
Uniform Evaluation of Nonmonotonic DL-Programs?

Thomas Eiter, Thomas Krennwallner, Patrik Schneider, and Guohui Xiao

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

{eiter,tkren,patrik,xiao}@kr.tuwien.ac.at

Abstract. Nonmonotonic description logic programs are a major formalism for
a loose coupling of rules and ontologies, formalized in logic programming and
description logics, respectively. While this approach is attractive for combining
systems, the impedance mismatch between different reasoning engines and the
API-style interfacing are an obstacle to efficient evaluation of dl-programs in
general. Uniform evaluation circumvents this by transforming programs into a
single formalism, which can be evaluated on a single reasoning engine. In this
paper, we consider recent and ongoing work on this approach which uses relational
first-order logic (and thus relational database engines) and datalog with negation
as target formalisms. Experimental data show that significant performance gains
are possible and suggest the potential of this approach.

1 Introduction

In the past decade, the growing importance of the Web and its envisioned future de-
velopment has triggered a lot of research on accessing and processing data based on
semantic approaches. The distributed nature of the Web poses a challenge for semantic
integration, even at the level of weak interoperability of different sites. To mitigate this
problem, standard knowledge representation formats have been conceived in the layered
architecture of the so called Semantic Web, in which the Web Ontology language (OWL)
and the more recent Rule Interchange Format (RIF) play a prominent role.

In this context, the issue of combining rules and ontologies has been considered in a
number of works; see [12, 41, 15] for some recent surveys. Among several approaches,
loose coupling of rules and ontologies is one which aims at combining respective
knowledge bases by means of a clean interfacing semantics, in which roughly speaking
inferences are mutually exchanged such that the one knowledge base takes the imported
information into account, and exports in turn conclusions to the other knowledge base.
This approach is fostered by nonmonotonic description logic (dl-) programs [17], where
this exchange is handled by a generalization of the answer set semantics of nonmonotonic
logic programs [23]. Follow up work has adapted this approach to other formalisms
(e.g., [51, 29, 20]) and considered alternative semantics (e.g. [39, 52, 16]).

The loose coupling approach is attractive in several regards. First, legacy knowledge
bases, powered by different reasoning engines, can be combined. Second, thanks to

? This work has been supported by the Austrian Science Fund (FWF) projects P20840 & P20841
and by the EC ICT Integrated Project Ontorule (FP7 231875).

the interfacing and loose semantics connection, it is fairly easy to incorporate further
knowledge formats besides rules and OWL (description logic) ontologies, e.g. RDF
knowledge base; HEX-programs [20] are a respective generalization of dl-programs,
which in fact allow for incorporating arbitrary software. And third, view based data
access of loose coupling is in support of privacy, as the internal structure of a knowledge
base remains hidden.

On the other hand, the impedance mismatch of different formalisms and reasoning
engines comes at a price. A simple realization of the loose coupling considers the
interface calls as an API which makes computation expensive, in particular if rules lead
to choices via the underlying semantics. The black box view of other knowledge bases
hinders optimization and is a major obstacle for scalability.

There is a ray of hope, however, if information about the internal structure of an
accessed knowledge base is available. The simplest way is to give up privacy and
make the knowledge base transparent such that its axioms and semantics are known
(“open source”). Other possibility is to not reveal all information, but some abstract
properties [19]. This still, however, leaves the impedance mismatch between different
reasoning engines.

To overcome the latter, a suggestive approach is to convert the evaluation problem
into one for a single reasoning engine, which means to transform a dl-program into an
(equivalent) knowledge base in one formalism for evaluation (ideally, in one already
considered). This opens a middle ground for evaluation and privacy, as the transformation
may hide or blur the internal structure of the knowledge base.1

This idea of a “uniform evaluation” approach raises several issues.
1. Naturally, the cost of a transformation, and whether such a transformation is effi-

ciently possible. In a sense, efficiency means that the overall evaluation cost does
not increase with respect to some measure (typically, worst case complexity). Here,
notions of embedding of a formalism into another might be considered, and besides
computational also semantic properties like modularity are of interest, cf. [31].

2. At a more foundational level, whether a transformation to a target formalism does
exist after all, if resources for its computation are disregarded, or even allowed to
be not computable. Here one may further consider whether the transformation is
ad hoc, for concrete knowledge bases embraced with a dl-program, or whether it is
independent of their data (factual resp. assertional) parts.

3. As for the evaluation, the complexity of the target formalism, where –as common in
the study of data and knowledge representation formalisms– the data complexity
(i.e., complexity under varying data) deserves particular attention. Transformation
to a formalism with lower complexity comes inevitably at some cost, which usually
means an exponential increase in the size of the knowledge base. Popular examples
of this in Description Logics are first-order rewriting of conjunctive query answering
over DL-Lite ontologies [8] or the reduction of SHIQ to disjunctive datalog [30].

4. The feasibility of transformations for practical concerns, in particular for evaluation
using available technology and platforms. In this regard, it is of interest to see
whether theoretical results, as obtained for the items 1 and 3, live up to practical

1 Note, however, that uniform evaluation is different from tight integration of KBs in a single
unifying logic, cf. [41].

realization. For example, an exponential blowup of the DL-Lite rewriting in [8],
which is prohibitive in some cases, can be mitigated [45] or avoided using other
notions of rewritings [36].
As for items 1 and 2, embeddings of dl-programs into various well-known non-

monotonic logics have been studied, among them Autoepistemic Logic [13], Equilibrium
Logic [21] (a logic-based version of Answer Set Semantics), Reiter’s Default Logic [53],
and MKNF [41]; however, these works targeted more semantic aspects than evaluation.

In recent and ongoing works, uniform evaluation of various fragments of dl-programs
has been considered at the KBS group of TU Wien; in particular, transformation to first-
order logic [16] and to datalog with negation [28, 55]. This paper reviews some of this
work with a focus on items 1 and 4 from above, and reports some experimental data.

The main observation is that, expectedly, uniform evaluation leads to significant
performance improvements compared to simple (standard) evaluation of dl-programs
coupling different reasoning engines, as done by the dlvhex reasoner.2 The results show
that the approach has potential, although further work is needed to boost scalability.3

The remainder of this article is organized as follows. In the next section, we briefly
recall dl-programs. After that, we consider in Section 3 transformation of dl-programs to
first-order logic, which makes evaluation using relational database technology possible.
This requires to exclude recursion from rules and to have ontologies that are first-order
rewritable. Section 4 considers transformation to datalog with negation, which hosts
recursion in rules and for encodings of ontologies; as discussed in Section 5, the program
can be naturally expressed in a modular version of datalog. The final Section 6 provides
a discussion and gives an outlook on possible future work.

2 DL-Programs

We recall nonmonotonic description logic programs (simply dl-programs) under the
answer set [17] and the well-founded semantics [16]. They combine Description Logics
and nonmonotonic logic programs in a loose coupling, under a strict semantic separation.

2.1 Description Logics

Description Logics (DLs) are a well-known family of KR formalisms based on fragments
of first-order (FO) logic. The vocabulary of a DL consists of individual, class, and role
names; knowledge bases (KB) consist of a terminological box (TBox), which contains
axioms about relations between classes and roles, and an assertional box (ABox), which
contains factual knowledge about individuals. For the purpose of this paper, we first
recall DL-Lite [8, 2], the logical underpinning of OWL 2 QL; later, we consider EL [3, 4],
the underpinning of OWL 2 EL, and LDL+, which is a DL strongly related to Datalog
and OWL 2 RL (for all these OWL 2 profiles, see [40]).
DL-Lite. Consider a vocabulary of individual names I, atomic concepts C, and atomic
roles R. Then, for A and P being an atomic concept and atomic role, respectively,

2 http://www.kr.tuwien.ac.at/research/systems/dlvhex/
3 Implementation information, benchmark instances, and further details on all benchmarks is

available at http://www.kr.tuwien.ac.at/research/systems/drew/experiments.html.

we define basic concepts B and basic roles R, complex concepts C and complex role
expressions E as

B ::= A | ∃R C ::= B | ¬B
R ::= P | P− E ::= R | ¬R

where P− is the inverse of P .
A DL-LiteR knowledge base is a pair L = (T ,A) where the TBox T consists of

a finite set of inclusion assertions of the form B v C and R v E, and the ABox A
is a finite set of membership assertions on atomic concepts and on atomic roles of the
form A(a) and P (a, b), where a and b are individual names of I.

The semantics of DL-LiteR is given in terms of FO interpretations I = (∆I , ·I),
where ∆I is a nonempty domain and ·I an interpretation function such that aI ∈ ∆I
for all a ∈ I, AI ⊆ ∆I for all A ∈ C, P I ⊆ ∆I ×∆I for all P ∈ R, and

– (P−)I =
{
(a2, a1) | (a1, a2) ∈ P I

}
;

– (∃R)I =
{
a1 | there exists some a2 such that (a1, a2) ∈ RI

}
;

– (¬B)I = ∆I \BI ; and
– (¬R)I = ∆I ×∆I \RI .

An interpretation I satisfies a concept inclusion C1 v C2 (resp. role inclusion
E1 v E2), if C1

I ⊆ C2
I (resp. E1

I ⊆ E2
I), and satisfies a TBox T , if it satisfies each

inclusion assertion in T . Furthermore, I satisfies C(a), if aI ∈ CI and satisfies R(a, b)
if (aI , bI) ∈ RI , and I satisfies an ABox A, if it satisfies each assertion in A. Finally,
I satisfies L = (T ,A), if it satisfies T and A. A KB L (resp. TBox T) logically implies
an assertion α, if all models of L (resp. T) satisfy α. As usual, satisfaction and logical
entailment are denoted with |=.

2.2 Description Logic Programs

Description logic programs (L,P) have rules similar as logic programs with negation as
failure, but the rule bodies may also contain queries to L in their bodies.

Suppose Φ=(P, C), is a vocabulary of finite sets P and C of predicate and constant
symbols, respectively, and a set X of variables. As usual, elements from C ∪X are terms,
and atoms have the form p(t1, . . . , tn), where p ∈ P has arity n and all ti are terms.

Queries to L occur in so-called dl-atoms. A dl-query Q(t) is either
(a) a concept inclusion axiom F or its negation ¬F ; or
(b) of the forms C(t) or ¬C(t), where C is a concept, and t is a term; or
(c) of the forms R(t1, t2) or ¬R(t1, t2), where R is a role, and t1 and t2 are terms.
A dl-atom has then the form

DL[S1op1p1, . . . , Smopm pm;Q](t) , m≥ 0, (1)
where each Si is either a concept or a role; opi ∈ {], −∪}; pi is a unary (resp.,binary)
predicate symbol, if Si is a concept (a role); and Q(t) is a dl-query. Intuitively, opi=]
(resp. −∪) increases Si (¬Si) by the extension of pi.

A dl-rule r is of the form
a ← b1, . . . , bk, not bk+1, . . . , not bm, m ≥ k ≥ 0, (2)

where a is an atom (the head) and each bi is either an atom or a dl-atom, and not is
negation as failure (default negation). A dl-program KB = (L,P) consists of a DL
knowledge base L and a finite set of dl-rules P ; it is positive, if P is positive.

Example 1. Let KB = (L,P) where L = {C v D} and P is the set of rules
p(a); p(b); q(c);
s(X)← DL[C] p;D](X), not DL[C] q, C−∪p;D](X) .

Intuitively, we extend in the first dl-atom concept C by predicate p and retrieve then all
instances from D in this extended ABox. With the second dl-atom we extend C and ¬C
by the extensions of q and p, resp. Thus, the intuitive model for this dl-program would
be {p(a), p(b), q(c), s(a), s(b)}.

Semantics. The Herbrand base of P , denoted HBP , is the set of all atoms p(c1 . . . , cn)
where p ∈ P occurs in P and all ci are from C. An interpretation I relative to P is any
subset of HBP . Such an I satisfies (models) a ground (i.e.,variable-free) atom or dl-atom
a under L, denoted I |=L a, if the following holds:

– a∈ I , if a∈HBP ;
– L(I;λ) |= Q(c), where λ = S1op1 p1, . . . , Smopmpm,L(I;λ) = L∪

⋃m
i=1Ai(I)

and, for 1 ≤ i ≤ m,

Ai(I) =

{
{Si(e) | pi(e)∈ I}, if opi=],
{¬Si(e) | pi(e)∈ I}, if opi= −∪,

if a is a ground dl-atom DL[λ;Q](c).
I satisfies a ground dl-rule r of form (2) if either (i) I 6|=L a, or (ii) I 6|=L bi for some
1 ≤ i ≤ k or (iii) I |=L bj for some k < j < m. I satisfies a dl-program KB =(L,P),
denoted I |=KB , iff I |=L r for every rule r ∈ ground(P), where ground(P) is the set
of all ground instances of rules in P (relative to HBP).

It is easy to see that every positive KB has some model and, like every Horn logic
program, a unique minimal (under inclusion ⊆) model, denoted MKB . This model
naturally captures the semantics of KB .
Answer Set Semantics. The answer sets of a general dl-program KB =(L,P) are
defined by a reduction to positive dl-programs. The (strong) dl-transform of P relative
to L and an interpretation I ⊆HBP , denoted sP IL, results from ground(P) by deleting
(i) every dl-rule r such that I |=L a for some a∈B−(r), and (ii) the negative bodies of
all remaining dl-rules; note that sP IL generalizes the Gelfond-Lifschitz reduct P I [23].
Let KBI = (L, sP IL). Since KBI is positive, it has a unique minimal (the least) model,
denoted LM(KBI). Then I ⊆HBP is a (strong) answer set of KB , if I = LM(KBI).
We write KB |= a for a ground atom a if I |=L a for every answer set of KB .
Well-founded Semantics. Define the operator γKB on interpretations I of KB by
γKB (I) = LM(KBI). As γKB is anti-monotone, γ2KB (I) = γKB (γKB (I)) is mono-
tone and has a least fixpoint, which is the set of well-founded atoms of KB , de-
noted WFS (KB) [16]; we denote with KB |=wf a that a ∈WFS (KB).

Example 2. KB from Example 1 has the single answer set {p(a), p(b), q(c), s(a), s(b)},
which coincides with WFS (KB). If we replace the facts for p in P by the “guessing”
rules p(a) ← not p(b); p(b) ← not p(a), the resulting KB has the two answer
sets {p(a), q(c), s(a)} and {p(b), q(c), s(b)}, while q(c) is the only well-founded atom.

3 First-Order Rewritability

In this section, we introduce the first-order rewritable case of dl-programs. This case is
motivated by the already introduced DL-Lite family, which allows the uniform evaluation
of restricted classes of dl-programs on relational database technology.

3.1 First-Order Rewritable dl-Programs

We understand FO rewritability of a dl-program KB = (L,P) in the sense that query
answering from KB , i.e., to decide whether KB |= p(c) for an atom p(c), is expressible
by a FO formula φ(x) over the relational schema induced by the vocabulary of L, such
that KB |= p(c) iffA |= φ(c), where φ depends on p, P and L; in a data-centric view, it
only depends on the TBox of L, but not on the concrete ABoxA. For the DL-Lite family,
and in particular for DL-LiteR, the analog property for answering conjunctive queries
is also called FOL-reducibility.4 Like for the latter, query answering for FO rewritable
dl-programs is feasible on a Relational Data Base Management System (RDBMS) by
casting the FO formula into SQL statements.

As recursion is not expressible in FO logic, it must be banned for FO rewritability
from KB ; this is achieved by acyclicity. Let PP be the set of all predicates symbols in P .
Then P is acyclic, if there exists a mapping K : PP → {0, . . . , n} such that for every
rule r ∈ P of form (2) and 1 ≤ i ≤ n, it holds that K(p) > K(q) where p occurs in a
and q occurs in bi (in case of a dl-atom of form (1), q has to occur among the pj). Note
that every acyclic KB has a unique answer set, which coincides with WFS (KB) [16].
Thus, for every ground atom a, KB |= a iff KB |=wf a.

An important result regarding FO rewritability of dl-programs under the well-founded
semantics was given in [16]. We recall the results in Theorem 1 and 2.

Theorem 1 (FO rewritable dl-programs [16]). Let KB = (L,P) be an acyclic dl-
program, and p(c) an atom, such that (1) every dl-query in P is FO-rewritable, and (2) if
the operator −∪ occurs in P , then L is defined over a DL that (2a) is CWA-satisfiable (i.e.,
for every DL KB L′, the union of L′ and all membership assertions that are not entailed
by L′ is satisfiable), and (2b) allows for FO-rewritable concept and role memberships.
Then, deciding KB |=wf p(c) is FO-rewritable.

The proof is based on an induction on mapping K and the following assumptions:
(a) every dl-atom δ can be expressed as FO formula over the ABox of L;
(b) every predicate of rank 0 is easily expressed as FO formula over the facts of P ;
(c) every other predicate pI can be expressed by the disjunction of the existentially

quantified bodies of the rules which share pI in their heads, and where the NAF
atoms are interpreted as classical negation.

Concerning (a), let δ = DL[λ;Q](c) be a dl-atom of form (1) such that λ = λ+, λ− is
the list of m positive (opi =]) and negative (opi = −∪) extensions of L, and Q(c) a dl-
query. Each extension Si opi pi in λ can be expressed in terms of a FO formula ψSi

(y)
over L. The dl-query Q(c) can be expressed as a FO formula α(x) over L. Every input

4 Conjunctive queries over dl-programs can be expressed by rules, thus atomic queries suffice.

predicate pj in λ is as a FO formula ψj(x) over P . Then, the FO formula δ(x) over the
ABox A of L and facts of P

δ(x) = αλ
+

(x) ∨
m∨
j=1

∃y
(
ψλ

+

Sj
(y) ∧ ψj(y)

)
, (3)

where αλ
+

(resp. ψλ
+

Sj
) is obtained from α (resp. ψSj) by replacing every Si(s), such

that Si occurs in λ+ by Si(s) ∨ ψi1(s) ∨ · · · ∨ ψiki
(s), where Si1 , . . . , Siki

are all
occurrences of Sj in λ+. For the meaning of the assumptions, we refer to [16].

Example 3. Consider KB =(L,P) from Example 1. To illustrate all parts of the transfor-
mation, we create a variant of KB as KB ′ = (L,P ′), where P ′ = P ∪{s(X)← q(X)}.
We can express query D(X) (after the perfect rewriting) by the FO formula α(X) =
C(x) ∨ D(x) over A (= ∅). As FO formulas, p and q are ψp = p(x) and ψq = q(x)
over F = {p(a), p(b), q(c)}. Then the dl-atom DL[C] p;D](X) is translated into
δ1(x) = C(x) ∨D(x) ∨ p(x), while the dl-atom DL[C] q;C−∪p;D](X) is translated
into δ2(x) = C(x)∨D(x)∨ q(x)∨ ∃y((C(y)∨ q(y))∧ p(y)), both over F . The rules
for predicate s are translated into ∃x.q(x) ∨ ∃x. (δ1(x) ∧ ¬δ2(x)) over F .

Theorem 2 (FO-rewritable dl-program over the DL-Lite family [16]). For any vo-
cabulary Φ, acyclic dl-program KB =(L,P), and atom p(c), such that 1. L is in a DL
of the DL-Lite family, and 2. all dl-queries in P are of the form C v D, ¬(C v D), C(t)
or R(t, s), where C is an atomic concept, D is an (possibly negated) atomic concept,
and t, s are terms of L, deciding KB |=wf p(c) is first-order rewritable.

Since the DL-Lite family is CWA-satisfiable [8], operator −∪ is allowed in P and
dl-queries of the form C(t) and R(t, s) are immediately FO rewritable. Furthermore,
dl-queries of the form C v D can be reduced to queries as follows: L′ |= C v D
iff L′ ∪ {C(e), D′(e), D′ v ¬D,A′(d), A′ v ¬A} |= A(d). Similar, ¬(C v D) can
be reduced to L′ |= ¬(C v D) iff L′ ∪ {C v D,A′(d), A′ v ¬A} |= A(d), where d
and e are fresh individuals, and A, A′, and D′ are fresh atomic concepts.

3.2 Implementation and Experiments

Based on the ideas above, the experimental system MOR evaluates conjunctive queries
over an acyclic dl-program KB using an RDBMS (which we call the database), viz.
PostgreSQL 8.4. MOR has three main modules: a Datalog-to-SQL rewriter, a DL-Lite
plugin, and an adaption of the DL-LiteR reasoner Owlgres (see [48]).

– The Datalog-to-SQL rewriter, which is based on well-known techniques, cf. [49],
can also handle limited rule recursion (see Subsection 3.3). However, different from
DLVDB[49], SQL views are not materialized and recursion is handled differently. In
MOR the focus is merely on linear recursion based on a direct evaluation algorithm
of the transitive closure, and relies on the native implementation of the RDBMS.
On the other hand in DLVDB, full recursion is implemented based on an optimized
semi-naive algorithm, where iteratively SQL statements are executed until a fixpoint
is reached (in [43] both algorithms are compared).

– The DL-Lite plugin transforms dl-atoms according to the rewriting above. In that,
it exploits a modified version of Owlgres to obtain the result of the PerfectRef

algorithm [8], i.e., the perfect rewriting of a query and the TBox, without execution.
Given KB =(L,P) and a conjunctive query Q, the rewriting puts the facts of P

and the ABox of L in the database and rewrites the rules of P into cascading VIEWS.
For every predicate p occurring in some rule head, one VIEWp is created, consisting
of the UNION of SELECT−PROJECT−JOIN (SPJ) statements for the bodies of rules
with p in the head, where negated atoms not a are cast to NOT IN (·) statements.
Acyclicity of KB ensures a proper evaluation order of all views; for details, see [46]. The
conjunctive query Q(x) = p1(x1), . . . , pm(xm), which can be seen as a rule Q(x)←
p1(x1), . . . , pm(xm), is rewritten into a single (SPJ) SQL statement.

With the] and −∪ operator and a static ABox in the RDBMS, the rewriting of
dl-atoms is more involved. We have to modify the ABox A temporally to A′ prior to
evaluating the dl-query over A′. In addition, the internal DB schema of Owlgres must
be respected. Again, acyclicity of KB ensures an evaluation order K for the temporary
modified ABoxes, which is realized for each DL[λ;Q](c) as follows:
(a) create new VIEWS representing ABoxes A′K, building the union of A′K−1 and

all Si opi pi of λ (where pi is an existing view);
(b) Modify the perfect rewriting of Q to use A′K instead of A.

Clearly, after the evaluation of the dl-program, A has to be reverted to its original
state. MOR allows to access other plugins than the DL-Lite plugin, which may support
dl-atoms for querying other DLs, or even other kinds of knowledge sources (e.g., a
spatial database). The basic requirement is that the plugin has to return an SQL rewriting.

For experimentation, we considered three different categories of benchmark instances:
(1) randomly generated sets of facts (Rn); (2) a simplified version of DBpedia (Dn); and
(3) the well-known Lehigh University Benchmark (LUBM) [26] (Un). As LUBM is not
fully in DL-LiteR , we altered roughly 10% of the TBox axioms like transitive roles to
normal roles and equality axioms of the form B ≡ C1 u C2 to B v C1 and B v C2.
The index n in our instances denote the number of facts in Rn and the ABox assertions
in Dn and Un; we report the outcome for runs with n ∈ {10k, 100k, 250k, 500k, 1M}.
The test data of Rn was randomly generated allowing a high selectivity among the join
attributes. For Dn, different sets of books, periodicals, and publications were extracted
from DBpedia, including a single role. The test data for Un was generated by the LUBM
instance generator; e.g., university U100k has about 12k individuals.

As a baseline system, we compared MOR to DLV [38], DLVDB[49], and dlvhex [18].
DLVDB is a tight coupling of DLV with a relational DBMS, in which SQL queries
over an (external) database can be evaluated. In case of dlvhex, we used its standard
DL plug-in (interfacing RacerPro 1.9.2 [27]), which we refer to as dlvhex[DL]. The
benchmark runs FO1–FO3 are summarized in Table 1. Here, FO1 has no ontology
access; it serves to assess the rule rewriting. In FO2, the dl-program extended the ABox
by constantly 60 individuals, imported from a randomly generated relation. The program
in the runs of FO3 resembles Query 9 of [26] with a triangular pattern of low selectivity
roles plus an additional NAF atom.

We conducted our experiments on an openSUSE 11.1 (x86 64) server having a Intel
Xeon CPU E5450 3.00GHz and 15.7 GB of RAM. The rewriting was evaluated on a

Table 1: Benchmark Overview
Name Description Systems Data Reference

FO1 Tree of binary joins (with negation) DLV; DLVDB Random [46, Ex. 5.2.1]

FO2
Select a range of the KB upon extension
with books from an external source

DLVDB;
dlvhex[DL]

DBpedia [46, Ex 5.3.3]

FO3
Seek students taking courses of faculty
advisors who are not full professors dlvhex[DL] LUBM [46, Ex 5.4.2]

FO4
Transitive closure of the organization
hierarchy fed to the DL KB dlvhex[DL] LUBM [46, Ex 5.4.3]

Table 2: Benchmark Results for FO-Rewritable DL-Programs (Runtime in secs)
(a) Benchmark FO1

Instance MOR DLVDB DLV

R10k <1 <1 1
R100k 1 1 105
R250k 3 4 977
R500k 5 9 2,795
R1M 11 19 11,446

(b) Benchmark FO2

Instance MOR DLVDB dlvhex[DL]

D10k 1 <1 7
D100k 4 6 —
D250k 9 25 —
D500k 18 50 —
D1M 42 145 —

(c) Benchmark FO3

Instance MOR dlvhex[DL]

U10k 1 36
U100k 4 117
U250k 11 —
U500k 20 —
U1M 44 —

(d) Benchmark FO4

Instance MOR dlvhex[DL]

U10k 1 35
U100k 1 108
U250k 2 —
U500k 4 —
U1M 11 —

PostgreSQL 8.4 database, with increased shared buffers and work mem parameters to
utilize the available RAM. For each benchmark, the average of five runs was calculated,
having a timeout of 6 hours, and a memout of 14.7 GB for each run.

The results are shown in Table 2; the entries with “—” (out of memory) for dlvhex
are due to RacerPro’s usage of the AllegroGraph library, which limited the instance size.
(The optimized RacerPro 2.0 release is not available with dlvhex at present.) The results
let observe a linear runtime behavior of MOR for all benchmarks except FO4. The use
of indexes in the database might lead to performance gains. Owlgres creates default
indexes during KB loading, but none exploiting the particular dl-program structure. In
case of FO1 (Table 2a, MOR and DLVDB scale similarly, but the use of views is faster
than materialization as applied in the standard version of DLVDB. On the other hand,
the rule rewriting of DLVDB appears to be effective. In case of FO2 (Table 2b), the
temporary update of the DL knowledge base did not hit much on MOR’s performance
and also here quasi-linear runtime was achieved; DLVDB also scales well but at a more
increasing pace. Further details are available on the benchmark webpage.3

3.3 Limited Recursion

FO rewritability is mainly motivated by its link to RDBMS and SQL, which allows for
exploiting efficient database engines. The SQL:1999 standard, however, also foresees a
limited form of linear recursion in queries, such that, e.g., the transitive closure of a base
relation is definable. The respective classic rule-based definition for base relation a

p(X,Y)← a(X,Y). p(X,Y)← a(X,Z), p(Z, Y).

is written in SQL as

WITH RECURSIVE p AS
(SELECT ∗ FROM a UNION SELECT a.1 p.2 FROM a, pWHERE a.2 = p.1)
SELECT ∗ FROM p

To exploit SQL:1999 linear recursion features for dl-programs, we impose in addition to
linearity the following syntactic restriction: (1) no predicate depends negatively on itself
(i.e., negation is stratified), and (2) no predicate cycles through some dl-atom; the latter
still allows recursive predicates as input of dl-atoms. Informally, this supports linear
stratified negation with non-recursive DL KB access.

Related to the experiments above, we performed benchmark FO4 based on the
LUBM ontology Un and a linear recursive dl-program. As DL-LiteR misses tran-
sitive roles, we calculate the transitive closure of the sparse, tree-like structure of
the subOrganization role (thus the organizational hierarchy of the LUBM university)
in the rules part and update the DL KB. We observed in the results (in Table 2d) an
indication for quadratic runtime. We also point to another experiment (see [46, Ex.
5.2.3]), where randomly generated, cyclic data led to irregular runtime; in one case, runs
with U50k were faster than with U25k due to depth and cycles. We further encountered
a limitation in Postgres’ recursive query implementation on cyclic data. As it iterates
joins without cycle detection,5 queries even may not terminate. To avoid this, we used
Postgres’s LIMIT parameter to safely bound the iterations.

4 Datalog¬ Rewritability

In this section, we consider uniform evaluation of dl-programs by rewriting to Datalog¬,
which basically are dl-programs as in Section 2.2 but without dl-atoms. Positive such
programs are known as plain Datalog and have a canonical semantics, while under nega-
tion different semantics (answer sets, well-founded atoms) are widely used. Datalog¬ is
more expressive than FO logic, and compared with FO rewriting, we do not pose any
restriction in the rule part, thus we can naturally use recursive rules. The ontologies in
dl-programs can also be “inlined” into some Datalog¬ programs in a modular way.

4.1 DL Datalog Rewritability and Inline Evaluation

For Datalog¬ rewritability of dl-programs, we need a suitable notion of rewritability of
a DL knowledge base. To this end, [28] defined a description logic DL to be Datalog-
rewritable, if there exists a transformation ΦDL from DL KBs to Datalog programs
such that, for every DL KB L,

5 http://archives.postgresql.org/pgsql-hackers/2008-02/msg00642.php

(i) L |= Q(o) iff ΦDL(L) |= Q(o) for any concept or role name Q from L, and
individuals o from L;

(ii) ΦDL is modular, i.e., for L = 〈T ,A〉 where T is a TBox and A an ABox,
ΦDL(L) = ΦDL(T) ∪ A;

DL-programs KB = (L,P) over Datalog-rewritable DLs can be readily transformed
to Datalog¬ programs. Let ΛP = {λ | DL[λ;Q] occurs in P} be the set of all input
lists of dl-atoms appearing in P . The transformation Ψ(KB) of a dl-program KB is then
defined as ΦDL(LΛP

) ∪ P ord ∪ ρ(ΛP) ∪ TP , where
– LΛP

=
⋃
λ∈ΛP

Lλ, where Lλ is L with all concept and role names subscripted with
λ. Intuitively, each input signature of a dl-atom in P will influence L differently.
As we want to cater for these influences in one program, we have to differentiate
between the KBs with different inputs;

– ρ(ΛP) is a Datalog program that contains for each λ = S1]p1, . . . , Sm]pm ∈ ΛP
the rules Siλ(Xi)← pi(Xi), 1 ≤ i ≤ m, where the arity of Xi matches the one of
Si. Intuitively, we add the extension of pi to the appropriate concept or role;

– P ord is P with each dl-atom DL[λ;Q](t) replaced by a new atom Qλ(t);
– TP consists of Datalog facts >(a) and >2(a, b) for all a, b in the Herbrand domain

of P to ensure their introduction in L.

Example 4. Consider KB ′ = (L,P ′), which replaces the last rule of P in Example 1
by s(X) ← DL[C] p;D](X),not DL[C] q;D](X). Here, L is rather simple. We
can transform LΛP

to Φ(LΛP
) = {Dλ1(X)←Cλ1(X); Dλ2(X)←Cλ2(X)}. Then

ΛP = {λ1 =C] p, λ2 =C] q} and ρ(ΛP)= {Cλ1(X)← p(X); Cλ2(X)← q(X)}.
Program P ord consists of all facts of P ′ and the rule s(X)←Dλ1

(X),not Dλ2
(X).

Finally, we add TP = {>(o) | o ∈ {a, b, c}} ∪ {>2(o1, o2) | {o1, o2} ⊂ {a, b, c}}.

The following result allows us to reduce reasoning from dl-programs to Datalog¬

under well-founded semantics.

Theorem 3 ([28]). Let KB = (L,P) be a dl-program over a Datalog-rewritable DL
and a ∈ HBP . Then, KB |=wf a iff Ψ(KB) |=wf a.

A similar result holds for answer set semantics.

Theorem 4. Let KB be a dl-program over a Datalog-rewritable DL. Then the answer
sets of KB correspond 1-1 to the answer sets of Ψ(KB), such that (i) every answer
set of KB is expendable to an answer set of Ψ(KB); and (ii) for every answer set J
of Ψ(KB), its restriction I = J |HBP

to HBP is an answer set of KB .

The reduction from dl-programs to Datalog¬ above only considers the operation]
and positive dl-queries. Negative dl-queries can be reduced to inconsistency checking
(see Sec. 4.3 for a discussion). Next we consider concrete datalog rewritable DLs.

4.2 Inline Evaluation over LDL+ Ontologies

The description logic LDL+ [28, 55] is designed as a lightweight ontology language
which is expressive enough to capture many real life ontologies. It imposes syntactic
restrictions on axioms α v β, distinguishing between the “body” α and the “head” β,
shown in Table 3a.

An LDL+ ontology is a pair L = 〈T ,A〉 of a TBox T and an ABox A, where

Table 3: Syntax of LDL+ and SROEL(u,×)
(a) head (h-) and body (b-) restrictions on roles and concepts in LDL+ axioms

– h-roles (h for head) S, T are (i) role names R, (ii) role inverses S−, (iii) role conjunctions
S u T , and (iv) role top >2;

– b-roles (b for body) S, T are the same as h-roles, plus (v) role disjunctions S t T , (vi) role
sequences S ◦ T , (vii) transitive closures S+, (viii) and role nominals {(o1, o2)}, where
o1, o2 are individuals.

– basic concepts C,D are concept names A, >, and conjunctions C uD;
– h-concepts are (i) basic concepts B, and (ii) value restrictions ∀S.B where S is a b-role;
– b-concepts C,D are (i) basic concepts B, (ii) disjunctions C t D, (iii) exists restrictions
∃S.C, (iv) atleast restrictions ≥ nS.C, and (v) nominals {o}, where S is a b-role, and o is
an individual.

(b) Syntax of SROEL(u,×)

– Concept constructors are (i) top >, (ii) bottom ⊥, (iii) conjunction C uD, (iv) existential
restriction ∃R.C, (v) nominal {a};

– Axioms are (i) concept assertion C(a), (ii) role assertion R(a, b), (iii) concept inclusion
(GCI) C v D, (iv) role inclusion R v T , (v) generalized role inclusion R ◦ S v T , (vi) role
conjunction S1 u S2 v T , (vii) concept production C ×D v T , R v C ×D.

– T is a set of terminological axioms B v H , where B is a b-concept and H is an
h-concept, and role axioms S v T , where S is a b-role and T is an h-role, and

– A is a set of assertions of the form C(o) and S(o1, o2) where C is an h-concept
and S is an h-role.
Essentially, LDL+ extends OWL 2 RL [40] with singleton nominals, role conjunc-

tions, and transitive closure. Designing a transformation ΦLDL+ of LDL+ into Datalog
is straightforward; each TBox (ABox) axiom is transformed into an equivalent Datalog
rule (fact), similarly as in [25]. For example, if Person u∃headOf .Dept v Chair ∈ L,
then we add a rule Chair(X)← Person(X), headOf (X,Y),Dept(Y) to the Datalog
program ΦLDL+(L). For details of the rewriting, please see [28].

4.3 Inline Evaluation over EL Ontologies

We consider the DL SROEL(u,×) [37], whose syntax is given in Table 3b; it is a
superset of OWL 2 EL [40] disregarding datatypes, and adds concept production, which
can be seen as a generalization of domain and role restriction.

Krötzsch [37] shows a Datalog encoding for SROEL(u,×) describing a proof
system. Every TBox axiom, ABox axiom, concept name, role name, and individual is
transformed to a fact by an input translation Iinst. A fixed set Pinst contains the deriva-
tion rules, which are independent of the concrete SROEL(u,×) ontology (see [37]).

In the following, for simplicity, when we say EL, we always mean SROEL(u,×).
For an EL ontology L, define a Datalog transformation by

ΦEL(L) = Pinst ∪ {Iinst(α) | α ∈ L} ∪ {Iinst(s) | s ∈ NI ∪NC ∪NR} .
Theorem 5 ([37]). Given an EL ontology L, the transformation ΦEL is sound and
complete w.r.t. instance checking, i.e., (i) L |= C(a) iff ΦEL(L) |= isa(a,C), and
(ii) L |= R(a, b) iff ΦEL(L) |= triple(a,R, b).

Example 5. Let L1 = {A(a), A v ∃R.B, B v C, ∃R.C v D}, and suppose we
want to decide L1 |= D(a). The axioms of L1 and the signatures NI , NC , and NR are
transformed to facts in ΦEL(L1):{

isa(a,A); supEx (A,R,B, eAv∃R.B); subClass(B,C); subEx (R,C,D);
nom(a); cls(A); cls(B); cls(C); cls(D); rol(R)

}
.

Then, P inst is added to ΦEL(L1); in particular, also the rules

isa(X,X)← nom(X)

isa(X,Z)← subClass(Y,Z), isa(X,Y)

isa(X1, Z)← subEx(V, Y, Z), triple(X1, V,X2), isa(X2, Y)

triple(X1, V,X2)← supEx(Y, V, Z,X2), isa(X1, Y)

isa(X2, Z)← supEx(Y, V, Z,X2), isa(X1, Y)

From these rules and the above facts, isa(a,D) is derivable, and thus ΦEL(L1) |= D(a).

Note that strictly, ΦEL(L) is not a datalog rewriting as defined above. The mismatch
is that ABox assertions (e.g.,C(a)) are transformed into reified versions (e.g., isa(a,C));
this is easily fixed by using reification rules
P re = {C(X)← isa(X,C); isa(X,C)← C(X) | C ∈ NC} ∪

{R(X,Y)← triple(X, r, Y); triple(X,R, Y)← r(X,Y) | R ∈ NR} .

Then Φ′EL(L) = (ΦEL(L) \ {Iinst(α) | α ∈ A})∪P re ∪A is a proper Datalog
rewriting. However, in the following, for convenience, we will use ΦEL, instead of Φ′EL.
Negative dl-Queries. Trivially, L |= ¬C(a) is equivalent to unsatisfiability of L ∪
{C(a)}. To answer a negative query ¬C(X), we need to bind X to every possible
individual, and reduce it to unsatisfiability checking. This one by one checking can be
elegantly achieved via datalog encoding. The idea is to extend isa/2 with two more
arguments, representing the individual and the concept name, to isa n/4; in Pinst,
each isa is uniformly replaced with isa n , and each triple uniformly with triple n ,
yielding P¬inst. This set includes e.g. the following rules, which propagate subclass and
conjunctive subclass membership:
isa n(X,Z,C, J)← subClass(Y,Z), isa n(X,Y,C, J)
isa n(X,Z,C, J)← subConj (Y1, Y2, Z), isa n(X,Y1, C, J), isa n(X,Y2, C, J)

The individual unsatisfiability checks are then accomplished with rules P¬, which
for each check add C(a), expand all isa(X,Y) atoms with a and C, and make an
atom isnota(a,C) true iff the test is successful:

isa n(X,Y, Y,X)← nom(X), cls(Y)
isa n(X1, Y1, Y2, X2)← isa(X1, Y1), cls(Y2), nom(X2)

isnota(X,Y)← isa n(N,Z, Y,X), nom(N), bot(Z), nom(X)

Let the extended EL reduction for negative query of an EL ontology L be defined
as Φ¬EL(L) = P¬inst ∪ {Iinst(α) | α ∈ L} ∪ {Iinst(s) | s ∈ NI ∪NC ∪NR} ∪ P¬.

Proposition 1. For every EL ontology L, L |= ¬C(a) iff Φ¬EL(L) |= isnota(a,C).

An application of dl-programs where negative dl-queries are important is terminolog-
ical default logic over DLs [5, 11]. Here, Reiter-style default rules are applied to named
individuals; we show the classic birds&penguins example for illustration.

Example 6. The knowledge base ∆ = 〈L,D〉 consists of a DL KB L = {Flier u
NonFlier v ⊥, P enguin v Bird, Penguin v NonFlier, Bird(tweety)} (which
is in EL), and a (singleton) set D = {Bird(X) : Flier(X)/F lier(X)} of default
rules (informally, birds fly by default). The semantics of the KB ∆ is captured by
the following dl-program KB =(L,Π(D)) under answer set semantics (i.e., default
extensions correspond to answer sets), where Π(D) is

in F lier(X)← not out F lier(X)
out F lier(X)← not in F lier(X)
Flier+(X)← DL[λ;Bird](X),not DL[λ′;¬Flier](X)

fail ← DL[λ′;Flier](X), out F lier(X),not fail
fail ← DL[λ;Flier](X), in F lier(X),not fail
fail ← DL[λ;Flier](X), out F lier(X),not fail

where λ = {Flier] in F lier} and λ′ = {Flier] Flier+}. To rewrite KB to
Datalog¬, we use for the dl-atomDL[λ′;¬Flier](X) the rewritingΦ¬EL(Lλ′)∪ρ(λ′) |=
isnotaλ′(X,F lier), and for the other dl-atoms the rewriting ΦEL(Lγ) ∪ ρ(γ) |=
isaγ(X,F lier), γ ∈ {λ, λ′}. The Datalog¬ program has a single answer set, which
contains Flier(tweety), as expected.

4.4 Implementation and Experiments

We implemented the datalog rewriting of dl-programs in the DReW reasoner. Initial
results over LDL+ ontologies were given in [56], which compares DReW to dlvhex[DL].
The results clearly show that DReW outperforms the latter. For the present paper, we
extended the rewriter to the EL encoding given above. Thus, DReW can now be used as
a DL-reasoner and a dl-program-reasoner for LDL+ and EL ontologies.

The experiments have been run on an Ubuntu Linux 11.10 system on an AMD
Opteron Magny-Cours 6176 SE 2.3GHz system with 24 cores and 128GB RAM. Further
details are given on the benchmark webpage.3

Instance retrieval With Large EL TBoxes. The experiment shows the efficiency of
the EL datalog rewriting for a large TBox. As test ontology we used an EL variant of
Galen,6 a large biomedical ontology.7 In the test, we created four ontology instances G1

to G4 that have a fixed Galen TBox and increasing ABoxes with 10i assertions, each us-
ing roughly ten concepts and roles. We performed four instance retrieval queries over Gi:
(i) q1(X) = Substance(X), (ii) q2(X) = Animal(X), (iii) q3(X) = MaleAdult(X),
and (iv) q4(X) = Human(X).

We were using two Datalog engines for computing the models of the DReW encod-
ings: clingo 3.0.3 [22] and DLV 2010-10-14 [38]. We compared DReW with the DL
reasoners HermiT 1.3.5 [42] and Pellet 2.3.0 [47]. We differentiate two DReW bench-
mark run settings: (i) DReW[clingo] and (ii) DReW[DLV] (in brackets the employed
model builder is given). The results are shown in Table 4a (the results for Pellet are
omitted as it timed out in all tests).

DReW is superior to HermiT and Pellet; even with small ABoxes, the general
purpose DL-reasoner Pellet could not answer the queries within one hour. Note that

6 http://condor-reasoner.googlecode.com/files/EL-GALEN.owl
7 http://www.opengalen.org/

Table 4: Benchmark Results for Datalog Rewriting (Runtime in secs)
(a) EL Instance Retrieval with Galen (HT=HermiT; Pellet always
timed out after one hour)

Ontology DReW HT

Query [DLV] [clingo]

G1 q1 2.0 1.3 8.1

q2 2.0 1.3 8.2

q3 2.0 1.3 8.

q4 2.0 1.4 8.1

G2 q1 2.0 1.3 8.9

q2 2.0 1.4 8.9

q3 2.1 1.4 8.7

q4 2.0 1.3 9.0

Ontology DReW HT

Query [DLV] [clingo]

G3 q1 2.0 1.3 9.5

q2 2.1 1.4 9.5

q3 2.0 1.4 9.7

q4 2.1 1.4 9.5

G4 q1 2.1 1.4 10.3

q2 2.1 1.4 10.2

q3 2.1 1.4 10.2

q4 2.1 1.4 10.2

(b) Default reasoning with
Policy Benchmark

KB DReW
Typing [DLV] [clingo]

∆1 5 1.1 0.8
50 2.4 1.3

100 6.0 3.0
∆5 5 6.6 4.4

50 8.3 5.0
100 12.2 7.4

∆10 5 13.9 9.4
50 15.7 10.1

100 20.5 13.3
∆25 5 35.8 26.0

50 40.0 26.4
100 43.7 32.7

Fig. 1: Access policy control ∆ = (L,D), L = (T ,A), in terminological default logic

T =

Staff v User , Blacklisted v Staff , Deny u Grant v ⊥,
UserRequest ≡ ∃hasAction.Action u ∃hasSubject .User u ∃hasTarget .Project ,
StaffRequest ≡ ∃hasAction.Action u ∃hasSubject .Staff u ∃hasTarget .Project ,
BlacklistedStaffRequest ≡ StaffRequest u ∃hasSubject .Blacklisted

D =

UserRequest(X) : Deny(X)/Deny(X),
StaffRequest(X) : ¬BlacklistedStaffRequest(X)/Grant(X),
BlacklistedStaffRequest(X) : >/Deny(X)

other reasoners like CB [33] and ELK [34] classify EL-Galen very fast, but they can not
be used for instance retrieval out of the box.
Default Reasoning with EL Policy Ontology. This experiment was conducted on
terminological default KBs with an EL ontology. As shown in Example 6, default
reasoning can be encoded into dl-programs with recursive and unstratified rules, which
are not easy to handle. For this example, dlvhex[DL] scales exponentially with the
number of birds, while DReW, on top of DLV as well as clingo, runs much faster.

As a more interesting benchmark, we consider here an access control policy, bor-
rowed from [6] and couched into a terminological default KB ∆ = 〈L,D〉, where the
the TBox of L and the defaults D are shown in Figure 1; informally, D expresses that
users normally are denied access to files, staff is normally granted access to files, while
to blacklisted staff any access is denied.

In the test, we created ontology instances Li, i ∈ {1, 5, 10, 25}, that have a fixed
TBox and increasing Aboxes with i∗1000 instances of user requests.

The query imposed was then whether a set of particular individuals, designated by
concepts Qk, k ∈ {5, 50, 100}, are granted access (under answer set semantics); the
application of defaults, using Qk as a typing concepts, is thus restricted to the k queried

individuals. As we see in Table 4b, DReW scales sublinearly in this experiment, on top
of both DLV and clingo.

5 Modular ASP

In the transformations of dl-programs to Datalog¬ above, dl-atoms are encoded by
subprograms emulating their evaluation. We can make the modular structure of the pro-
grams explicitly visible, if we use an extension of Datalog¬ which caters for structured
programming, e.g., [32]. In modular nonmonotonic logic programs [9], program modules
can be defined akin to modules or procedures in common programming paradigms, such
that on input of suitable predicates to a module, the valuation of “output” predicates in
an answer set of a module is obtained based on a call-by-value mechanism.

For example, a module kernel[e] may compute, in each answer set, a kernel of
a graph stored by its edges in a binary predicate e, in a predicate k; here e is a for-
mal parameter, which in a module call must be replaced by a predicate name. E.g.,
kernel[my e].k(a) asks if the node a is in the (nondeterministically) computed kernel
k of the concrete graph my e.

A modular logic program (MLP) is a collection P = (P1, . . . , Pn) of modules,
where each Pi has a list qi = qi,1, . . . , qi,ni

of ni ≥ 0 formal input parameters; one
module (say P1) is the main module and has n0 = 0. The “implementations” of the Pi
consist of logic program rules of form (2), where the bi may be atoms or call atoms
of the form Pj [p].a

′, where p is a list of predicate names matching q and a′ an atom.
Answer sets of a MLP are defined in [9] in a natural way, generalizing the answer set
semantics of ordinary programs.

We will briefly discuss how the Datalog¬ transformation above can be expressed as
MLPs, and examine possible tradeoffs between code repetition and performance, based
on a prototype implementation for an MLP fragment.

Inline evaluation of Datalog-rewritable dl-programs. To exemplify the rewriting,
consider Example 4 above. We can encode KB = (L,P ′) as an MLP P = (P1[], PDL[C]),
where P1 is the main module that consists of the rules

p(a)← p(b)← q(c)←
s(X)← PDL[p].D(X),not PDL[q].D(X) (rs)

and PDL[C] is a library module consisting simply of the rules TP ∪ {D(X)← C(X)}.
On the surface, the semantics for MLPs creates for the two input lists p and q of our

module atoms of P1 (among others) two instantiations of PDL[C] on-the-fly; the first
instantiation for module atom PDL[p].D(X) contains the rules of PDL[C] and the input
facts F1 = {C(a), C(b)}, and the other instantiation for module atom PDL[q].D(X)
has the rules of PDL[C] and input fact F2 = {C(c)}. The input F1 stems from adding
the extension of p as C’s to PDL[C], while F2 has been created from the extension of q.

Now the module atom PDL[p].D(X) is retrieving all instances of concept D from
L∪F1 in the instantiation with input F1. Similarly, PDL[q].D(X) retrieves all instances
of D from L∪F2 in the instantiation with input F2. The former is true for PDL[p].D(a)
and PDL[p].D(b), as we add both C(a) and C(b) to the module, thus the rule D(X)←
C(X) fires for X ∈ {a, b}, simulating the concept inclusion C v D of L. The ground

Table 5: Benchmark dl-programs DReW vs. TD-MLP (Runtime in secs)
(a) Ontology U1

Program DReW TD-MLP
[clingo] [DLV] [clingo] [DLV]

P0 0.31 0.45 1.98 2.88
P1 0.32 0.44 1.69 2.47
P2 0.32 0.44 2.63 3.82
P3 0.31 0.43 1.66 2.42
P4 0.32 0.45 2.45 3.63
P5 0.61 0.86 1.66 2.46
P6 1.79 2.76 5.65 8.41
P7 2.70 4.30 4.87 7.84
P8 2.76 4.26 9.70 14.12
P9 2.73 4.31 8.04 11.60

(b) Ontology U15

Program DReW TD-MLP
[clingo] [DLV] [clingo] [DLV]

P0 6.49 10.27 30.43 42.53
P1 4.00 6.27 21.22 30.12
P2 3.95 6.08 32.65 45.24
P3 3.98 6.13 20.94 30.33
P4 4.15 6.43 28.19 39.93
P5 7.97 12.66 21.54 30.87
P6 23.52 40.56 72.86 103.76
P7 36.33 64.05 115.03 162.21
P8 36.58 61.71 128.01 181.41
P9 35.26 62.19 108.38 145.04

rules with module atom PDL[q].D(a) and PDL[q].D(b) are false on the other hand, as F2

only adds C(c) and D(a) and D(b) cannot be derived. Hence, both not PDL[q].D(a)
and not PDL[q].D(a) are true and our rule rs derives s(a) and s(b) in module P1[].

Implementation and experimental results. The algorithm for solving input-call strat-
ified MLPs [10] has been implemented in the TD-MLP solver [54], which is based on
the dlvhex system. Using this solver, we could perform initial experiments with the
modular datalog encoding sketched in this section. The hardware specification for the
experiments are the same as in Section 4.4.

We were testing with dl-programs KB = (Ui, Pj), where Ui (i ∈ {1, 15}) are EL
versions of the LUBM ontology [26] and program Pj (j ∈ {0, . . . , 9}) encode variants
of the LUBM queries; all dl-programs where acyclic. We denote with Ui the LUBM
ontology instance that incorporates i universities in the ABox. The original LUBM is not
fully in EL (inverse roles and datatypes are not part of EL): there are 2 violating axioms
in the TBox, and 2857 (33154) ABox axioms with datatype are violated in U1 (U15).
The resulting EL version of LUBM then contains 86 TBox axioms using 43 concepts
and 25 roles, and 5738 (67691) ABox axioms with 1555 (17174) individuals in in-
stance U1 (U15). The rules are from the DReW LUBM benchmark queries and consist of
ten programs P0–P9. They can be split into two categories: (C1) P0–P4 have between 2
and 5 dl-atoms but no input list, while (C2) P5–P9 have between 2 and 9 dl-atoms, each
with distinct input list.

We used two Datalog engines to compute the models of the native and the modular
encodings: clingo 3.0.3 [22] and DLV 2010-10-14 [38]. We compared TD-MLP to
DReW using four benchmark run settings (the systems in square brackets denote the
model builders used to calculate the model): (i) DReW[clingo], (ii) DReW[DLV],
(iii) TD-MLP[clingo], and (iv) TD-MLP[DLV]. The test results are shown in Table 5a
for KB = (U1, Pj) and in Table 5b for KB = (U15, Pj). More details are available on
our benchmark webpage.3

DReW outperforms TD-MLP in all tests. But DReW’s lead is shrinking if we increase
the number of dl-atoms in the dl-programs from category (C2), i.e., (Ui, P5)–(Ui, P9).
The reason is that with DReW we create copies of the ontology as Datalog rules for
every dl-atom upfront, thus creating a large single Datalog program. In TD-MLP, we
can always use a single copy of the rewritten ontology and let the MLP semantics create
the copies for us. As the current TD-MLP implementation is not sophisticated enough,
the overhead for instantiating modules during evaluation is prevalent.

6 Discussion and Conclusion

The experimental implementations that we used are not optimized, and in order to get
a clearer picture, a more extensive experimentation is necessary. However, the results
above show that the uniform evaluation approach has great potential for dl-programs,
and that it outperforms a reasoner-coupling implementation substantially. Regarding the
various formalisms that we considered, we make the following observations.
FO-Rewritability. The notion of FO-rewritability in Section 3 may be relaxed to permit
modifications of the ABox, in spirit of the combined approach [36], where the ABox is
extended dependent on the TBox but independent of the query, which is rewritten to a FO
query over the extended ABox. For (acyclic) dl-programs to stay within FO, we only can
have ABox extensions which do not depend on the contents of the ABox, as its precise
contents in evaluating a dl-atom under updates is not known a priori. This still leaves
the possibility for auxiliary relations that depend on the TBox and the original ABox
(e.g., a linear ordering of the individuals, or arithmetic operations). Such generalized
FO-rewritability increases the expressiveness in general.

By exploiting recursive query processing in SQL, uniform evaluation of dl-programs
with DL-LiteR allows for performing computations like transitive closure on top of a
knowledge base. However, in current RDBMS, recursive query processing is still not
very advanced and has lots of room for improvement. Our experience with Postgres is in
analogy to tests with commercial RDBMS (cf. [49]). A useful improvement of Postgres
in this regard would be efficient cycle detection, eliminating the LIMIT parameter.8 To
cater for (also non-linear) recursion, languages like Datalog seem more attractive.
Datalog¬-Rewritability. Similar as for FO-rewritability, we also can consider here
relaxed notions of Datalog-rewritability that allow for auxiliary relations. For Datalog¬

rewritability of a dl-program, we required that dl-atoms resp. the underlying description
logic are Datalog rewritable. One also could consider a more liberal notion of Datalog¬

rewritability of dl-atoms, which however would need to deal with the fact that in principle,
the program ΦDL(L) could have multiple answer sets (or none). Furthermore, simply
plugging in ΦDL(Lλ) for some dl-atom DL[λ,Q](t] may lead to unwanted effects, due
to nonmonotonicity; e.g., additional answer sets might emerge. Syntactic restrictions
(e.g., acyclicity, or more general that dl-atoms are not involved in cycles) can avoid this.
Modular Logic Programs. The modular program encoding lags in total runtime behind
the ad hoc inlined approach, but it scale at a slower growth rate. This looks promising as
the gap for large amounts of data will be closed. In designing modules for dl-atoms, one

8 http://www.postgresql.org/docs/8.4/static/queries-with.html

has a range of possibilities, from few, more general modules to many but very specialized
ones (in the extremal case, a single universal module for all dl-atoms (similarly as in
dlvhex), vs. one module for each dl-atom). Determining the effects of such design
choices, and the resulting transformations is an interesting subject fur future study.

6.1 Further Work and Outlook

The uniform evaluation approach we proposed is a flexible framework. Once a description
logic has a transformation into the suitable logic, it can be easily integrated.

At the software level, in case of FO a respective component can be integrated in the
MOR prototype and in case of Datalog in the DReW reasoner. In particular, (relaxed)
Datalog rewritings of description logics apart from EL have gained attention recently,
e.g. [44, 24], including conjunctive query answering in Horn-SHIQ, which subsumes
all the OWL 2 profiles EL, RL and QL; an implementation is in progress [50].

We considered some formalisms for uniform evaluation of dl-programs, for which
evaluation engines are available. Of course, further such formalisms (e.g., FO(·) Logic
[14], or F-logic [35]) may be considered. But also formalisms for which reasoning
engines are yet emerging might be of interest, e.g. Datalog ± [7]. The latter extends
Datalog with existential quantification in rule head and at the same time restricts the
syntax such that reasoning remains decidable. Datalog ± is more expressive than various
description logics, including DL-Lite (which is captured elegantly), and allows for
handling unknown individuals in the reasoning. It seems to be an attractive formalism in
particular to host the combination of rules and ontologies.

Finally, the prototypes we used for experimentation are not optimized, and there is
considerable room for improvement. Furthermore, alternative encodings and reductions
might be considered, and specific optimization methods and techniques developed.

References

1. Acciarri, A., Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Palmieri, M., Rosati,
R.: Quonto: Querying ontologies. In: AAAI’05. pp. 1670–1671 (2005)

2. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The dl-lite family and relations.
J. Artif. Intell. Res. 36, 1–69 (2009)

3. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: IJCAI’05. pp. 364–369. (2005)
4. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope further. In: OWLED08-DC (2008)
5. Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge representation

formalisms. J. Autom. Reasoning 14(1), 149–180 (1995)
6. Bonatti, P.A., Faella, M., Sauro, L.: Adding default attributes to EL++. In: AAAI’11. (2011)
7. Calı̀, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: A family of

logical knowledge representation and query languages for new applications. In: LICS’10. pp.
228–242. (2010)

8. Calvanese, D., de Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J Autom. Reasoning
39(3), 385–429 (2007)

9. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Modular nonmonotonic logic program-
ming revisited. In: ICLP’09. pp. 145–159. Springer (2009)

10. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Relevance-driven evaluation of modular
nonmonotonic logic programs. In: LPNMR’09, pp. 87–100. Springer (2009)

11. Dao-Tran, M., Eiter, T., Krennwallner, T.: Realizing default logic over description logic
knowledge bases. In: ECSQARU’09, pp. 602–613. Springer (2009)

12. de Bruijn, J., Bonnard, P., Citeau, H., Dehors, S., Heymans, S., Pührer, J., Eiter, T.: Combi-
nations of rules and ontologies: State-of-the-art survey of issues. Tech. Rep. Ontorule D3.1,
Ontorule Project Consortium (2009)

13. de Bruijn, J., Eiter, T., Tompits, H.: Embedding approaches to combining rules and ontologies
into autoepistemic logic. In: KR’08, pp. 485–495 (2008)

14. Denecker, M., Ternovska, E.: A logic of non-monotone inductive definitions. ACM Trans.
Comput. Log. 9(2), 14, 52pp. (2008)

15. Drabent, W., Eiter, T., Ianni, G., Krennwallner, T., Lukasiewicz, T., Małuszyński, J.: Hybrid
reasoning with rules and ontologies. In: Semantic Techniques for the Web: The REWERSE
perspective, chap. 1, pp. 1–49. Springer (2009)

16. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R.: Well-founded semantics for description
logic programs in the Semantic Web. ACM Trans. Comput. Log. 12(2), 11, 41pp. (2011)

17. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set
programming with description logics for the Semantic Web. Artif. Intell. 172(12-13), 1495–
1539 (2008)

18. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Effective integration of declarative rules
with external evaluations for semantic-web reasoning. In: ESWC’06. pp. 273–287. Springer
(2006)

19. Eiter, T., Fink, M., Krennwallner, T.: Decomposition of declarative knowledge bases with
external functions. In: IJCAI’09, pp. 752–758. (2009)

20. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order
reasoning and external evaluations in answer set programming. In: IJCAI’05, pp. 90–96.
(2005)

21. Fink, M., Pearce, D.: A logical semantics for description logic programs. In: JELIA’10. pp.
156–168. Springer (2010)

22. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.: Potassco:
The Potsdam Answer Set Solving Collection. AI Commun. 24(2), 107–124 (2011)

23. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9, 365–385 (1991)

24. Gottlob, G., Schwentick, T.: Rewriting ontological queries into small nonrecursive datalog
programs. In: DL’11. CEUR-WS, vol. 745. (2011)

25. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Combining logic
programs with description logic. In: WWW’03. pp. 48–57. ACM (2003)

26. Guo, Y., Pan, Z., Heflin, J.: Lubm: A benchmark for OWL knowledge base systems. J. Web
Sem. 3(2-3), 158 – 182 (2005)

27. Haarslev, V., Hidde, K., Möller, R., Wessel, M.: The RacerPro knowledge representation and
reasoning system. In: Semant. Web J. http://www.semantic-web-journal.net/, to appear

28. Heymans, S., Eiter, T., Xiao, G.: Tractable reasoning with DL-programs over datalog-
rewritable description logics. In: ECAI’10. IOS Press (2010)

29. Heymans, S., Korf, R., Erdmann, M., Pührer, J., Eiter, T.: Loosely coupling f-logic rules and
ontologies. In: WI’10, pp. 248–255. IEEE Computer Society (2010)

30. Hustadt, U., Motik, B., Sattler, U.: Reasoning in description logics by a reduction to disjunctive
datalog. J. Autom. Reasoning 39(3), 351–384 (2007)

31. Janhunen, T.: On the intertranslatability of non-monotonic logics. Ann. Math. Artif. Intell.
27(1-4), 79–128 (1999)

32. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity Aspects of Disjunctive
Stable Models. J. Artif. Intell. Res. 35, 813–857 (2009)

33. Kazakov, Y.: Consequence-driven reasoning for Horn SHIQ ontologies. In: IJCAI’09. pp.
2040–2045 (2009)

34. Kazakov, Y., Krötzsch, M., Simancik, F.: Concurrent classification of el ontologies. In:
ISWC’11, pp. 305–320. Springer (2011)

35. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-based lan-
guages. J. ACM 42(4), 741–843 (1995)

36. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach
to query answering in dl-lite. In: KR’10. AAAI Press (2010)

37. Krötzsch, M.: Efficient rule-based inferencing for OWL EL. In: IJCAI’11, pp. 2668–2673.
(2011)

38. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM Trans. Comput. Log. 7(3) (2006)

39. Lukasiewicz, T.: A novel combination of answer set programming with description logics for
the semantic web. IEEE Trans. Knowl. Data Eng. 22(11), 1577–1592 (2010)

40. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.): OWL 2 Web Ontology
Profiles. W3C (2009), W3C Rec. 27 Oct. 2009, http://www.w3.org/TR/owl2-profiles/

41. Motik, B., Rosati, R.: Reconciling Description Logics and Rules. J. ACM 57(5), 1–62 (2010)
42. Motik, B., Shearer, R., Horrocks, I.: Hypertableau Reasoning for Description Logics. J. Artif.

Intell. Res. 36, 165–228 (2009)
43. Ordonez, C.: Optimization of linear recursive queries in SQL. IEEE Trans. Knowl. Data Eng.

22(2), 264–277 (2010)
44. Ortiz, M., Rudolph, S., Simkus, M.: Worst-case optimal reasoning for the horn-DL fragments

of OWL 1 and 2. In: KR’10. AAAI Press (2010)
45. Rosati, R., Almatelli, A.: Improving query answering over dl-lite ontologies. In: KR’10.

AAAI Press (2010)
46. Schneider, P.: Evaluation of description logic programs using an RDBMS. Master’s thesis,

TU Wien (2010)
47. Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-DL

reasoner. J. Web Sem. 5(2), 51–53 (2007)
48. Stocker, M., Smith, M.: Owlgres: A scalable OWL reasoner. In: OWLED’01 (2008)
49. Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with recursive queries in database

and logic programming systems. Theor. Pract. Log. Prog. 8(2), 129–165 (2008)
50. Tran, T.K.: Query answering in the description logic Horn-SHIQ. Master’s thesis, TU Wien

(2011)
51. Wang, K., Billington, D., Blee, J., Antoniou, G.: Combining description logic and defeasible

logic for the semantic web. In: RuleML’04, pp. 170–181. Springer (2004)
52. Wang, Y., You, J.H., Yuan, L.Y., Shen, Y.D.: Loop formulas for description logic programs.

Theor. Pract. Log. Prog. 10(4-6), 531–545 (2010)
53. Wang, Y., You, J.H., Yuan, L.Y., Shen, Y.D., Eiter, T.: Embedding description logic programs

into default logic. CoRR abs/1111.1486 (2011)
54. Wijaya, T.: Top-Down Evaluation Techniques for Modular Nonmonotonic Logic Programs.

Master’s thesis, TU Wien (2011), http://media.obvsg.at/AC07811177-2001
55. Xiao, G., Eiter, T.: Inline evaluation of hybrid knowledge bases – PhD description. In: RR’11,

pp. 300–305. Springer (2011)
56. Xiao, G., Heymans, S., Eiter, T.: DReW: a reasoner for datalog-rewritable descrip-

tion logics and dl-programs. In: BuRO’10 (2010), http://ontorule-project.eu/attachments/
075 buro2010-proceedings.pdf

