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Abstract. The deployment of knowledge representation formalisms to the Web
has created the need for hybrid formalisms that combine heterogeneous knowl-
edge bases. The aim of this research is to improve the reasoning efficiency over
hybrid knowledge bases (KBs). The traditional way of reasoning over hybrid KBs
is to use different underlying reasoners to access the different data sources, which
causes overhead. To remedy this, we propose a new strategy, called inline evalu-
ation, which compiles the whole hybrid KB into a new KB using only one single
formalism. Hence we can use a single reasoner to do the reasoning tasks, and
improve the efficiency of hybrid reasoning.
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1 Introduction

The deployment of KR formalisms to the Web has created the need for hybrid for-
malisms that combine heterogeneous knowledge bases (KBs). The combination of log-
ical rules with Description Logics (DLs) now is central to the Semantic Web architec-
ture. Many approaches for defining hybrid KBs have been proposed, cf. [2].

In this research, we focus on dl-programs [4], which are a loose coupling of an
ontology and a rule set. The traditional ways of reasoning over dl-programs use a native
DL reasoner to reason about the ontology part, and use a native rule reasoner to deal
with the rule part. Due to the interaction between the two parts, many calls to the DL and
rule reasoner generally can not be avoided, which causes overhead. To remedy this, we
propose a new strategy, called inline evaluation, which rewrites the whole dl-program
KB into a new KB using only a rule formalism. Hence we can use a single rule reasoner
to do the reasoning tasks, and improve the efficiency of reasoning.

The remainder of this paper is structured as follows: In Section 2, we recall the
semantics and reasoning approaches of hybrid KBs, mainly dl-programs. Section 3
presents the new general framework of the inline evaluation for hybrid KBs. In Sec-
tion 4, we discuss the building blocks in this framework, i.e. the ways dealing with
dl-programs over different DL fragments. Section 5 concludes with summary.
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2 Hybrid Knowledge Bases

Informally, a hybrid KB is a pair KB = (X, P), where X is a DL based ontology and
P is a set of logical rules. The approaches of defining hybrid KBs fall into three cat-
egories, following the representational paradigms of the respective approaches: loose
coupling, tight coupling, and the embedding approaches [2]. The loose coupling ap-
proaches, like di-programs [4] and F-Logic# KBs [10], define the interface between
the two formalisms based on the exchange of the entailment. The tight coupling ap-
proaches, like SWRL [12], r-hybrid KBs [20] and ELP [15], define the interface based
on common models. The embedding approaches, like MKNF KBs [18], G-hybrid KBs
[11] and Open Answer Set Programming [8], define the interface based on embeddings
of both the ontology and the rules in a single unifying non-monotonic formalism.

In this work, we are mainly interested in the loose coupling approach and use dI-
programs as a prominent example. DL-programs [4] support a loosely-coupled integra-
tion of rules and ontologies, and provide an expressive combination framework based
on the interaction of rules with a DL KB via so-called di-atoms. Such dl-atoms query the
DL KB by checking for entailment of ground atoms or axioms w.r.t. the KB; as knowl-
edge deduced by the rules can be streamed up to the DL KB in turn, a bidirectional flow
of information is possible. As an example, D L[Student W phd-student; Person|(X)
is a dl-atom, which intuitively means that the DL predicate Student will be extended
by the LP predicate phd-student, and the query result of Person from the extended
ontology will be sent to the rule part.

DLVHEX! [5] is a prototype for computing the answer set of so-called HEX-programs
— an extension of dl-programs for reasoning with external sources (not necessarily DL
KBs) under the answer set semantics. By using the Description Logic Plugin®, which
interfaces to OWL ontologies via a DL reasoner (currently RacerPro?), DLVHEX can
reason from dl-programs under the answer set semantics.

To consider a concrete hybrid KB, let B = (X, P) be a dl-program, where X' =
{CCD}and P ={p(a)+; s(a)<; s(b)<+;
¢+ DL[C ¥ s; D](a), not DL[C W p; D](b) ()}. The rule part P of B is simple.
However, because of the two different dl-atoms A = {\; = DL[C W s; D](a), A =
DL[C W p; D](b)} in rule (*), dlvhex has to call RacerPro at least twice.

It is even worse in the real application when a fixpoint algorithm is often used. In
such cases, calls to RacerPro will be performed again and again. While some optimiza-
tions, e.g. DL caching [14], are proposed, several calls are unavoidable in general.

3 The Framework of the Inline Evaluation of Hybrid KBs

The aim of this work is to improve the efficiency of hybrid reasoning. To use hybrid
KBs in real application, we need efficient reasoners for reasoning tasks. While some
reasoning prototypes for hybrid KBs exist, the performance is not satisfactory in gen-
eral. There are mainly two reasons: (i) to combine the different data sources, the cost

! http://www.kr.tawien.ac.at/research/systems/dlvhex
2 http://www.kr.tuwien.ac.at/research/systems/dlvhex/dlplugin.html
3 http://www.racer-systems.com/



of calling of external reasoners is significant; (ii) the inter-leverage is costly and comes
with many other issues.

To avoid the overhead of calling external reasoners, we propose a method compiling
the hybrid KB into a new KB in one formalism; hence we can only use one reasoner for
the compiled KB to do the reasoning tasks. We call such reasoning strategy the inline
evaluation over hybrid KBs.

Let us continue to consider the dl-program KB above. Note that each dl-atom sends
up a different input/hypothesis to X' and that entailments for each different input might
be different. To this purpose, we copy X' to new disjoint equivalent versions for each dl-
atom, i.e., for each distinct dl-atom A, we define a new knowledge base X that results
from replacing all concept and role names by a A-subscripted version. Thus, for the set
Ap ={\ 2 Cws, Ay = C'dp} of dl-atoms, we have Xy, = { Cy, C Dy, },i=1,2.

We translate these disjoint ontologies to a Datalog program, resulting in the rules
D(X5,) ={Dx (X))« O\ (X) }i=1,2.

The inputs in the dl-atoms A p can then be encoded as rules p(Ap):

{ON(X) = s(X); Ox,(X) < p(X)}.

It remains to replace the original dl-rules with rules not containing dl-atoms: P°"
results from replacing each dl-atom DL[A; Q](t) in P with a new atom Q(t), such
that P°is the Datalog™ program

P"é{p(a)<—; s(a)+; s(b)<; g+ Dy, (a),not Dy,(b)}.

One can see that indeed KB = ¢ and ¢(Xy,) U §(X,) U P° U p(Ap) E q.
effectively reducing reasoning w.r.t. the dl-program to a Datalog™ program.

We generalize the above idea to a general framework. Intuitively, one reasoning
task over dl-programs can be reduced to another reasoning task over a Datalog pro-
gram by carefully rewriting each components, and such rewriting should be modular.
Then the ontology part can be inline evaluated in the resulting Datalog program. For-
mally, an inline evaluation for dl-programs is a tuple (@pr,, P, Prp, Pg), where
each component rewrites the ontology (resp. dl-atoms, rule, query) to some Datalog
program or query, s.t. for every dl-program KB = (X, P) and query ¢, we have
KB | qiff Jye1 Por(E,A) U Prpi(A) U Prp(P) = Pg(g), where A is the set
of dl-atoms occurring in KB.

Regarding the reduction/rewriting of DL to Datalog, one can relax this by taking
auxiliary relations into account that might depend on the data (more precisely, on the
universe of the data). Examples of such auxiliary relations are orderings, or successor
relations etc. The important for such relations is that they are “uniform” in the sense that
changes to facts (ABox) in the ontology do not affect them. Note that the rewriting of
KB is query-independent; optimal query dependent rewriting can also be meaningful,
e.g. magic sets [6].

4 Inline Evaluation of DL-Programs over Different DLs

Due to the different representations of the components, we propose to consider several
ways of inline evaluations. For each proposal, there are mainly three issues:



— developing an inline evaluation algorithm;
— implementing a prototype reasoner;
— developing some experiments and evaluating the prototype reasoner.

4.1 Tractable Reasoning for DL-Programs over Datalog-rewritable DLs

So far, we have worked on the tractable reasoning for dl-programs over polynomial
Datalog-rewritable DLs [9, 23].

We defined a class of Datalog-rewritable DLs, and investigate how reasoning with
dl-programs over such DLs under well-founded semantics can be reduced to Datalog™
(Datalog with negation) by means of an efficient transformation. Noticeably, for dl-
programs without negation, the result should be a standard Datalog program; moreover,
the transformation preserves stratified negation.

We introduced a particular Datalog-rewritable DL, called LDL™". This DL has no
negation and distinguishes between expressions on the left- and right-hand side of ax-
ioms. It offers expressive concept- and role expressions on the left-hand side of ax-
ioms. LDL™ is tractable under both data and combined complexity; more precisely, we
showed that it is PTIME-complete in both settings.

We reviewed the different OWL 2 Profiles and related them to LDL™. While LDL™
misses some constructs, e.g., the exists restriction on axiom right-hand sides as in ££7F
and DL-Lite, or negation as in the DL- Lite families, it adds others, e.g., expressive role
constructs and transitive closure (which is not expressible in first-order logic). Further-
more, we show that LDL" encompasses Description Logic Programs [7] without a
complexity increase.

We developed a prototype reasoner DReW*, which rewrites £DL " ontologies (dI-
programs over LDL™ ontologies) to Datalog (Datalog™) programs, and calls an un-
derlying rule-based reasoner to perform the actual reasoning. For LDL™ ontologies,
it handles instance checking as well as answering of conjunctive queries (CQs). For
dl-programs over LDL™ ontologies, it computes the well-founded model [3].

While the basic steps of inline evaluation have exhibited good results, more research
is needed.

4.2 Inline Evaluation of DL-Programs over OWL 2 Fragments

OWL 2 RL, OWL 2 EL, and OWL 2 QL are three tractable fragments of OWL 2 [17].
Although they are less expressive than the whole OWL 2 language, they are very scal-
able and can still capture some useful fragments. We consider how to inline evaluate
dl-programs over them.

The central task here is the rewritings to Datalog. For OWL 2 RL, while LD L "already
covers OWL 2 RL, another encoding is also available in [17]. For OWL 2 EL, the com-
pletion rules for ££7 T [1] are essentially Datalog rules. For OWL 2 QL, the techniques
of rewriting of Conjunctive Queries over DL-Lite [21] and rewriting of dl-programs
over DL-Lite ontology to SQL [22] can be employed.

* http://www.kr.tuwien.ac.at/research/systems/drew



4.3 Inline Evaluation of DL-Programs over Horn Fragments of DLs

Horn-SHOZQ and Horn-SROZQ are Horn fragments of OWL 1 and OWL 2 respec-
tively [19]. They are both EXPTIME hard; more precisely, KB satisfiability is EXP-
TIME-complete for Horn-SHOZQ, and is 2-EXPTIME-complete for Horn-SROZ Q.
The main difficulty for inlining stems from, in clause terms, the existential quantifier in
the head and that the Herbrand universe is insufficient for evaluation. However, despite
their high expressiveness, both DLs above have polynomial data complexity and can be
translated to Datalog as shown in [19].

The datalog encoding in [19] is used for the proof of the complexity result. If one
directly implements it, the predicate arities depend on the overall number of concept
names and roles in the KB. Thus even “small” GCIs may translate into rules with high
predicate arities; most of the current Datalog reasoners can not handle them efficiently.

Alternatively, we plan to optimize the rewriting rules in [19], and implement some
of the derivations prescribed by the rules inside our reasoner, like [13], then transform
the intermediate result to a datalog. We expect this approach will combine the advantage
of the consequence driven reasoning, which is efficient for TBox reasoning [13], and
the advantage of deductive database, which can handle large size of ABox [16].

4.4 Putting Everything Together

We will implement a prototype systemsupporting different rewriting strategies, which
can inline evaluate dl-programs over different DLs. One open issue is how to setting up
benchmark to test our system. We will consider test data from different data sources.

5 Summary

The aim of this research is to improve the efficiency of hybrid reasoning. To avoid the
overhead of calling external reasoners for hybrid KBs, we propose a new strategy, inline
evaluation, which compiles the whole hybrid KBs to a single KB in one formalism. As
we can use only one reasoner for the complied KB, the efficiency can be improved.

We expect that the efficiency of hybrid reasoning can be improved for a large part
of hybrid KBs. And the complexity of developing reasoners for hybrid KBs can be
reduced to encoding to a existing reasoner.

However inline evaluation is not always feasible: (i) Not all the DLs can be effi-
ciently encoded to Datalog (). For example, it is hard to deal with the full OWL 2 DL.
(i) When the source of the KB can not reached, we can not compile it. For example, if
some source can only be accessed via some query interface.
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