “saturating” the
input mapping with the classified ontology. The satu-
ration is obtained by adding to the existing mapping
assertions additional ones that are derived by combin-
ing information from the input mapping and from the
ontology axioms. For instance, if M contains an as-
sertion ϕ(~x) (f(x) rdf:type A) and T an axiom
A subClassOf B, thenMT will contain also the as-
sertion ϕ(~x) (f(x) rdf:type B). Saturating the
mapping essentially allows us to consider ontology ax-
ioms already in the offline stage, and avoid (or reduce)
their use during query rewriting. In this way, we an-
ticipate to the offline stage operations that otherwise
would need to be performed in the online stage, and
this reduces the overall time required for query rewrit-
ing, when multiple user queries need to be executed
over the ontology. We also observe that the saturated
mapping can be significantly simplified for the online
stage, by using query containment-based optimization
to remove redundant mapping assertions.

The online stage handles individual SPARQL

queries, and can be split into 6 main steps: 1 the input
SPARQL query is rewritten according to the classified
ontology; 2 the rewritten query is unfolded w.r.t. the
saturated-mapping, by substituting each triple with its
mapping definitions; 3 the resulting IQ is simplified
by applying structural (e.g., replacing join of unions by
union of joins) and semantic (e.g., redundant self-join
elimination) optimization techniques; 4 the optimized
IQ is translated into one or multiple native queries;
5 these are evaluated by the DB engine over the un-
derlying DB (which is not explicitly shown as input in

Figure 3); and finally, 6 the native results are com-
bined and transformed into SPARQL results.

Such an architecture allows for steps i , ii , 1 ,
and 2 to be independent of the actual class D of DBs
(white boxes in Figure 3). Steps 3 and 6 require an
implementation specific to IQ (gray boxes), while 4
and 5 are specific to D (black boxes).

We emphasize that the structural and semantic op-
timization step is crucial for OBDA to work in prac-
tice. In particular, unfolded SPARQL queries often con-
tain significantly more joins than actually necessary,
since SPARQL atoms are triples, while data is typically
stored in the form of n-ary entities (e.g., n-ary rela-
tions in relational DBs). In the case of OBDA over a
document-based DB, these techniques can be extended
to take advantage of additional opportunities for opti-
mization offered by the structure of the DB instance.
Some of these optimization techniques are illustrated
on the example presented in Section 4.4.

4. OBDA over MongoDB

We illustrate the generalized OBDA framework by
focusing on a specific NoSQL DB, namely Mon-
goDB,2 a popular and representative instance of doc-
ument DBs. First, we introduce the data format and
the query language of MongoDB, and we briefly relate
them to the nested relational model and nested rela-
tional algebra. Then, we describe our prototype imple-
mentation for answering SPARQL queries over Mon-
goDB. Finally, we illustrate the generalized OBDA
framework over MongoDB on an example inspired by
the BSBM benchmark.

2https://docs.mongodb.org/manual/

6 E. Botoeva et al. / Ontology-based Data Access – Beyond Relational Sources

{ _id: 23226 ,

name: "Olympus OM -D E-M10 Mark II",

offers: [

{ offerId: 258, price: 747.14 , year: 2015, vendor: {

vendorId: 3785, name: "Yeppon Italia", homepage: "https :// www.yeppon.it"}},

{ offerId: 895, price: 609.42 , year: 2018, vendor: {

vendorId: 481, name: "amazon.it", homepage: "https :// www.amazon.it"}},

{ offerId: 922, price: 759.99 , year: 2017, vendor: {

vendorId: 481, name: "amazon.it", homepage: "https :// www.amazon.it"}}

]

}

{ _id: 25887 ,

name: "Panasonic Lumix DMC -GX80",

offers: [

{ offerId: 311, price: 500.32 , year: 2018, vendor: {

vendorId: 481, name: "amazon.it", homepage: "https :// www.amazon.it"}}

]

}

Fig. 4. A collection Db of two MongoDB documents

4.1. MongoDB

MongoDB stores and exposes data as collections
of JSON-like documents.3 A sample collection of two
MongoDB documents consisting of (nested) key-value
pairs and arrays, is given in Figure 4, where each doc-
ument contains information about a product: its id,
name, and a list of offers, in the form of a JSON array.
Each offer has itself an id, price, year, and vendor (in
turn with id, name, and homepage).

In accordance with the generalized OBDA frame-
work defined in Section 3, we assume that an input
collection D of MongoDB documents complies to a
schema S . In other words, documents in D are ex-
pected to represent objects of the same type, and thus
to follow the same structure.4 So if a field (e.g., offers
or offers.vendor.homepage) has an array (resp., an
object or a constant) as value in one document, we as-
sume that in every document this field either has an ar-
ray (resp., an object or a constant) as value, or is absent
(in which case the value is considered to be null).

Note that in a normalized relational DB instance,
this data would be spread across several tables. Indeed,
our example is inspired by the e-commerce scenario of
the BSBM benchmark [3], where the data is structured

3JSON (or JavaScript Object Notation) is a format for organizing
data in tree-shaped structures. So in spirit it is similar to XML, but
it is significantly more lightweight.

4This is not required by MongoDB itself, only by the OBDA
framework.

products

productId name

23226 Olympus OM-D E-M10 Mark II
25887 Panasonic Lumix DMC-GX80

vendors

vendorId name homepage

481 amazon.it http://www.amazon.it
3785 Yeppon Italia http://www.yeppon.it

offers

offerId price year product vendor

258 747.14 2015 23226 3785
311 500.32 2018 25887 481
895 609.42 2017 23226 481
922 759.99 2018 23226 481

Fig. 5. Relational view [[Db]] of the collection of Figure 4, following
the BSBM schema

according to a relational schema consisting of multi-
ple tables. Figure 5 provides the relational view cor-
responding to this MongoDB collection, with distinct
tables for products, vendors, and offers (the relational
schema in the BSBM benchmark is actually more com-
plex).

Note also that the JSON data in Figure 4 is denor-
malized. In particular, it contains redundant informa-
tion: the name and homepage of vendor 481 are present
3 times. Document-based DBMSs like MongoDB can

E. Botoeva et al. / Ontology-based Data Access – Beyond Relational Sources 7

take advantage of such redundancy. For instance, re-
trieving all vendors (with id, name, and homepage) of a
given product over an instance of the relational schema
of Figure 5 requires two (potentially costly) join op-
erations. But the same request over the denormalized
data does not require any join: the relevant information
is already grouped within a document.

However, query execution can also be penal-
ized by redundancy. For instance, a value for field
offers.vendor.vendorId is always associated to the
same value for field offers.vendor.name. But this
type of constraint cannot be exploited by Mon-
goDB (as of now) for query optimization. There-
fore in order to retrieve the name(s) of vendor 481
for instance, MongoDB would fetch into memory
all documents with an occurrence of 481 for field
offers.vendor.vendorId, even though one document
is sufficient in theory. Noticeably, this problem could
be avoided by choosing a different document structure
for the same data, with one document for each ven-
dor rather than for each product, but with the drawback
that the collection would then contain redundant infor-
mation about products. In general, the choice of a par-
ticular document structure is a trade-off, favoring some
queries, and penalizing others, and should be made ac-
cording to the expected query workload (provided such
information is available beforehand).

Like relational DBs, MongoDB allows for declar-
ing indexes. By default, it creates a unique index over
the (top-level) field _id, which serves as the primary
key in a collection. Indexes can drastically speed up
query execution. In particular, retrieving a (whole)
document by a unique value of an indexed field (like
the values of offers.offerId in Figure 4) can be done
very efficiently by looking up the value in the in-
dex, and then fetching from disk data that is likely
to be contiguous. On the other hand, queries on val-
ues with non-unique occurrences (e.g., the values of
offers.offer.vendorId) may be less efficient, be-
cause multiple (non-contiguous) documents may need
to be fetched.

MongoDB provides an ad-hoc querying mechanism
for formulating expressive queries by means of the ag-
gregation framework.5 A MongoDB aggregate query
(MAQ) is a sequence of stages, each of which takes
one or two collections of documents as input, and pro-
duces another collection as output. This language is

5https://docs.mongodb.com/manual/reference/operator/

aggregation-pipeline/

db.products.aggregate ([

{$project: {

"name": true , "offer1 ": "$offers",

"offer2 ": "$offers "}},

{$unwind: "$offer1"},

{$match: {" offer1.year": {$gte: 2016}}} ,

{$unwind: "$offer2"},

{$match: {" offer2.year": {$gte: 2016}}} ,

{$project: {

"name": true , "offer1 ": true ,

"offer2 ": true ,

"sameVendor ": {$and: [

{$ne: [" $offer1.offerId",

"$offer2.offerId "]},

{$eq: [" $offer1.vendorId",

"$offer2.vendorId "]}]}}} ,

{$match: {" sameVendor ": true}},

{$project: {

"product ": {$concat :[" bsbm:product/", _id]}

"name": true ,

"vendorName ": "$offer1.vendor.name",

"price1 ": "$offer1.price",

"price2 ": "$offer2.price "}}

])

Fig. 6. A MongoDB Aggregate Query (MAQ)

SELECT ?product ?productName

?price1 ?price2 ?vendorName

WHERE {

?product rdfs:label ?productName .

?offer1 bsbm:product ?product .

?offer2 bsbm:product ?product .

?offer1 bsbm:price ?price1 .

?offer2 bsbm:price ?price2 .

?offer1 bsbm:year ?year1 .

?offer2 bsbm:year ?year2 .

?offer1 bsbm:vendor ?vendor .

?offer2 bsbm:vendor ?vendor .

?vendor rdfs:label ?vendorName .

FILTER (? offer1 != ?offer2 &&

?year1 >= 2016 && ?year2 >= 2016)

}

Fig. 7. A SPARQL query corresponding to the MAQ of Figure 6

powerful, but also more low-level (less declarative)
than some well known query languages such as SQL

or SPARQL. Because of this, MAQs can be complex
to read and manipulate. As an illustration, the MAQ

of Figure 6 retrieves all products offered twice by the
same vendor since 2016. In comparison, the SPARQL

query of Figure 7 retrieves the same information, but
can be more easily understood. The more procedural

8 E. Botoeva et al. / Ontology-based Data Access – Beyond Relational Sources

productsN

_id name
offers

offerId price year v.vendorId v.name v.homepage

23226 Olympus OM-D E-M10 Mark II
258 747.14 2015 3785 Yeppon Italia https://www.yeppon.it
895 609.42 2018 481 amazon.it https://www.amazon.it
922 759.99 2017 481 amazon.it https://www.amazon.it

25887 Panasonic Lumix DMC-GX80 311 500.32 2018 481 amazon.it https://www.amazon.it

Fig. 8. Nested relational view [[Db]]nested of the collection of Figure 4 (where vendor is abbreviated as v)

_id name offerId price year v.vendorId v.name v.homepage

23226 Olympus OM-D E-M10 Mark II 258 747.14 2015 3785 Yeppon Italia https://www.yeppon.it
23226 Olympus OM-D E-M10 Mark II 895 609.42 2018 481 amazon.it https://www.amazon.it
23226 Olympus OM-D E-M10 Mark II 922 759.99 2017 481 amazon.it https://www.amazon.it
25887 Panasonic Lumix DMC-GX80 311 500.32 2018 481 amazon.it https://www.amazon.it

Fig. 9. Unnesting the sub-relation offers in the relation of Figure 8

v.vendorId v.name v.homepage
r

productId name offerId price year

3785 Yeppon Italia https://www.yeppon.it 23226 Olympus OM-D E-M10 Mark II 258 747.14 2015

481 amazon.it https://www.amazon.it
23226 Olympus OM-D E-M10 Mark II 895 609.42 2018
23226 Olympus OM-D E-M10 Mark II 922 759.99 2017
25887 Panasonic Lumix DMC-GX80 311 500.32 2018

Fig. 10. Nesting all attributes but v.vendorId, v.name, and v.homepage in the relation of Figure 9

flavor of MAQ also means that the sequence of stages
of an MAQ is closer to its actual execution, whereas re-
lational DBs/triple stores hide from the user the com-
plexity of query planning (e.g., the ordering of joins).
Hence, from a user perspective, OBDA over Mon-
goDB appears indeed as a promising alternative to
manually devising MAQs.

4.2. The Nested Relational Model

Alternatively, a collection of MongoDB documents
can be viewed through the nested relational model, an
extension of the relational model in which attributes
can be also relation-valued, and not only atomic.
Relation-valued attributes are called sub-relations. For
instance, the MongoDB collection Db of Figure 4
can be naturally represented in the nested relational

model as the relation [[Db]]nested in Figure 8, with a sub-
relation for the field offers.6

Nested relational algebra (NRA) [25] extends RA to
operate on nested data. It is of particular interest for
modeling operations on MongoDB collections, since
it is equivalent in expressive power to a fragment of
MAQ, as has been shown in [5]. NRA extends RA with
two operators: nest and unnest. Intuitively, unnest flat-
tens a sub-relation by concatenating each tuple in the
sub-relation with the remaining attributes in the par-
ent tuple. Instead, nest creates a sub-relation by par-
titioning the input relation, such that each element
of the partition agrees on the values of the attributes
that are not being nested. As an illustration, we first
unnest the sub-relation offers, which yields the rela-
tion of Figure 9. Then we nest all attributes except for

6Notice though that the elements of a MongoDB array are or-
dered, whereas this is not the case of tuples in a sub-relation.

E. Botoeva et al. / Ontology-based Data Access – Beyond Relational Sources 9

offer.vendor.vendorId, offer.vendor.vendorName,
and offer.vendor.homepage into a sub-relation r,
which yields the relation of Figure 10. As a result, tu-
ples are grouped by vendor.

4.3. Instantiation of OBDA for MongoDB

We built a proof-of-concept prototype for answer-
ing SPARQL queries over MongoDB, called Ontop/-
MongoDB, which extends the Ontop system [6] and
implements the architecture described in Figure 3.
The current implementation supports the fragment of
SPARQL including BGPs, FILTER, JOIN, OPTIONAL,
and UNION over MongoDB 3.4. In this implementa-
tion of the virtual OBDA architecture, NRA serves as
IQ, and MAQ as the native query language. The sys-
tem is designed to fully delegate query execution to
the MongoDB engine,7 thus minimizing the amount of
post-processing required in step 6 of Figure 3.

Ontop/MongoDB takes as input (in addition to the
MongoDB database instance) an OWL 2 QL ontology,
a mapping, and a set of constraints. The constraints are
user-defined unicity constraints (UCs) or functional
dependencies (FDs) that hold over the JSON docu-
ments being queried. MongoDB may not be able to
enforce such constraints, but they may nonetheless
hold over the data. For instance, in the collection of
Figure 4, an FD holds from offers.vendor.vendorId
to offers.vendor.name, meaning that the value of
the former determines the value of the latter. These
constraints can be used for query optimization (e.g.,
to eliminate redundant joins, as illustrated in Sec-
tion 4.4). We also emphasize that it can be ver-
ified whether a manually declared constraint actu-
ally holds over the data, by evaluating an appropriate
query over the MongoDB instance. For instance, the
MAQ of Figure 11 retrieves all sets of values (if any)
that violate the FD from offers.vendor.vendorId

to offers.vendor.name, in any MongoDB collection
with the same schema as the collection of Figure 4.

Note also that if the MongoDB instance is a de-
normalized version of an existing relational DB in-
stance, then UCs and FDs can be directly inferred
from keys declared in the relational DB schema. For
instance, let us assume that the MongoDB collec-
tion of Figure 4 is a denormalized version of the re-
lational DB instance of Figure 5, and that the at-
tribute vendorId is declared as the primary key of table

7An exception is the step that builds the returned RDF strings (IRIs
and literals) from the constants retrieved from the DB.

db.products.aggregate ([

{$unwind: "$offers"},

{$project: {

"offers.vendor.vendorId ": true ,

"offers.vendor.name": true}},

{$group: {

_id: "$offers.vendor.vendorId",

names:

{$addToSet: "$offers.vendor.name "}}},

{$project: {count: {$size: "$names" }}},

{$match: {count :{$gte: 2}}}

]);

Fig. 11. MAQ retrieving possible violations of the FD from
offers.vendor.vendorId to offers.vendor.name, based on the
schema of the collection of Figure 4

vendor. Then the FD from offers.vendor.vendorId
to offers.vendor.name must hold over the MongoDB
collection.

In step 3 , in addition to applying relational opti-
mization techniques implemented by Ontop, Ontop/-
MongoDB also applies techniques specific to nested
data, based on the equivalence with NRA mentioned
above. In particular, it can take advantage of the UCs
and FDs just mentioned.

In step 4 , Ontop/MongoDB applies the NRA-to-
MAQ translation given in [5]. An important considera-
tion in this translation process is that one has to take
into account the internal limitations that MongoDB
puts on the size of in-memory intermediate results dur-
ing query evaluation (currently 16 MB for a single doc-
ument, and 100 MB for a collection). For example, a
naive IQ-to-MAQ translation could produce an inter-
mediate result in which the content of all input doc-
uments is merged into a single document, whose size
might then exceed the memory limitations. Another
key consideration is to take advantage of indexes avail-
able over the source JSON collection(s). Therefore On-
top/MongoDB does not apply the translation of [5] di-
rectly, but uses an optimized version, which makes the
full delegation of query answering to MongoDB prac-
tically feasible.

4.4. Generalized OBDA by Example

We illustrate the generalized OBDA framework over
MongoDB by elaborating on the running example
inspired by the BSBM benchmark. The OBDA in-
stance we consider is a pair 〈Pb, Db〉, where Pb =
〈T b,Mb,Sb〉, the database instance Db is the col-
lection of documents given in Figure 4, and Sb is

10 E. Botoeva et al. / Ontology-based Data Access – Beyond Relational Sources

SELECT * FROM products
bsbm:product /{ productId} rdfs:label {name} .

SELECT * FROM vendors
bsbm:vendor /{ vendorId} rdfs:label {name} ;

bsbm:homepage {homepage} .

SELECT * FROM offers
bsbm:offer/{ offerId} bsbm:price {price} ;

bsbm:year {year} ;

bsbm:product {product} ;

bsbm:vendor {vendor} .

Fig. 12. MappingMb over the relational view of Figure 5

the schema defining the structure of such documents.
In addition, Sb contains two manually declared con-
straints, which hold over the data: (i) a UC for the
field offers.offerId, meaning that each value of this
field is unique in the whole collection;8 (ii) an FD
from the field offers.vendor.vendorId to the fields
offers.vendor.name and offers.vendor.homepage.

We illustrate the evaluation over this OBDA in-
stance of the SPARQL query q given in Figure 7. The
example focuses on the steps that are most relevant for
the generalization of the OBDA framework. In partic-
ular, we do not illustrate ontology classification, map-
ping saturation, and SPARQL query rewriting (respec-
tively, steps 1 , i , and ii in Figure 3), because these
are identical to the case of OBDA over a relational
database (for a detailed description, we refer to [14]).
For this reason, we simplify the example by assum-
ing that T b consists only of a vocabulary (i.e., it con-
tains no axiom), so that ontology classification, map-
ping saturation, and SPARQL query rewriting do not
produce any change on the respective inputs.

Mapping. The mapping Mb is given in Figure 12.
The SQL query ϕ in each mapping assertion is defined
over the relational schema [[Sb]] (corresponding to the
DB instance [[Db]] of Figure 5). For brevity, we use a
set of RDF triples on the right-hand side of each map-
ping assertion. In such triples, {a} is a placeholder for
the value of attribute a in each tuple in ans(ϕ, [[Db]]),
and s1{a}s2 stands for the concatenation of s1, {a},
and s2. In our case, since T b is empty, the saturated
mappingMb

T b coincides withMb.
Note that the concrete mapping language currently

used by Ontop/MongoDB supports source queries over

8Recall that MongoDB also enforces an implicit primary key con-
straint on the field _id.

Sb (rather than [[Sb]]), i.e., it defines JSON-to-RDF

(rather than SQL-to-RDF) mappings. Ontop/MongoDB
converts internally such mapping assertions into SQL-
to-RDF ones. We only provide the latter here, to keep
the exposition simple.

Unfolding into an IQ. The unfolding phase (step 2
in Figure 3) starts with the SPARQL query qT b , ob-
tained by rewriting q w.r.t. the ontology T b (since
T b is empty, qT b coincides with q in our case). Each
triple pattern in qT b is substituted with the corre-
sponding source SQL query in the saturated mapping
Mb
T b . This produces an RA query q1, with the guar-

antee that for any DB instance D over the schema
Sb, ans(q1, [[D]]) = ans(qT b ,Mb

T b(D)). This is in
turn equivalent to ansQL(q, 〈Pb, D〉), i.e., computing
the answer to the original SPARQL query q over the
OBDA instance according to the OWL 2 QL entailment
regime can be reduced to evaluating q1 over the rela-
tional view. The resulting query in our running exam-
ple is given in Figure 13. As is conventional, symbols
./, σ, and π respectively stand for inner join, selection,
and (possibly complex) projection.

IQ optimization. As mentioned in Section 4.3, in
our instantiation of the generalized OBDA framework,
NRA serves as the IQ language.9 In the IQ optimiza-
tion phase (step 3 in Figure 3), Ontop/MongoDB
rewrites the unfolded RA query, expressed over the re-
lational schema [[Sb]], into a semantically equivalent
NRA query over the nested relational schema [[Sb]]nested

(corresponding to the DB instance [[Db]]nested of Fig-
ure 8). While doing so, it applies a series of query opti-
mization techniques, some of which are NRA-specific.

As an illustration, Figure 14 provides a naive rewrit-
ing over [[Sb]]nested of the query of Figure 13, where all
sub-relations are simply unnested (in order to “access”
their attributes), and no optimization is applied. Sym-
bol χ stands for unnest, and χofi→(_,_,_,_,_,_) for unnest-
ing the sub-relation ofi (which counts 6 attributes). The
resulting IQ requires a total of 9 unnest operations and
9 binary joins, whose execution may be costly.

In comparison, Figure 15 presents an optimized
rewriting over [[Sb]]nested, which contains no join, and
only two unnest operations. A key technique to obtain
this optimized rewriting is to identify redundant joins
based on constraints holding over the schema Sb. For
instance, each value of _id can appear at most once
in a MongoDB collection, therefore it determines the

9Recall that NRA subsumes RA, hence an RA query is also an IQ.

E. Botoeva et al. / Ontology-based Data Access – Beyond Relational Sources 11

πp,n,l,pr1,pr2

σo1 6=o2, y1≥2016, y2≥2016

./

πp←bsbm:product/{pid0},n

products(pid0, n)

πp←bsbm:product/{pid1}
o1←bsbm:offer/{id1}

offers(id1, _, _, pid1, _)

πp←bsbm:product/{pid2}
o2←bsbm:offer/{id2}

offers(id2, _, _, pid2, _)

πp←bsbm:offer/{id3}
y1←y3

offers(id3, _, y3, _, _)

πp←bsbm:offer/{id4}
y2←y4

offers(id4, _, y4, _, _)

πv←bsbm:vendor/{id9},l

vendors(id9, l, _)

πo2←bsbm:offer/{id8}
v←bsbm:vendor/{v8}

offers(id8, _, _, _, v8)

πo1←bsbm:offer/{id7}
v←bsbm:vendor/{v7}

offers(id7, _, _, _, v7)

πo1←bsbm:offer/{id6}
pr2←pr6

offers(id6, pr6, _, _, _)

πo2←bsbm:offer/{id5}
pr1←pr5

offers(id5, pr5, _, _, _)

Fig. 13. Unfolding over [[Sb]] of the query of Figure 7, w.r.t. the mapping of Figure 12

πp,n,l,pr1,pr2

σo1 6=o2, y1≥2016, y2≥2016

./

πp←bsbm:product/{pid0},n

productsN(pid0, n, _)

πp←bsbm:product/{pid1}
o1←bsbm:offer/{id1}

χof1→(id1,_,_,_,_,_)

productsN(pid1, _, of1)

πp←bsbm:product/{pid2}
o2←bsbm:offer/{id2}

χof2→(id2,_,_,_,_,_)

productsN(pid2, _, of2)

πo1←bsbm:offer/{id3}
y1←y3

χof3→(id3,_,y3,_,_,_)

productsN(_, _, of3)

πo2←bsbm:offer/{id4}
y2←y4

χof4→(id4,_,y4,_,_,_)

productsN(_, _, of4)

πv←bsbm:vendor/{v9},l

χof9→(_,_,_,v9,l,_)

productsN(_, _, of9)

πo2←bsbm:offer/{id8}
v←bsbm:vendor/{v8}

χof8→(id8,_,_,v8,_,_)

productsN(_, _, of8)

πo1←bsbm:offer/{id7}
v←bsbm:vendor/{v7}

χof7→(id7,_,_,v7,_,_)

productsN(_, _, of7)

πo2←bsbm:offer/{id6}
pr2←pr6

χof6→(id6,pr6,_,_,_,_)

productsN(_, _, of6)

πo1←bsbm:offer/{id5}
pr1←pr5

χof5→(id5,pr5,_,_,_,_)

productsN(_, _, of5)

Fig. 14. Naive rewriting over [[Sb]]nested of the unfolded query of Figure 13

value of fields name and offers. This makes the join in
Figure 14 between the first three operands unnecessary
(all operands are numbered from 0 to 9, counterclock-
wise). Similarly, the UC declared for offers.offerId

guarantees that each value for this field determines the
value of the other 5 fields in the sub-relation. More
interestingly, the declared FD guarantees that a value
for offers.vendor.vendorId is always associated to

12 E. Botoeva et al. / Ontology-based Data Access – Beyond Relational Sources

πp←bsbm:product/{pid},
n, l, pr1, pr2

σid1 6=id2, v1=v2, y2≥2016

χof2→(id2,pr2,y2,v2, _, _)

σy1≥2016

χof1→(id1,pr1,y1,v1, l, _)

πpid,n, of1/of, of2/of

productsN(pid, n, of)

Fig. 15. Optimized rewriting over [[Sb]]nested of the unfolded query
of Figure 13

the same value of offers.vendor.name, which makes
the join between operands 7 and 9 (or 8 and 9) un-
necessary. This holds even though a same value for
offers.vendor.vendorId may appear multiple times
in the collection. So in this last case, in order to elim-
inate the redundant join, Ontop/MongoDB exploits an
FD which does not follow from a UC. This is an exam-
ple of NRA-specific optimization, usually not needed
for OBDA over relational DBs (assuming the database
to be at least in third normal form).

IQ-to-Q translation. In the IQ-to-native query trans-
lation phase (step 4 in Figure 3), Ontop/MongoDB
rewrites the optimized IQ q2, expressed over [[Sb]]nested,
into an equivalent MAQ qm over Sb (i.e., such that
for every D satisfying Sb, ans(q2, [[D]]nested) =
ans(qm, D)), based on the correspondence between
NRA and (a fragment of) MAQ established in [5].

Since the optimized IQ in our running example (Fig-
ure 15) does not contain binary operators, the conver-
sion to MAQ is relatively straightforward: σ, π, and χ
can be directly mapped to the MAQ operators $match,
$project, and $unwind respectively, yielding the MAQ

of Figure 6.
Once again, query optimization techniques are ap-

plied by Ontop/MongoDB in order to produce a more
efficient MAQ. These are MAQ-specific, i.e., they could
not be implemented at the level of IQ, and mostly per-
tain to the translation of binary NRA operators (includ-
ing a dedicated planner).

We nonetheless illustrate one optimization tech-
nique that applies to our running example. MAQ allows
for prefiltering a collection of MongoDB documents,
based on the value of a nested field nf , without the
need to unnest the corresponding sub-relation first. If
nf is indexed, this pre-filter can significantly reduce
the number of required disk accesses during query ex-

db.products.aggregate ([

{$match: {" offers.year": {$gte: 2016}}} ,

{$project: {

"name": true , "offer1 ": "$offers",

"offer2 ": "$offers" }},

{$unwind: "$offer1"},

{$match: {" offer1.year": {$gte: 2016}}} ,

{$unwind: "$offer2"},

{$match: {" offer2.year": {$gte: 2016}}} ,

{$project: {

"name": true , "offer1 ": true ,

"offer2 ": true ,

"sameVendor ": {$and: [

{$ne: [" $offer1.offerId",

"$offer2.offerId "]},

{$eq: [" $offer1.vendorId",

"$offer2.vendorId "]}]}}} ,

{$match: {" sameVendor ": true}},

{$project: {

"product ": {$concat:

["bsbm:product/",

{$toString: "$_id "}]},

"name": true ,

"vendorName ": "$offer1.vendor.name",

"price1 ": "$offer1.price",

"price2 ": "$offer2.price "}}

])

Fig. 16. Optimized version of the MAQ of Figure 6

ecution, fetching only documents in which some oc-
currence of nf satisfies the filter condition.

In our example, assuming that the field offers.year
is indexed,10 one can prepend a $match stage to the
MAQ, in order to pre-filter products with at least one
offer in the desired range of years (≥ 2016), before
unnesting the sub-relation. The resulting MAQ is given
in Figure 16.

Native query evaluation and post-processing. The
evaluation phase (step 5 in Figure 3) simply consists
in evaluating the optimized MAQ over the MongoDB
collection Db. Ontop/MongoDB offers the possibilty
to fully delegate query execution to the source en-
gine, meaning that the results returned by the source
DBMS can be immediately converted to SPARQL solu-
tion mappings.

Full delegation of query execution may not be pos-
sible for all DBMSs though, or it may not be desirable,
as explained in Section 3.1. This is the reason for the
post-processing phase (step 6 in Figure 16). As a rel-

10We also assume that this index is optimized for ordering, e.g.,
is a B-tree.

E. Botoeva et al. / Ontology-based Data Access – Beyond Relational Sources 13

atively basic illustration, Ontop/MongoDB offers as an
option to postprocess the construction of IRIs. In this
case, the last stage of the MAQ in Figure 16 will not
project the field "product".11

5. Evaluation

We have carried out an evaluation that aims at de-
termining whether OBDA over MongoDB is a realistic
solution performance-wise, and in particular whether
it is able to exploit the document structure of Mon-
goDB collections. We focus on answering queries over
datasets that do not fit into memory. In such a setting,
a key concern for performance is to limit disk access,
i.e., the number of non-contiguous pages that need to
be fetched into memory.

To this end, we compare Ontop/MongoDB to the
triple store Virtuoso [11], which represents a diametri-
cally opposite approach to answering SPARQL queries,
as far as the data and index structure are concerned.
Indeed, Virtuoso stores data as quads (i.e., triples ex-
tended with the graph name), and for each element
of the quads it maintains an extensive index structure,
which is in particular highly optimized for retrieving
(multiple) triples sharing a constant value12. In com-
parison, retrieving all documents for a given value of
an indexed field may be inefficient in MongoDB if the
value is not unique in the index, as it requires fetch-
ing multiple (non-contiguous) documents from disk.
Instead, when the value is unique, MongoDB can fetch
the whole document containing this value very effi-
ciently, whereas for Virtuoso fetching the same data
may require multiple disk accesses.

We expect the evaluation to reflect these differences,
i.e: (i) that Ontop/MongoDB outperforms Virtuoso for
queries containing a unique constant in an indexed
field, and fetching a single document; (ii) that Virtuoso
outperforms Ontop/MongoDB for queries whose con-
stants have multiple occurrences in the JSON collec-
tion.

An additional goal of the experiments is to deter-
mine whether the cost of query rewriting itself (i.e.,
generating the MAQ) introduces an excessive overhead.

11Note that the _id field is systematically returned by MongoDB,
therefore it does not need to be explicitly retained by the projection.

12http://docs.openlinksw.com/virtuoso/rdfperfrdfscheme/

5.1. Dataset and Evaluation Environment

As dataset we used an instance of the well-known
BSBM benchmark [3], which emulates an e-commerce
scenario, centered on offered products. The number of
products in the instance is 4 million, giving 1.2 billion
RDF triples, whose total size is 156 GB.

BSBM also provides a representation of this dataset
as a relational DB instance, composed of 10 tables
(product, offer, vendor, etc.). Based on the relational
schema of this instance, we generated a 118 GB col-
lection of JSON documents containing the same data.
The structure of the documents in this collection ex-
tends the one of Figure 4, grouping in each document
all information pertaining to a single product.

The latest version of BSBM comes with 11 queries,
numbered from 1 to 12 (there is no query 6 anymore).
Among these, 3 were discarded, because they contain
SPARQL features not (yet) supported by Ontop/Mon-
goDB (DESCRIBE queries, bound operator, and vari-
ables over predicates). We instantiated 10 versions of
each of the 8 remaining queries, replacing constant
placeholders with values randomly sampled from the
data. One version of each query was set aside for a cold
run, and the 8 · 9 other instantiated queries were shuf-
fled as a query mix. Execution times reported below
are averaged over these 9 versions.

The systems being compared are Virtuoso v7.2.4
(over the RDF triples), and Ontop/MongoDB with
MongoDB v3.4.2 (over the JSON collection). Queries
were executed on a 24 cores Intel Xeon CPU at
3.47 GHz, with a 5.4 TB 15k RPM RAID-5 hard-drive
cluster. 8 GB of RAM were dedicated to each system
(MongoDB and Virtuoso) for caching and intermedi-
ate operations. The OS page cache was also flushed ev-
ery 5 seconds, to ensure that each system could only
exploit these 8 GB for caching. The query timeout was
set to 500 s. For each constant appearing in a query, the
corresponding field in the MongoDB collection was
indexed.

An executable for Ontop/MongoDB is available on-
line, together with the SPARQL queries, mapping, con-
straints, and both datasets (JSON and RDF), so that the
experiment can be reproduced. The generated MAQs
are also provided.13

13https://www.dropbox.com/sh/nz8dfas5ijpr76y/

AACJzxHZUInrHi6Vq3Lk8f8ra?dl=0

14 E. Botoeva et al. / Ontology-based Data Access – Beyond Relational Sources

5.2. Results and Analysis

As a first element of answer, we observed that all
MAQs generated by Ontop/MongoDB are optimal with
respect to the document structure, in the sense that no
unnecessary join is performed that could be in theory
avoided.

Table 1 reports the execution times for both systems.
For Ontop/MongoDB, we distinguish query rewrit-
ing time (“rw”), i.e., the time spent generating the
MAQ, from its actual evaluation (“eval”) by MongoDB.
Rewriting time does not depend on the size of the data,
but only on the query, mapping, ontology, and con-
straints, which are less likely to grow out of propor-
tion. Still, for some of the cheaper MAQs (< 100 ms),
this overhead represents the major part of the execution
time. This can be partly explained by the wide range of
optimizations performed by Ontop/MongoDB. But it is
also an aspect to improve, for OBDA over MongoDB
to be considered a viable alternative to MongoDB it-
sef, at least in applications with high performance re-
quirements.

We now focus on query evaluation times. For each
of the 9 versions of Query 5, the evaluation either
timed out, or exceeded MongoDB’s memory limita-
tions (see Section 4.3). This is explained by the fact
that this query contains an anti-join, which requires a
(close to) full collection scan from MongoDB. For the
7 remaining queries, we observe a sharp contrast in
performance between the two systems, which matches
the above expectations. Queries 1 and 4 present a very
favorable setting for Virtuoso: the SPARQL BGPs are
of limited size (≤ 5 triple patterns), and each of them
contains 3 constants. On the other hand, because none
of these constants is unique in the JSON collection,
the evaluation by Ontop/MongoDB requires fetching
multiple documents from disk. As expected, for these
two queries, evaluating the SPARQL query with Virtu-
oso was one order of magnitude faster than evaluat-
ing the corresponding MAQ with Ontop/MongoDB. As
for the 5 remaining queries, they all represent a set-
ting where MongoDB can fully benefit from denor-
malization. First, all 5 queries require data contained
in one document only. In addition, they all contain a
constant in an indexed field, where the index is either
declared as a unique (Queries 2, 7, 8, and 10), or con-
tain only unique values (Query 12). For each of these
queries, the evaluation was one to two orders of mag-
nitude faster for MongoDB. This confirms that Ontop/-
MongoDB was able to generate MAQs that take full ad-
vantage of the document (and index) structure.

6. Related Work

The idea of using wrappers to access external data
sources dates back to the 90s; see e.g., the Garlic data
integration system [22]. In recent years, several ex-
tensions of the SQL language have been proposed for
accessing JSON data, e.g., SQL++ [18]. These query
languages are either directly supported by the source
DB engines (e.g., Couchbase14 and AsterixDB15) or by
middleware. In the particular case of a MongoDB data
source, such middleware includes Drill16, Dremio17,
Studio 3T18, and the MongoDB Connector for Spark19.
With such systems, users can query MongoDB col-
lections as nested tables. SQL queries are automat-
ically translated to (basic) MongoDB queries, and
post-processing is often required to compute advanced
query constructs. These middleware systems differ
fundamentally from OBDA systems in the type of vir-
tual data representation they expose: a representation
whose structure is derived directly from the one of the
data source in the case of middleware systems, and an
indirectly mapped RDF graph in the case of OBDA.

Several mapping language proposals already ex-
ist that extend R2RML for converting non-relational
data sources to RDF, e.g., RML [10], xR2RML [16],
KR2RML [24], and D2RML [8]. These languages ex-
tend the relational model used in R2RML to more
general cases (e.g., CSV, JSON, and Web Services).
The corresponding systems are mostly used for
data conversion; for instance, the implementation
Morph-xR2RML also supports SPARQL query answer-
ing by partially materializing the relevant RDF graph.

Finally, the approach of [2] is comparable in spirit
to ours, in that it also aims at delegating query execu-
tion to a NoSQL source engine, and relies on an object-
oriented (OO) intermediate representation, similar to
our “relational view”. A key difference though is that
the mapping is from the ontology vocabulary to the OO
layer, rather than from the source DB to the ontology
vocabulary. The aim is to simplify the mapping spec-
ification, and make it independent of the underlying
source DB. The expressivity of such a mapping is thus
limited, essentially mapping OWL classes to (possibly
nested) relations.

14http://couchbase.com/
15https://asterixdb.apache.org/
16https://drill.apache.org/
17https://www.dremio.com/
18https://studio3t.com/knowledge-base/articles/

sql-query/
19https://docs.mongodb.com/spark-connector/

E. Botoeva et al. / Ontology-based Data Access – Beyond Relational Sources 15

Table 1
Execution times (ms) for Ontop/MongoDB and Virtuoso, over the
BSBM benchmark (4 million products). Values are averaged over 9
versions of each query

Query 1 2 4 5 7 8 10 12

Ontop/MongoDB
rw 26 179 102 NA 417 838 22 35

eval 2672 43 3713 NA 53 66 34 40
Virtuoso eval 258 308 403 1179 3995 1897 3966 327

7. Conclusions

In this article, we have presented a generalized
OBDA framework for arbitrary (not only relational)
DBs. It provides a convenient uniform querying in-
terface, by means of a high-level vocabulary coupled
with a familiar query language (SPARQL), as an alter-
native to the variety of ad-hoc native query languages
of NoSQL DBMSs. We also propose a practical archi-
tecture for a generalized virtual OBDA approach, that
allows for answering SPARQL queries over arbitrary
data sources.

We have instantiated this framework in the specific
case of MongoDB, as an extension (called Ontop/-
MongoDB) of the OBDA system Ontop, and we have
compared its performance to that of a triple store. The
evaluation we have carried out shows that Ontop/Mon-
goDB is able to generate queries in MAQ, the native
query language of MongoDB, that take full advantage
of the denormalized structure of the data.

As a continuation of this work, we plan to eval-
uate the impact of the different techniques imple-
mented within Ontop/MongoDB to optimize the gen-
erated MAQs, using a wider range of queries, but also
different document structures for the same dataset.

References

[1] Natalia Antonioli, Francesco Castanò, Cristina Civili, Spartaco
Coletta, Stefano Grossi, Domenico Lembo, Maurizio Lenz-
erini, Antonella Poggi, Domenico Fabio Savo, and Emanuela
Virardi. Ontology-based data access: the experience at the Ital-
ian Department of Treasury. In Proc. of the Industrial Track
of the 25th Int. Conf. on Advanced Information Systems Engi-
neering (CAiSE), volume 1017 of CEUR Workshop Proceed-
ings, http://ceur-ws.org/, pages 9–16, 2013.

[2] Thiago Henrique Dias Araujo, Barbara Tieko Agena,
Kelly Rosa Braghetto, and Renata Wassermann. OntoMongo
– Ontology-Based data access for NoSQL. In Mara Abel,
Sandro Rama Fiorini, and Christiano Pessanha, editors, Proc.
of the 10th Seminar on Ontology Research in Brazil (Onto-
Bras) and 1st Doctoral and Masters Consortium on Ontolo-
gies, volume 1908 of CEUR Workshop Proceedings, http:
//ceur-ws.org/, pages 55–66, 2017.

[3] Christian Bizer and Andreas Schultz. The Berlin SPARQL
benchmark. Int. J. on Semantic Web and Information Systems,
5(2):1–24, 2009.

[4] Elena Botoeva, Diego Calvanese, Benjamin Cogrel, Julien
Corman, and Guohui Xiao. A generalized framework for
ontology-based data access. In Proc. of the 17th Int. Confer-
ence of the Italian Assoc. for Artificial Intelligence (AI*IA),
volume 11298 of Lecture Notes in Computer Science, pages
166–180. Springer, 2018.

[5] Elena Botoeva, Diego Calvanese, Benjamin Cogrel, and Guo-
hui Xiao. Expressivity and complexity of MongoDB queries.
In Proc. of the 21st Int. Conf. on Database Theory (ICDT), vol-
ume 98 of Leibniz Int. Proc. in Informatics (LIPIcs), pages 9:1–
9:22, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik.

[6] Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman
Kontchakov, Davide Lanti, Martin Rezk, Mariano Rodriguez-
Muro, and Guohui Xiao. Ontop: Answering SPARQL queries
over relational databases. Semantic Web J., 8(3):471–487,
2017.

[7] Diego Calvanese, Pietro Liuzzo, Alessandro Mosca, Jose
Remesal, Martin Rezk, and Guillem Rull. Ontology-based data
integration in EPNet: Production and distribution of food dur-
ing the Roman Empire. Engineering Applications of Artificial
Intelligence, 51:212–229, 2016.

[8] Alexandros Chortaras and Giorgos Stamou. D2RML: Inte-
grating heterogeneous data and web services into custom RDF
graphs. In Proc. of the Workshop on Linked Data on the
Web (LDOW), volume 2073 of CEUR Workshop Proceedings,
http://ceur-ws.org/, 2018.

[9] Souripriya Das, Seema Sundara, and Richard Cyganiak.
R2RML: RDB to RDF mapping language. W3C Recommen-
dation, World Wide Web Consortium, September 2012. Avail-
able at http://www.w3.org/TR/r2rml/.

[10] Anastasia Dimou, Miel Vander Sande, Pieter Colpaert, Ruben
Verborgh, Erik Mannens, and Rik Van de Walle. RML: A
generic language for integrated RDF mappings of heteroge-
neous data. In Proc. of the Workshop on Linked Data on the
Web (LDOW), volume 1184 of CEUR Workshop Proceedings,
http://ceur-ws.org/, 2014.

[11] Orri Erling and Ivan Mikhailov. RDF support in the Virtuoso
DBMS. In Networked Knowledge – Networked Media, vol-
ume 221 of Studies in Computational Intelligence, pages 7–24.
Springer, 2009.

[12] Martin Giese, Ahmet Soylu, Guillermo Vega-Gorgojo, Ar-
ild Waaler, Peter Haase, Ernesto Jiménez-Ruiz, Davide Lanti,
Martin Rezk, Guohui Xiao, Özgür L. Özçep, and Riccardo
Rosati. Optique: Zooming in on Big Data. IEEE Computer,
48(3):60–67, 2015.

16 E. Botoeva et al. / Ontology-based Data Access – Beyond Relational Sources

[13] Steve Harris and Andy Seaborne. SPARQL 1.1 query lan-
guage. W3C Recommendation, World Wide Web Consor-
tium, March 2013. Available at http://www.w3.org/TR/
sparql11-query.

[14] Roman Kontchakov, Martin Rezk, Mariano Rodriguez-Muro,
Guohui Xiao, and Michael Zakharyaschev. Answering
SPARQL queries over databases under OWL 2 QL entailment
regime. In Proc. of the 13th Int. Semantic Web Conf. (ISWC),
volume 8796 of Lecture Notes in Computer Science, pages
552–567. Springer, 2014.

[15] Maurizio Lenzerini. Data integration: A theoretical perspec-
tive. In Proc. of the 21st ACM Symp. on Principles of Database
Systems (PODS), pages 233–246, 2002.

[16] Franck Michel, Loïc Djimenou, Catherine Faron-Zucker, and
Johan Montagnat. Translation of relational and non-relational
databases into RDF with xR2RML. In Proc. of the 11th Int.
Conf. on Web Information Systems and Technologies (WE-
BIST), pages 443–454, 2015.

[17] Boris Motik, Achille Fokoue, Ian Horrocks, Zhe Wu, Carsten
Lutz, and Bernardo Cuenca Grau. OWL Web Ontology Lan-
guage profiles. W3C Recommendation, World Wide Web Con-
sortium, October 2009. Available at http://www.w3.org/TR/
owl-profiles/.

[18] Kian Win Ong, Yannis Papakonstantinou, and Romain
Vernoux. The SQL++ query language: Configurable, unifying
and semi-structured. CoRR Technical Report abs/1405.3631,
arXiv.org e-Print archive, 2014. Available at http://arxiv.
org/abs/1405.3631.

[19] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Seman-
tics and complexity of SPARQL. ACM Trans. on Database
Systems, 34(3):16:1–16:45, 2009.

[20] Antonella Poggi, Domenico Lembo, Diego Calvanese,
Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo

Rosati. Linking data to ontologies. J. on Data Semantics,
10:133–173, 2008.

[21] Mariano Rodriguez-Muro, Roman Kontchakov, and Michael
Zakharyaschev. Ontology-based data access: Ontop of
databases. In Proc. of the 12th Int. Semantic Web Conf. (ISWC),
volume 8218 of Lecture Notes in Computer Science, pages
558–573. Springer, 2013.

[22] Mary Tork Roth and Peter M. Schwarz. Don’t scrap it, wrap
it! A wrapper architecture for legacy data sources. In Proc. of
the 23rd Int. Conf. on Very Large Data Bases (VLDB), pages
266–275. Morgan Kaufmann, 1997.

[23] Juan F. Sequeda, Marcelo Arenas, and Daniel P. Miranker.
OBDA: Query rewriting or materialization? In practice, both!
In Proc. of the 13th Int. Semantic Web Conf. (ISWC), volume
8796 of Lecture Notes in Computer Science, pages 535–551.
Springer, 2014.

[24] Jason Slepicka, Chengye Yin, Pedro A. Szekely, and Craig A.
Knoblock. KR2RML: an alternative interpretation of R2RML
for heterogenous sources. In Proc. of the 6th Int. Workshop on
Consuming Linked Data (COLD), co-located with ISWC, vol-
ume 1426 of CEUR Workshop Proceedings, http://ceur-ws.
org/, 2015.

[25] Jan Van den Bussche. Simulation of the nested relational al-
gebra by the flat relational algebra, with an application to the
complexity of evaluating powerset algebra expressions. Theo-
retical Computer Science, 254(1):363–377, 2001.

[26] Guohui Xiao, Diego Calvanese, Roman Kontchakov,
Domenico Lembo, Antonella Poggi, Riccardo Rosati, and
Michael Zakharyaschev. Ontology-based data access: A
survey. In Proc. of the 27th Int. Joint Conf. on Artificial
Intelligence (IJCAI), pages 5511–5519. IJCAI Org., 2018.

