
The DReW System for Nonmonotonic DL-Programs?

Guohui Xiao1, Thomas Eiter1, and Stijn Heymans2

1 Institute of Information Systems 184/3
Vienna University of Technology

Favoritenstraße 9–11, A–1040 Vienna, Austria
{xiao,eiter}@kr.tuwien.ac.at

2 Artificial Intelligence Center, SRI International
Menlo Park, CA 94025, United States

stijn.heymans@sri.com

Abstract. Nonmonotonic DL-programs provide a loose integration of Descrip-
tion Logic (DL) ontologies and Logic Programming (LP) rules with negation,
where a rule engine can query an ontology with a native DL reasoner. However,
in most systems for DL-programs, the overhead of an external DL reasoner might
be considerable. Datalog-rewritable DL ontologies, such as most fragments of
OWL 2 RL, OWL 2 EL, and OWL 2 QL, can be rewritten to Datalog programs,
so that DL-programs can be reduced to Datalog¬, i.e, Datalog with negation,
under both well-founded and answer set semantics. We developed the reasoner
DReW that uses the Datalog-rewriting technique. In addition to DL-programs,
DReW can also answer conjunctive queries under DL-safeness conditions over
Datalog-rewritable ontologies, as well as reason on terminological default logics
over such ontologies.

1 Introduction

Nonmonotonic DL-programs [5] provide a loose integration of Description Logic (DL)
ontologies and Logic Programming (LP) rules with negation, where a rule engine can
query an ontology using a native DL reasoner. For DL-programs over tractable DL
ontologies under well-founded semantics, the reasoning problem is tractable [4]. How-
ever, even for tractable DL-programs, the overhead of an external DL reasoner might
be considerable.

To remedy the overload of calling external DL reasoners, we proposed the notion of
Datalog-rewritability in [8]. Intuitively, a Datalog-rewritable ontology can be rewritten
to a Datalog program in a modular way with respect to data access. Moreover, DL-
programs over such Datalog-rewritable ontologies can then be reduced to Datalog¬

programs, i.e., to Datalog with negation. A particular DL that is polynomially Datalog-
rewritable is LDL+, which is essentially an extension of OWL 2 RL and was also
proposed in [8]. Reasoning in LDL+ is tractable, under both data and combined com-
plexity. Based on [9], it was easily established that OWL 2 EL ontologies (modulo data

? This work has been partially supported by the Austrian Science Fund (FWF) project P20840
and EU Project OntoRule (FP7 231875).



types) are also polynomial Datalog-rewritable [7]. OWL 2 QL is even FO rewritable[1],
and thus Datalog-rewritable.

Based on the concept of Datalog-rewriting, we developed a reasoner DReW (Datalog
ReWriter)1 [12, 7], which rewrites DL-programs over Datalog-rewritable ontologies to
Datalog¬ programs, and calls an underlying rule-based reasoner, currently DLV, to per-
form the actual reasoning. DL-programs are a very expressive language. Several for-
malisms, e.g., conjunctive query (CQ) answering under DL-safeness restriction [10]
and terminological default reasoning [5], can be rewritten to DL-programs. We support
these two reasoning services directly in the DReW system.

2 DL-Programs

Informally, a DL-program (Σ,P ) consists of a DL knowledge base (or ontology) Σ
over predicates Po and a Datalog¬ program P over predicates Pp distinct from Po,
where P may contain queries to Σ via so called DL-atoms. Due to space constraints,
we refer to [5, 4] for the formal syntax and semantics of dl-programs and confine here
to illustrate the intuition behind on an example from [3].

Example 1. Suppose that an existing network must be extended by new nodes. The
knowledge base Σ contains information about existing nodes (n1, . . . , n5) and their in-
terconnections as well as a definition of “overloaded” nodes (concept HighTrafficNode),
which are nodes with more than three connections:

≥ 1.wired v Node; > v ∀wired .Node; wired = wired−;

≥ 4.wired v HighTrafficNode; n1 6= n2 6= n3 6= n4 6= n5;

Node(n1); Node(n2); Node(n3); Node(n4); Node(n5);

wired(n1, n2); wired(n2, n3); wired(n2, n4);

wired(n2, n5); wired(n3, n4); wired(n3, n5).

The following programP evaluates possible combinations of connecting the new nodes:

newnode(x1). (1)
newnode(x2). (2)

overloaded(X)← DL[wired ] connect ;HighTrafficNode](X). (3)
connect(X,Y )← newnode(X),DL[Node](Y ),not overloaded(Y ),

not excl(X,Y ). (4)
excl(X,Y )← connect(X,Z),DL[Node](Y ), Y 6= Z. (5)
excl(X,Y )← connect(Z, Y ),newnode(Z),newnode(X), Z 6= X. (6)

excl(x1, n4). (7)

The facts (1)-(2) (bodyless rules) define the new nodes to be added. Rule (3) imports
knowledge about overloaded nodes in the existing network, taking new connections

1 http://www.kr.tuwien.ac.at/research/systems/drew



already into account. Rule (4) connects a new node to an existing one, provided the
latter is not overloaded and the connection is not to be disallowed, which is specified by
Rule (5) (there must not be more than one connection for each new node) and Rule (6)
(two new nodes cannot be connected to the same existing one). Rule (7) states a specific
condition: node x1 must not be connected with n4.

The meaning of DL-programs is given by formal semantics, among which, an-
swer set semantics [5] and well-founded semantics [4] are widely used (see [11] for
a survey). The DL-program (Σ,P ) in Example 1 has four strong answer sets : M1 =
{connect(x1, n1), connect(x2, n4), . . .}, M2 = {connect(x1, n1), connect(x2, n5),
. . .}, M3 = {connect(x1, n5), connect(x2, n1), . . .}, and M4 = {connect(x1, n5),
connect(x2, n4), . . .}. Note that the ground DL-atom

DL[wired ] connect ;HighTrafficNode](n2)

from rule (3) is true in any partial interpretation of P . According to the proposed well-
founded semantics for DL-programs in [4], the atom overloaded(n2) is thus true in the
well-founded model.

3 Reasoning with DL-Programs by Datalog¬ Rewriting

We present the rewriting approach in DReW by means of Example 1. This is achieved
by carefully rewriting different components of DL-programs into Datalog (¬) rules.

1. Rewriting Ontology into Datalog. For Datalog-rewritable DLs, the instance query
problem can be reduced to the query in Datalog. The DL component Σ in Example 1
is in OWL 2 RL, which is Datalog-rewritable. We transform Σ to Datalog program
ΦRL(Σ):

For TBox axiom ≥ 1.wired v Node , we add the following rule to ΦRL(Σ):

Node(X)← wired(X,Y ).

For TBox axiom > v ∀wired .Node , we add the following rule:

Node(Y )← wired(X,Y ).

For TBox axiom wired = wired−, we have

wired(X,Y )← wired(Y,X).

For TBox axiom ≥ 4wired v HighTrafficNode , we have

HighTrafficNode(X)← wired(X,Y1),wired(X,Y2),wired(X,Y3),wired(X,Y4),

Y1 6= Y2, Y1 6= Y3, Y1 6= Y4, Y2 6= Y3, Y2 6= Y4, Y3 6= Y4.

Finally, the ABox assertions inΣ (e.g., Node(n1)) are transformed to Datalog facts
directly. Note that after transformation, ni 6= nj , 1 ≤ i < j ≤ 5, is dropped because of
the Unique Name Assumption (UNA) adopted by Datalog.



2. Duplicating Rewritten Ontologies according to the DL-Inputs. Note that each
DL-atom sends up a different input to Σ and that entailments for each different input
might be different. To this purpose, we copy ΦRL(Σ) to new disjoint equivalent ver-
sions for each DL-input, i.e., for each distinct DL-input λ, we define a new program
ΦRL,λ(Σ) that results from replacing all the predicates by a λ-subscripted version.

Thus, for the set ΛP = {λ1 = ∅, λ2 = wired ] connect} of DL-atoms, we have
ΦRL,λ1

(Σ) = {Nodeλ1
(X)← wiredλ1

(X,Y ), . . .} andΦRL,λ2
(Σ) = {Nodeλ2

(X)←
wiredλ2(X,Y ), . . .}

3. Rewriting DL-Rules to Normal Rules. To rewrite DL-rules P into normal rules
P ord, we simply replace each DL-atom DL[λ;Q](t) by a new atom Qλ(t). For exam-
ple, rule (3) is replaced by

overloaded(X)← HighTrafficNodeλ2
(X).

4. Rewriting DL-Atoms to Datalog Rules. The inputs in the DL-atoms ΛP can then
be encoded as rules ρ(ΛP ):

wiredλ2
(X,Y )← connect(X,Y ).

5. Calling Datalog Reasoner. Now we have transformed all the components into a
Datalog¬ program Ψ(Σ,P ) = ΦRL,λ1(Σ)∪ΦRL,λ2(Σ)∪P ord∪ρ(ΛP ). We can send
it to a datalog engine, e.g. DLV, and compute the answer set or well-founded models.

4 Reasoning with Conjunctive Queries and Terminological Default
Logics

DL-programs are a very expressive language. Several formalisms, e.g., conjunctive
query (CQ) answering under DL-safeness restriction [10] and terminological default
reasoning [5], can be captured by DL-programs. We support these two reasoning tasks
directly in the DReW system.

4.1 Conjunctive Query Answering under DL-safeness Condition

A conjunctive query q is a rule of the following form:

ans(X1, . . . , Xn)←C1(Y1), . . . , Cm(Ym), r1(Z11, Z12), . . . , rk(Zk1, Zk2),

where Ci’s and ri’s are concepts and roles in the ontology, respectively, and ans is a
fresh predicate name.

When applying the DL-safe condition [10], every such query can be equivalently
converted to a DL-rule by replacing every atom Q(X) with the DL-atom DL[Q](X)
having empty input list.

ans(X1, . . . , Xn)←DL[C1](Y1), . . . ,DL[Cm](Ym),

DL[r1](Z11, Z12), . . . ,DL[rk](Zk1, Zk2),



Parse DL-RulesOWL 2 ontology

Choose a DL to
Datalog rewriter

Translate to
Datalog¬

DL profile (OWL 2 RL / EL)

Datalog
Reasoner

Fig. 1. DReW Control Flow of DReW with DL-programs

Example 2. The following CQ retrieves pairs of wired HighTrafficNode X and Y :

ans(X,Y )←HighTrafficNode(X),wired(X,Y ),HighTrafficNode(Y )

It can be converted to a DL-rule:

ans(X,Y ) ← DL[HighTrafficNode](X),DL[wired ](X,Y ),DL[HighTrafficNode](Y )

4.2 Reasoning with Terminological Default

The bidirectional flow of knowledge between a DL ontology and a logic program en-
ables a variety of possibilities. One application for DL-programs is terminological de-
fault theory [2, 5]. Here, Reiter-style default rules are applied to named individuals ex-
plicitly occurring in the knowledge base; the classic birds&penguins example can be
captured by rule Bird(X) : Flier(X)/F lier(X) (informally, birds fly by default).

The intuition of reduction of terminological default logics to DL-programs is to use
in/out predicates to guess the default extension and to check the default extension by
different DL-inputs; see [7] for more details.

5 System Architecture and Usage

Fig. 1 shows a schematic overview of the components of DReW in charge of reasoning
with DL-programs by Datalog rewriting. DReW is written in Java using OWL API2

for parsing ontologies. The underlying Datalog engine we use is DLV3 which supports
both answer set semantics and well-founded semantics. For the ontology component,
the current version DReW supports OWL 2 RL and OWL 2 EL (modulo data types).
At present, DReW implements dl-programs under well-founded semantics; support for
answer set semantics will be implemented soon.

DReW is distributed as several jars and scripts. It can be used both as a java library
and from the command line. Some of the command line options are listed as follows:

% drew [Rew] <Ontology.owl> [Rule] [-dlv /path/to/dlv]

Option [Rew] is the datalog rewriter for DL:

2 http://owlapi.sourceforge.net/
3 http://www.dlvsystem.com/dlvsystem/index.php/DLV



-rl Using OWL 2 RL rewriting (default)
-el Using OWL 2 EL rewriting

Option [Rule] specifies which rule formalism is used:

-dlp <rule.dlp> Reasoning with DL-programs
-sparql <query.sparql> Conjunctive query answering
-df <default.df> Terminological defaults

6 Conclusions and Outlook

Interesting classes of DLs are Datalog-rewritable, and reasoning with DL-programs
over such DLs can be reduced to Datalog¬ under well-founded semantics and well-
founded semantics. This reduction is implemented in DReW system which avoids call-
ing external DL reasoner and runs (sometimes significantly) faster than the traditional
hybrid reasoner over Datalog-rewritable ontologies (cf. [12, 7]). Conjunctive query an-
swering under (DL-safeness) and terminological default reasoning can be reduced to
DL-programs, and both tasks are directly supported by DReW system.

Future work is planned in two directions. One direction is to support further DLs,
e.g., OWL 2 QL and Horn-SHIQ [6]; the other is to support tailored non-monotonic
reasoning modalities, e.g. closed world reasoning [5].

References

1. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite family and
relations. Journal of Artificial Intelligence Research, 36:1–69, 2009.

2. F. Baader and B. Hollunder. Embedding defaults into terminological knowledge representa-
tion formalisms. J. Autom. Reasoning, 14(1):149–180, 1995.

3. W. Drabent, T. Eiter, G. Ianni, T. Krennwallner, T. Lukasiewicz, and J. Maluszynski. Hybrid
reasoning with rules and ontologies. In F. Bry and J. Maluszynski, editors, REWERSE,
volume 5500 of Lecture Notes in Computer Science, pages 1–49. Springer, 2009.

4. T. Eiter, G. Ianni, T. Lukasiewicz, and R. Schindlauer. Well-founded semantics for descrip-
tion logic programs in the Semantic Web. ACM Trans. Comput. Log., 12(2):11, 2011.

5. T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set
programming with description logics for the Semantic Web. Artificial Intelligence, 172(12-
13):1495–1539, 2008.

6. T. Eiter, M. Ortiz, M. Simkus, T. Tran, and G. Xiao. Query rewriting for Horn-SHIQ plus
rules. In Proc. of AAAI 2012. AAAI.

7. T. Eiter, T. Krennwallner, P. Schneider, and G. Xiao. Uniform Evaluation of Nonmonotonic
DL-Programs. In FoIKS’12, pages 1–22. Springer.

8. S. Heymans, T. Eiter, and G. Xiao. Tractable reasoning with DL-programs over datalog-
rewritable description logics. In Proc. of ECAI 2010. IOS Press.

9. M. Krötzsch. Efficient inferencing for OWL EL. In JELIA, LNCS 6341:234-246, 2010.
10. B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL with rules. Journal of

Web Semantics, 3(1):41–60, July 2005.
11. Y. Wang, J.-H. You, L.-Y. Yuan, Y.-D. Shen, and M. Zhang. The loop formula based seman-

tics of description logic programs. Theor. Comput. Sci., 415:60–85, 2012.
12. G. Xiao, S. Heymans, and T. Eiter. DReW: a reasoner for datalog-rewritable description

logics and dl-programs. In Informal Proc. 1st Int’l Workshop on Business Models, Business
Rules and Ontologies (BuRO 2010), 2010.


