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Executive Summary

This document presents state-of-the-art and intermediate results on consistency mainte-
nance in the ONTORULE project. A general consistency framework is provided as a
basis for communicating consistency related requirements and methods for the individual
formalisms considered within the project. The framework defines common terminology,
classifies consistency related problems, and identifies main tasks for consistency mainte-
nance. On the problem side, four abstract problem types for classification of consistency
problems are presented. Regarding tasks for consistency maintenance, we distinguish
methods for diagnosing consistency problems and actions to overcome them.

We give an overview of the state of the art for consistency maintenance in texts, logical
rules, production rules, and Description Logics, placing its different components in the
general framework as appropriate.

As regards inconsistency arising from texts in natural language, we focus on the acquisi-
tion setting in ONTORULE, i.e., the scenario where rules are extracted from plain text.
Two main issues are addressed. On the one hand the case that the output of vocabulary
and rule extraction is inconsistent because of erroneous interpretation of the text and on
the other hand the case that the formulation of statements in the text itself potentially
cause inconsistency. A main objective is prevention of inconsistencies during acquisition.

We describe a declarative approach towards detecting inconsistencies and anomalies in
ObjectLogic language which originates from the F-Logic rule language. The method
identifies typical cases of inconsistency using ObjectLogic itself. Moreover, methods for
handling the identified problems are discussed.

For consistency maintenance in production rules, we adapt an approach using design pat-
terns for ontology management. We introduce Change Management Patterns (CMP) that
classify different types of changes, inconsistencies, and possible solutions. The main idea
is that when a rule set is changed, the corresponding patterns determine which types of
inconsistencies need to be checked, and which solution alternatives are available.

We give a state-of-the-art summary on research into inconsistency in Description Logics.
Here, the focus is on problems related to logical contradictions, i.e., inconsistency in the
sense of logical unsatisfiability. We classify consistency problems in Description Logics
and deal with techniques for recognizing inconsistencies. Here, we discuss approaches
that aim at explaining inconsistencies to a knowledge engineer, as well as approaches
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D2.3 Consistency Maintenance. Intermediate Report

that aim at pinpointing parts of the knowledge base that causes an inconsistency. In the
discussion of actions for handling inconsistencies, we deal with consistency restoring
methods on the one hand, and inconsistency tolerant approaches on the other hand.

Finally, initial results on consistency maintenance in combinations of ontologies and rules
are reported. Here, the focus is on loosely coupling of Description Logics and logical rules
realized by DL-programs. Results carry over to the related language of F-Logic# which
was developed within WP3. We address two consistency related phenomena that may
emerge from the features of the coupling mechanism. We provide definitions and com-
plexity analysis for diagnosing minimal sets of calls to the Description Logic knowledge
base that can restore consistency of inconsistent DL-programs. Moreover, we present a
novel semantics for DL-programs that tolerates inconsistencies caused by the ontology
update-feature of the loose-coupling mechanism.

January 21, 2011 ii
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Chapter 1

Introduction

In this deliverable we present intermediate results on consistency maintenance in the ON-
TORULE project. We provide a general consistency framework in order to establish
comparability between consistency related requirements and methods for the individual
formalisms considered within the project. The framework, which is introduced in Chap-
ter 2, defines common terminology, classifies consistency related problems, and identifies
main tasks for consistency maintenance. In the subsequent chapters we discuss consis-
tency maintenance for texts, logical rules, production rules, and Description Logics, re-
spectively. We give an overview of the state of the art placing its different components in
the general framework. Moreover, we provide new methods for consistency maintenance
for loosely-coupled combinations of Description Logics and logical rules.

The deliverable is organized as follows. In Section 2.1 we lay down a unified terminol-
ogy to speak about knowledge bases in rule, ontology, and combined languages. Besides
consistency within the deliverable, the motivation for that is that a common terminol-
ogy can reveal similarities in consistency problems and solutions between the different
formalisms. In Section 2.2 four abstract problem types for classification of consistency
problems are presented.

Chapter 3 deals with inconsistency arising from texts in natural language. The basic sce-
nario is that rules are extracted from plain text which is a central setting in ONTORULE
WP1 “Business policy acquisition and modelling”. Two main issues are addressed, on the
one hand the case that the output of vocabulary and rule extraction is inconsistent because
of erroneous interpretation of the text and on the other hand the case that the formula-
tion of statements in the text itself potentially cause inconsistency. A main objective is
avoiding such problems already in the acquisition phase. Hence, before problem analysis
and consequent actions in the production phase are discussed in Section 3.2, we discuss
prevention of inconsistencies during acquisition in Section 3.1.

In Chapter 4 we consider consistency maintenance in logical rules. In particular, we deal
with the ObjectLogic language which originates from F-Logic. We study the formalism
along the lines of our framework. In Section 4.1 we present typical cases of inconsis-
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CHAPTER 1. INTRODUCTION 2

tency. Moreover, in Sections 4.2 and 4.3 methods for problem identification, respectively
problem handling are presented that extend work for DATALOG.

Analogously, Chapter 5 deals with production rules, discussing common problems in Sec-
tion 5.1, problem diagnosis in Section 5.2, and actions towards problem solving in Sec-
tion 5.3. Here, we introduce Change Management Patterns as approach for consistency
maintenance.

Chapter 6 gives a state-of-the-art summary on research into inconsistency in Description
Logics. Here, the focus is on problems related to logical contradictions, i.e., inconsistency
in the sense of logical unsatisfiability. After giving preliminaries on Description Logics in
Section 6.1, following the scheme of the consistency framework, we classify consistency
problems in Section 6.2. Section 6.3 deals with techniques for recognizing inconsisten-
cies. Here, we discuss approaches that aim at explaining inconsistencies to a knowledge
engineer, as well as approaches that aim at pinpointing parts of the knowledge base that
causes an inconsistency. In the discussion of actions for handling inconsistencies in Sec-
tion 6.4, we deal with consistency restoring methods on the one hand, and inconsistency
tolerant approaches on the other hand.

In Chapter 7 we report initial results on consistency maintenance in combinations of on-
tologies and rules. Here the focus is on loosely coupling of Description Logics and logical
rules realized by DL-programs. Results carry over to the related language of F-Logic#
which was developed within WP3 “Execution and inference”. Section 7.1 provides ba-
sic notions for DL-programs. We address two consistency related phenomena that may
emerge from the features of the coupling mechanism as discussed in Section 7.2.2. We
provide definitions and complexity analysis for diagnosis of inconsistent DL-programs
in Section 7.3. Moreover, in Section 7.4 we present a novel semantics for DL-programs
that tolerates inconsistencies caused by the ontology update-feature of the loose-coupling
mechanism. Chapter 8 concludes the report.



Chapter 2

General Consistency Framework

In this chapter we define a general framework for consistency maintenance in different
formalisms important in the ONTORULE project such as logical rules, production rules,
and Description Logics. It should serve as a basis for communicating work on consistency
related issues within ONTORULE Task 2.4. We identify three areas in the process of
consistency maintenance and state their basic questions:

1. Problems. What are the consistency problems that a production or logical rule set,
a DL axiom set, a combination of those,1 can have? E.g., a consistency problem
could be that a rule is not applicable (the body can never be true or will never
trigger).

2. Diagnosis. Why is a certain consistency problem applicable to our knowledge base?
Two questions arise here:

(a) Checking. How to check the problem against the knowledge base? This might
happen in a statical way, i.e., by analyzing the knowledge base syntactically
(e.g., no running of its native reasoner) or in a dynamic way, i.e., by specif-
ically running the native reasoner against the, possibly modified, knowledge
base.

(b) Explanation. After checking the problem, what constitutes an explanation?
An explanation might have different granularities and might need to satisfy
different conditions, e.g., minimality of an explanation (if a set of atoms A is
explaining a problem then a set of atoms B ⊃ A is not a minimal explanation).

3. Actions towards Problem Solving. Using the diagnosis can the problem be fixed?
How to fix it?

1When talking about any of these possibilities, we will refer to them as the knowledge base.

3



CHAPTER 2. GENERAL CONSISTENCY FRAMEWORK 4

2.1 Basic Definitions

In order to indicate the different problems that are relevant for consistency maintenance,
we introduce some general terminology. For a particular knowledge base KB , we dis-
tinguish between its assertional knowledge, denoted by A(KB), and its terminological
knowledge, denoted by T (KB). For example, in case KB represents a logical rule knowl-
edge base, A(KB) would consist of facts (rules with an empty body, i.e., an empty IF

condition) and its terminological knowledge would consist of rules with non-empty body.
For Production rules the distinction is similar, where the assertional knowledge is a par-
ticular scenario (the input space) and the terminological knowledge is formed by the rules
(the mapping from the input space to the decision space). For Description Logics the ter-
minological knowledge consists of the TBox and the assertional knowledge of an ABox.
For combination approaches the distinction is similar. For example for a DL+PR com-
bination, the assertional knowledge would consist of the ABox of the DL and the input
space of the PR.

For the individual paradigms we will introduce appropriate notions of an interpretation
for a knowledge base such that the semantics of the formalisms can be defined by the
concept of a model. Moreover, for the different approaches we will use a consequence
operator |= such that M |= KB holds whenever an interpretation M is a model of the
knowledge base KB . The precise meanings of |= and M will be specified later. However,
for example, a model of an LP knowledge base could refer to an answer set in case of
Answer-Set Programming or to a well-founded model in the case of F-Logic Program-
ming. For Production rules this will be a pair of input space and decision space where the
attributes have been modified by the rule actions triggered by the input space. In Descrip-
tion Logics, it will refer to its standard first-order model. In combinations, it will refer to
whatever is defined as a model in that context.

For rule-based formalisms, we make use of the notion of applicability of a rule. Condi-
tions will be given defining under which conditions a rule r ∈ KB in a knowledge base
KB is applicable w.r.t. an interpretation I of KB .

For example, a production rule is applicable if, given the input space of I , the rule’s IF
part matches. A logical rule is applicable if its IF part is true w.r.t. a given interpretation.
A DL axiom is applicable if its left hand side is true in the given interpretation.

2.2 Abstract Definitions of Problems

Given the terminology introduced in the previous section, we now define abstract cate-
gories of consistency problems.

• Contradiction. We distinguish between two types to indicate when a knowledge
base KB is contradictory:



CHAPTER 2. GENERAL CONSISTENCY FRAMEWORK 5

– Terminological contradiction: KB does not have a model. E.g., for a DL
Concept A with non-empty domain, the unsatisfiable axiom A = ¬A leads to
a global contradiction.

– Assertional contradiction: KB has a model, but there is assertional knowledge
A′ such that T (KB) ∪ A′ does not have a model. For example, a set of rules
and a particular input space would lead to a model, but a different input space
with the same set of rules would not. Or, a DL knowledge base with a TBox
and ABox would have a model, but changing the ABox would lead to not
having a model. For a concrete example in LP, consider the facts

joan:Woman. joan:Pope.

as the assertional part and the constraint

!- ?x:Woman AND ?x:Pope.

as terminological part, expressing that women are currently not allowed to be
pope. The overall KB would not have any model.

• Completeness. For completeness, we assume for a knowledge base KB , the exis-
tence of a set of pairs (T ′, α) where (T ′ ⊆ T (KB)), i.e., a subset of the termino-
logical knowledge of KB , and α is a set of interpretations for KB . We call this set
of pairs the completion set of KB , where choosing an adequate completion set is
subject to the formalism and the problem at hand. A knowledge base KB is then
complete if for each of its completion pairs (T ′, α) and for each I ∈ α there is a rule
in T ′ that is applicable by I . A small example is given as follows. Assume T (KB)
consists of the rules

IF score < 50 THEN category = Silver

and
IF score >= 65 THEN category = Platinum.

Then, for a score between 50 and 65 category is undefined.

• Relevance. We distinguish between three problems and call a knowledge base KB
relevant if:

– for each r ∈ T (KB) one has some given interpretation I such that r is appli-
cable w.r.t. I , e.g., the (production) rule

IF year = 1848 THEN category = Platinum

is irrelevant if the domain of year are numbers greater than 1950.

– all r ∈ T (KB) have effect, where the meaning of a rule having effect remains
to be defined for individual approaches.
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– T (KB) contains no redundancy. Again, what is redundancy is up to the re-
spective formalism in consideration. E.g., in LP, the second of the two rules

a←b a←b, c

would contain redundancy as from b alone a would follow.

– there is no other form of language specific relevance. For example, for loosely-
coupled approaches, a query to the ontology might become irrelevant if it
causes an inconsistency in that ontology (e.g., each entailment-based query is
true if it makes the ontology inconsistent)

• Language Conformant. This collects sets of problems that are specific to the
modeling language used, i.e., considering its methodology, computational proper-
ties, etc. For example, updating a knowledge base might lead to falling out of a
desired fragment of the language, e.g., one might make rules unsafe or recursive
(e.g., adding a rule a :- b. if there is already a rule b :- a.) without that the
reasoner can handle this, or where it is undesired to have fragments that are more
expressive for efficiency reasons (even though the reasoner would be able to handle
them). Language conformance also holds best practices for a particular language,
e.g., type correctness in F-Logic.

2.3 Diagnosis and Actions towards Problem Solving

Recognizing problems that might occur and methods for solving them are provided specif-
ically for the individual approaches in the following chapters. Regarding combinations of
formalisms our approach will be to reduce inconsistency handling as much as possible to
the cases of the individual formalisms.



Chapter 3

Consistency and texts

The analysis of requirements in natural language has given rise to recent efforts ([1], [11],
[15], [28], [29]). The objective of these papers is mainly to describe a translation process
of a faithfull text into some logical form. Several papers suppose that the source is written
in a controlled language. Only [23] considers the quality of the source, but it obeys this
restriction. The authors of [55] aim at detecting defaults in specifications through logical
inconsistencies in their formal model.

When vocabulary and rules are extracted from plain texts, the question of inconsistency
extends beyond its logical part. Once a logical inconsistency is discovered, whatever its
category, the question is, as described in chapter 2, to diagnose and repair the problem.
Suppose some rule is considered as a possible culprit; then the cause can be searched at
three levels:

• either the output of extraction has been erroneously translated during the authoring
process,

• or this output is by itself incorrect, due to an erroneous interpretation of the text,

• or the authors of the text did not realize that some statements could yield inconsis-
tencies.

The last two cases are in the scope of this chapter. According to the category of incon-
sistency, tools created for acquisition and related data structures are also used in order to
help clarifying the cause. It must be noted that checking at this acquisition level if a spe-
cific interpretation is erroneous, is not a formal task and is not automatically feasible. The
approach considered is to focus on relevant parts of text, so helping an expert to quickly
and accurately discover where is the problem.

But authoring with an imperfect description of the rules, discovering an inconsistency
and tracing back through the interpretation is a rather costly process. Another strategy
is first considered, which aims at detecting the cause upstream, during the interpretation

7
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phase, preventing the incorrect output. The method is rather innovative: to the best of our
knowledge, searching for problems at the source level without imposing severe controls
on its vocabulary and syntax has not received attention for the moment. Here again,
automatic discovery is not feasible, but focusing on adequately chosen subsets can help
the acquisition expert to improve the quality of the output.

3.1 Prevention

The objective is to prevent inconsistencies to be introduced during the knowledge ac-
quisition phase, or to detect them if they are already present in the source text. As the
knowledge in question is in the process of being formalized, logical verifications are not
available. The techniques proposed rely on the index structure: text has received anno-
tations attaching ontological labels and rule qualifications to text fragments, and these
fragments are linked to the ontology, the rule base and together, thus allowing to the links
and select fragments according to various criterion. The base of inconsistency detection is
a search engine performing this selection through a request which can mix literal elements
and labels. The whole set of data structures and tools is described in [40].

We now turn to the different cases of inconsistency and requests which can bring them
into light.

3.1.1 Filtering some cases of contradictions

Contradictions can arise due to different kinds of clumsy formulations, apart from the
direct formulation of one fact and its negation.

Inconsistent statements of a property

It may rather easily happen that a property is phrased differently at two different places,
and that basic world knowledge makes the literal translations of both descriptions incon-
sistent. The following example belongs to the terms and conditions of a loyalty program:

The membership year, which is the period in which your elite benefits are
available, runs from March 1 through the last day of February of the follow-
ing year.

Since you begin receiving elite benefits immediately upon qualification, the
beginning of your membership year is the day you qualify for your elite level.

If the modeler makes the interpretation that a period runs from its beginning to its end,
then qualifying another day as March 1 will yield a contradiction. This is in fact the
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correct interpretation in most cases, but it must be understood that this definition does not
hold upon qualification, and the second one holds in its place.

Grouping sentences which involve the defined term can help solving the problem. In the
particular case, the concept membership year occurs four times along 10 pages. The last
one, after two more pages, is disambiguated:

Your membership year (March 1 or the date you qualify for elite status,
through the last day of February).

Rules are inconsistent in some particular cases

It may also happen that different restrictions exclude through their cumulative effect a
case which was intended to be accepted. Here is an example from the ’speaker agreement’
proposed by organizers of a congress to tutorial speakers:

Each tutorial speaker receives a grant of $500.00 to assist with his or her
travel to the conference. A maximum of two speakers per tutorial (or $1000
per tutorial) will be awarded travel grants.

Since ¿$1000 per tutorialÀ can be read as an emphasis on the two speakers limit, the
text logically excludes more than two speakers, which was not intended by the organizers:
it had been sent to the four speakers of an accepted tutorial. To solve the difficulty, it must
be understood that the rule only applies to tutorials having at most two speakers, and that
otherwise it is $1000 per tutorial - the grand differing then from $500.

While the agreement is by itself too short to valid experiments, it may be noticed that the
two sentences of interest contain “speaker”, “grant(s)” and “travel”, and that, in a signif-
icant corpus, a query for sentences involving the three concepts should gather interesting
fragments.

Exceptions are implicit

An important reason why contradictions easily arise in interpreting texts is the frequent
use, in natural language, of unexplicited exceptions. The following fragments are ex-
tracted from the same text and are sparsed along ten pages, so their relations, which are
nearly obvious when they are gathered, require a very carefull reading to be brought to
light:

(1) On single-plane flights, you’ll receive the nonstop origin-destination mileage.

(2) If you are an Elite member, you will earn a minimum of 500 miles on
applicable routes.
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(3) Certain airline tickets are not eligible for mileage credit.

(4) You’ll receive AAdvantage mileage credit only for the class of service on
which your fare is based when you are ticketed.

(5) As an elite-status member you earn an elite status mileage bonus on the
base or guaranteed minimum miles for each eligible flight.

Sentence (1) seems to define the benefit for any member on any flight. In (2), it is learned
that the definition is different for a subcategory. In (3), that it is not universal with respect
to flights. (4) adds the information that the benefit varies with the class of service, an
apparent contradiction with (1). And (5) adds that it varies also with the status, through a
bonus mechanism.

All these sentences contain a lexical variant of the concept mileage benefit, and a verbal
form expressing either transfer (“earn”, “receive”), or the right of transfer (“be eligible”).
They are obtained through an and/or query on the index, the verbal forms being indexed
as roles. Such a query is of course not guaranteed to give exactly the relevant set of
sentences, but can provide a good upper approximation.

It must be noted that implicit exceptions are present even in legal texts. For instance, the
United Nation regulation number 16 states:

The forward displacement of the manikin shall be between 80 and 200 mm
at pelvic level in the case of lap belts. In the case of other types of belts, the
forward displacement shall be between 80 and 200 mm at pelvic level and
between 100 and 300 mm at chest level.

but the next paragraph continues

In the case of a safety-belt intended to be used in an outboard front seating
position protected by an airbag in front of it, the displacement of the chest
reference point may exceed that specified in paragraph 6.4.1.3.2. above if its
speed at this value does not exceed 24 km/h.

and other exceptions are considered in the following.

3.1.2 Checking the completeness of cases

This kind of inconsistency arises when some case of an ordered list is not dealt with by the
rules while all others are, so it seems that an information has been missed. The ordered
list of cases reflects a domain which is described by this list, and which must be covered
by rules. E.g., if fares depend on the age, each age must be caught by a rule computing its
fare. Or if different test methods can be used according to the type of the belt assembly,
each type must be caught by a rule providing the adequate method.
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Based on domain

A first way to check for completeness at the textual acquisition level rely on the ability
to mark domains and properties to be covered, for instance the age of the passenger, the
type of belt assembly or its type of retractor.

The method makes the assumption that, in the representation of rules, a premise and a
conclusion part have been recognized. Checking can be performed by gathering similar
rules, in the sense that their premises are variants one of another, i.e., involve the same
property with a different value in the domain, and are identical with respect to other
elements. The identity constraint can be relaxed to a selected subset of the premise.

This method allows to check that, since there is a rule related to the extraction conditions
of a strap equipped with a manually unlocking retractor, the same conditions are dealt
with in similar form for other types of retractors, namely for non-locking retractors, for
automatically locking retractors and for emergency locking retractors,

Based on conclusion

It may happen that rules related to different cases are not organized the same, so they are
not textual variants. A second strategy relies on similarity of conclusions: for instance
gathering the rules which conclude to a reduced fare, or in the safety belt testing example
to a distance between locking positions.

This strategy may be too tolerant and produce so many rules that they need to be filtered
again. For instance, there may be many other conditions justifying reduced fares, beside
the age. On the other hand, the distance between locking positions only depends on the
locking mechanism. And this strategy eases understanding that the rules are incomplete
w.r.t. non-locking retractors because these don’t need to test properties of their locking
positions.

3.1.3 Filtering some redundant cases

A rule is redundant in a set of rules if it can be deleted without changing the conclusions.
Redundancy cannot be recognized at the textual level with such a generality. We propose
to restrain to simple one to one comparisons of rules which might be performed on the fly
when a new rule is discovered.

One premise more precise than the other, same conclusion

A first form of redundancy is when the conclusions of two rules are identically indexed,
but all the ontological elements in the premise of one (the less restrictive) also belong to
the premise of the other. If indexing is correct, the second one is redundant. Note that
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this is clearly the case when ontological vocabulary and knowledge are stable. In the first
stages of textual acquisition, it may be the case that some domain concept is lacking or
incompletely indexed. In this case, the comparison may help to improve the ontology.

Same premise, conclusion more precise

The second form is symmetric, considering the possibility that different rules applicable
to a given situation are stated at different places and may happen to be redundant. The
same caveat applies w.r.t. the stability of ontological knowledge.

Redundancy and justifications

If redundancy at the execution level is preferably pruned for efficiency reasons, care must
be taken of the justifications – i.e., the links from the text to the output passed to the
authoring task. Regulations can change, and the masking rule may be abolished inde-
pendently of the redundant one. For maintenance, generally, the justifications must be
preserved.

3.2 Diagnosis and actions

Now we consider a different schema: the rules are in use and a problem is discovered at
the application level. Then it is traced back to the implemented rules at its source, and
then to textual rules involved, to help diagnose how the problem happened and decide
how to repair.

To trace back, links between text fragments and the resulting rules have to be preserved.
In the tradition of diagnosis theory, they are called justifications. At the difference of the
previous section, ontological knowledge is stable and all the rules have been detected.
The basic techniques remain analogous.

3.2.1 Conflict between executable rules

The executable layer provides a set of rules in conflict, and the justifications incriminate
a set of text fragments to consider again. The cause of the problem may be either that
the business rules are by themselves ill formed, or that their interpretation during the
knowledge acquisition phase has been deficient.
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Ill-interpreted text

The causes for an incorrect interpretation have been described in Section 3.1.1, e.g., the
implicit exception problem ( 3.1.1), or an ambiguous phrasing. Once the problem identi-
fied, justifications allow a partial redo of the knowledge acquisition.

Uninterpretable rules

Another case is that the text can hardly be interpreted with certainty. [34] gives the fol-
lowing fragment of the Norwegian National Insurance Act. In the act, it is stated that
residency in Norway gives a membership in the National Insurance. Residency is defined
by the text:

Norwegian resident is defined as one who is staying in Norway, when the
stay is intended to last or has surpassed 12 months. A person who moves to
Norway is considered a resident from the date of arrival.

Supposing that the second sentence applies only if the stay is intended to last 12 months -
either it would be in conflict with he preceding one - and that intended to last has received
a precise criterion, the question remains of medication refunding when the criterion was
fulfilled at the date of arrival, but the stay was interrupted: according to the date when the
decision is taken, opposite answers can obtain.

In such a situation, the solution is to turn back to the authors of the text or some person
having authority to reformulate or clarify it.

3.2.2 Incompleteness

Suppose that, at execution time, a missing case is discovered, i.e., a case was presented,
for which no answer could be computed. The information is rather fuzzy, since any infor-
mation in the input may be the cause of the problem. The situation is better if comparable
cases are available - either archived or artificially generated ones. Cases which differ on
a single data and get an answer are of particular interest: this data may be the bearer of
incompleteness. Let is be called a blocker of the case. It is always possible to systemat-
ically test if a variation of one single data allows an answer, to obtain a list of blockers..
Analogous information might also be obtained from tracing at the execution level.

Note that justifications are not here of a great help: since no rule is applicable, none is
directly identified as a culprit. The question is rather that some rule is lacking. On the
other side, the blockers need not be unique. The text can be searched for fragments with
all the ontological elements of the case- query yielding the least set of fragments - or
for fragments with a blocker - the largest set of fragments - as for intermediate queries,
looking if a fragment reveals an untranslated rule.
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It is also interesting to consider what is obtained when the blocker is modified, because,
by analogy, one of these information might be in the conclusion of the missing rule. The
query may then be focused on fragments containing one of these elements.



Chapter 4

Consistency in Logical Rules

The aim of this chapter is to describe the general strategy of building a framework for
detecting inconsistencies and other anomalies within ObjectLogic [46], [47] the successor
of F-Logic [2], [12].

We use a declarative approach in order to verify ontologies combined with rules at the
symbolic level. The theory of the here proposed approach is described mainly in [7].
Instead of using DATALOG [33] for describing axioms detecting the anomalies we use
ObjectLogic.

The general idea is to write axioms that define the circumstances an inconsistency or some
other anomaly might occur. In order to write these axioms we need information about
the entities in the ObjectLogic modules. Modules here can be seen as the ObjectLogic
counterpart of the term ontology in OWL. Since some of the information occurs in many
axioms it will be implemented in separate rules to be reused. Some of the information as
e.g. how ObjectLogic rules are assembled need to be described on a meta level to make
assumptions on the ObjectLogic elements.

The first section introduces various possible anomalies arising within ObjectLogic knowl-
edge bases. The second section will introduce various methods in order to identify such
issues. The last section will then give hints on how to solve these issues.

The list of anomalies is not intended to be complete, but rather a first selection of anoma-
lies that might be of relevance within the scope of the ONTORULE project. The main
approach is adopted from [7], [6], [58] and [50].

4.1 Problems

In this section we introduce various possible issues arising within ObjectLogic knowledge
bases. Not all of them are real issues but might hint on bad-practice or not intended
modeling practice. We are reusing the structure of the general consistency framework

15
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introduced in chapter 2 in order to structure the different anomalies.

4.1.1 Contradiction

Ambivalent Rules

A rule base contains ambivalent rules if these rules infer facts that contradict some con-
straints. This anomaly has been described within [50]. Within ObjectLogic it is possible
to define constraints on the knowledge base. Constraints within ObjectLogic define cir-
cumstances under which the intended knowledge base is violated. Constraints can be
posed as queries. A constraint is violated if it yields results.

The example below contains a constraint stating that a Student cannot be Teacher at the
same time. However the rule concludes this constraint violation.

Student::Person.
Teacher::Person.
Lecture[teacher*=>Person].
john:Student.
math:Lecture[teacher->john].

!- ?x:Student AND ?x:Teacher.

?x:Teacher :- ?x:Person AND ?l:Lecture AND
?l[teacher->?x].

Ambivalent Rule Pairs (Contradicting Rules)

A rule base contains ambivalent rule pairs R1 and R2 if the body B2 of a rule R2 subsumes
the body B1 of a rule R1 and their consequents infer incompatible facts. The anomaly has
been described in [50] and [7].

The example below contains the disjoint concepts Student and Teacher. The concepts are
disjoint due to the constraint stating that a instance cannot be Student and Teacher at the
same time. It also contains two rules while the first rule body subsumes the body of the
second rule. However the conclusions of the rules are contradicting due to the violation
of the constraint. Due to the rules all instances derived as Teacher would also be derived
as Student.

Lecture[attends *=> Person].
Lecture[teacher *=> Person].

!- ?x:Student AND ?x:Teacher.
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?x:Student :- ?x:Person AND ?l:Lecture[attends->?x].
?x:Teacher :- ?x:Person AND ?l:Lecture[attends->?x]

AND ?l[teacher->?x].

Incompatible Rule Antecedent

This anomaly occurs if there are incompatible relationships between two body literals B1

and B2 of a rule R. This could be e.g. a disjoint or complement relationship. The anomaly
has been described in [7].

The example below contains a rule that states that some instances belonging to the con-
cepts Teacher and Student at the same time are instance of the concept PhDStudent.
However, the constraint states that there cannot be a instance belonging to both concepts
Teacher and Student.

?x:PhDStudent :- ?x:Student AND ?x:Teacher.

!- ?x:Student AND ?x:Teacher.

Self-Contradicting Rule

A rule R is self-contradicting if it contains a head literal Hi and body literal Bj that are
incompatible. In this case we assume that the literals are concept assertions that are
disjoint or complement. The anomaly has been described in [7].

The following example presents a self-contradicting rule. The concepts Student and
Teacher are disjoint due to the constraint stating that an instance cannot be instance of Stu-
dent and Teacher at the same time. However, the rules contains the head literal ?x:Teacher
and the body literal ?x:Student which violates the constraint.

Lecture[teacher *=> Person].

?x:Teacher :- ?x:Student AND
(EXIST ?l ?l:Lecture[teacher->?x]).

!- ?x:Student AND ?x:Teacher.
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4.1.2 Completeness

Undefined Concept

According to [58] the habit of using undefined concepts within instantiations is not a good
practice. A concept is undefined either if:

• It does not have sub-concepts or super-concepts

• The schema information does not define properties for the concept

• It is not declared as concept.

In the following example the instance John is instantiated from the concept Student. How-
ever the concept Student is not defined within the small knowledge base.

John:Student.

Concept Leaf

The anomaly occurs if a concept has neither instances, nor sub-concepts nor is it used in
a rule literal. The anomaly has been defined by [58].

In the following very small example the concept Student in not further used within one of
the relations described above.

Student::Person.

Rule Property Undefined

According to [58] the anomaly exists if a rule uses a property that is not defined in a
signature atom.

In the following example the property teaches is used within the rule but it is not defined
within the knowledge base.

Teacher[].
Student[].
Lecture[].

?x:Teacher :- ?x:Student AND
(EXIST ?l ?l:Lecture[teacher->?x]).
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4.1.3 Relevance

Redundancy by Repetitive Taxonomic Definition

In [7] the authors define two types of these issues. The first is the direct repetition. This
redundancy occurs when the same axiom is stated more than once. A small example the
sub-concept relation for A and B is stated more than once should demonstrate this kind of
anomaly.

A::B.
a:A.
A::B.

This is usually not an issue within the ObjectLogic implementation of OntoBroker. Onto-
Broker will treat the redundant information as one. Therefore it cannot be detected during
runtime within OntoBroker.

However the indirect repetition can exist due to chains of sub-concept relations.

A::B.
A::B1.
...
Bn-1::?Bn.
Bn::B.

The example below defines a direct sub-concept relation between Student and Person but
also two indirect sub-concept relations between them via a chain: Student is sub-concept
of Man and Woman and both are sub-concept of Person.

Person[].
Student::Person.
Student::Man.
Student::Woman.
Man::Person.
Woman::Person.

Unsatisfiable Rule Condition

An unsatisfiable condition exists if for a rule R1 a literal Bi in the rule body B unifies with
neither a fact literal Lj in the knowledge base nor a literal Hk in the rule head H of another
rule R2. This anomaly has been described by [7] and [50].

In the following example the literal ?l:Lecture[teacher –>?x] does not unify with facts
in the knowledge base and there is no rule with a rule head it can unify with. A query for
instances of Teacher will therefore produce no answer.
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John:Student.
MathClass1:Lecture.

?x:Teacher :- ?x:Student AND
(EXIST ?l ?l:Lecture[teacher -> ?x]).

Subsumed Rule

According to [7] and [50] if a rule R1 subsumes a rule R2 it is redundant. This means that
the head H1 of a rule R1 subsumes the head H2 of the rule R2 and the body B1 of the rule
R1 subsumes the body B2 of the rule R2 but not vice versa. Otherwise they are identical.

In the following example the first rule is subsumed by the second and is therefore redun-
dant.

?x:Teacher :-
?x:Person AND ?y:Lecture[teacher->?x].

?x:Teacher[course -> ?y] :-
?x:Person AND ?y:Lecture[teacher->?x].

Redundant Rule

If all answers inferable are in any case the same with and without a rule R the rule is re-
dundant. An example for a cause of such a redundancy: Within OntoBroker it is possible
to materialize [48] rules. When materializing a rule it is evaluated and all inferred facts
are added as extensional facts to the knowledge base. In this case the rule is redundant
and can be omitted.

In the example below the rule is redundant since the only fact it infers it that John is
instance of the concept Teacher. However this fact is already contained in the fact base.

John:Student.
MathClass1:Lecture[teacher->John].
John:Teacher.

?x:Teacher :- ?x:Student AND
(EXIST ?l ?l:Lecture[teacher->?x]).

Redundant Use of Transitivity

A rule R of the form:
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?x[P -> ?y] :- ?x[P -> ?z] AND ?z[P -> ?y].

contains a redundant definition of transitivity of a property P if P is already defined as a
transitive property. The anomaly is described in [6].

The following example defines the property related as transitive and defines a redundant
rule stating the same.

Person[related{transitive} *=> Person].

?x[related -> ?z] :- ?x:Person[related -> ?y] AND
?y:Person[related -> ?z:Person].

Redundant Use of Symmetry

In analogy to the described anomaly above [7] describes the redundant use of symmetry.
A rule R

?x[P -> ?y] :- ?y[P -> ?x].

contains a redundant definition of symmetry of a property P if P is already defined as a
symmetric property.

The following example defines the property married as symmetric and defines a redundant
rule stating the same.

Person[related{symmetric} *=> Person].

?x:Person[married -> ?y] :- ?y:Person[married -> ?x].

Redundant Use of Inverse Property

In analogy to the described anomaly above the redundant use of inverse can be added. A
rule R

?x[P1 -> ?y] :- ?y[P2 -> ?x].

contains a redundant definition of a inverse property P1 and P2 if they are already defined
as a inverse properties.

The following example defines the property attends as inverse of the property attendants
and defines a redundant rule stating the same.
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Student[attends{inverseOf(attendants)} *=> Lecture].
Lecture[attendants *=> Student].

?x:Student[Student -> ?y] :- ?y:Lecture[attendants -> ?x].

4.1.4 Language Conformance

Undefined Instance Property

This anomaly exists if a property P is declared for instances but not in the signature. For
reasoning with ObjectLogic this is not an issue. However, it is a good habit to fully define
the signature. It has been described in [58].

In the following example the property attends is not defined for the concept Student.

John:Student.
MathClass1:Lecture.
John[attends -> MathClass1].

Property Range Type

According to [58] this anomaly exists if the property range of an instance is not conform
to its signature.

In the following example the instance MathClass1 is not in the property’s range of the
property attends because MathClass1 is not an instance of the concept Lecture. The
example may be correct, but it is not type safe.

Lecture[].
Class[].
Student[attends *=> Lecture].

John:Student.
MathClass1:Class.
John[attends -> MathClass1].

Circular Sub-Concepts

Within this anomaly concepts inherit from their own sub-concepts. The anomaly is de-
scribed within [6].

Within this small example the concept A inherits from its own sub-concept B.
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A::B.
B::A.

However, the circularity can also be caused within a deeper hierarchy.

A::B1.
B1::B2.
B2::A.

Having circular sub-concept relation would lead to a concept hierarchy where all circular
sub-concepts would have the same properties. Therefore the concepts would be identical.

Circular Properties

Within this anomaly properties inherit from their own sub-properties. This might be di-
rectly or within a chain of properties.

P1 << P2.
P2 << P1.

As with circular sub-concepts the circularity can be caused by a deeper hierarchy of prop-
erties as in the following example.

P1 << P2.
P2 << P3.
P3 << P1.

Circular Dependency (Ambivalent Self-Reference)

The anomaly occurs if a head literal Hi of a rule R is used as body literal Bj in its own
body B or if the head of the rule is the only way to derive a not existing fact required in
its body. This anomaly is described in [50] and [6].

This kind of circularity occurs when a sub-concept relation exists between two concepts
A and Bi

A::Bi.

and a rule exists that the sub-concept is derived by using the super-concept as a body
atom.

A :- B1,... , Bn.
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In the rule of the example below, the conclusion ?x:Teacher has a circular dependency
due to the sub-concept relation between the concept Teacher and Person.

Teacher::Person.

?x:Teacher :- ?x:Person AND ?l:Lecture AND
?l[teacher->?x].

Due to the fact that Teacher is a Person the rule head applies for its own body atom
?x:Person and the rule is called by evaluating the body atom. However, using bottom up
evaluation of OntoBroker will not lead to an issue here.

Cardinality Constraint

Within [7] the main focus is set to functional properties. However we think that cardinality
in general needs to be checked within ObjectLogic. Within ObjectLogic cardinality is
denoted by the cardinality constraints in the form of:

Domain[Property {min:max} *=> Range].

Where Domain donates the domain of the Property and Range the range of this property.
And min is the minimum cardinality and max the maximum cardinality. The cardinality
{0:1} enforces the functional property.

The following example contains a constraint on the property teacher of the concept Lec-
ture that states that a Lecture can have only one teacher. However the fact base contains
two teachers for the Lecture MathClass1.

Lecture[teacher {1:1} *=> Person].

John:Person.
Mira:Person.

MathClass1:Lecture[teacher->John].
MathClass1:Lecture[teacher->Mira].

4.2 Diagnosis

Section 4.1 introduced issues that might arise when implementing knowledge bases based
on ObjectLogic. The following section will address the identification of such issues. In-
stead of using DATALOG as proposed in [7] we are using ObjectLogic for implementing
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constraints checking the anomalies. Some of the necessary functionality cannot be pro-
vided purely by logic easily. Therefore we introduce some extensions that are used to
provide additional functionality for detecting anomalies. Based on the structure of sec-
tion 4.1, sections 4.2.2, 4.2.3, 4.2.4, and 4.2.5 will introduce different diagnosis options
for the different anomalies.

4.2.1 Supporting Functionality

As explained above it is necessary to introduce additionally functionality in order to be
able to check the anomalies. At first we introduce some term style representation for
ObjectLogic atoms which are used for decomposing rules. This representation lifts the
representation of rules on a meta-level in order to make assumptions on rules on meta-
level. The reason will become clearer later on. Then we introduce procedural attachments
to OntoBroker that are used e.g. for decomposing rules. Some of these attachments are
using the term style representation in order to make assumptions on rules on meta-level.
Finally we will introduce general rules that are reused by various diagnoses.

Term Style Atoms

In order to make assumptions on rules on a meta-level we need to process them on meta-
level. Usually OntoBroker evaluates rules based on the given facts. However, for checking
the anomalies we need to check the structure of the rules. Therefore a meta-representation
of the ObjectLogic atoms is used by several built-ins (cf. next section).

instanceOf(?a,?b) ?a:?b
subConceptOf(?a,?b) ?a::?b

propertyMember(?a,?b,?c) ?a[?b ->?c]
propertyTransitive(?a,?b) ?a[?b *=>()]

propertyRange(?a,?b,?c,boolean) ?a[?b *=>?c]

Table 4.1: Term Style Representation of ObjectLogic Atoms

The inheritance argument in propertyRange is defined as boolean. When it is set to true
the property is inheritable to sub-concepts. When it is set to false the property is not
inheritable.

To embody the combination of terms, the term multi is defined. This term can contain mul-
tiple terms, for example multi(instanceOf(a,b),propertyMember(a,p,h)). The term does
not represent a molecule. It just represents a set of atoms.

In order to represent variables in this term style representation we use the representation
var<No> where <No> is a integer number.

The selected term style representation currently covers only parts of ObjectLogic and



CHAPTER 4. CONSISTENCY IN LOGICAL RULES 26

could be extended in order to cover e.g. negation and quantifier. However, for a first
version we are focusing on some basic ObjectLogic axioms that are frequently used.

OntoBroker Built-ins

The functionality of OntoBroker, can be extended using procedural attachments. The dif-
ferent kinds of procedural attachments supported by OntoBroker are described in [12] and
[48]. For checking anomalies we define different built-ins and their intended functionality.

OntoBroker built-ins are procedural attachments that can be used to perform operations
that are not well expressible in logics and better formulated by traditional non-declarative
means. Built-ins are Java programs that can be seamlessly accessed from ObjectLogic
rules and queries via built-in predicates. They can perform e.g. arithmetic or string
operations. OntoBroker already provides a variety of built-ins. The list of built-ins can
be extended by implementing the provided interface. A first starting point on the topic of
built-ins within OntoBroker is the OntoBroker user manual [48].

Additionally to built-ins OntoBroker supports aggregates which are special predicates that
can reason over sets of data, such as calculating the maximum, the minimum or average
values of a set of values. An aggregate can also collect multiple individual values into
lists to make them accessible for common further processing. Aggregates are processed
differently to all other predicates. Since they collect all bindings to their parameters they
are invoked only once per rule. Aggregates must not occur in rule cycles and the tackled
values must not occur in the head of rules.

The following built-ins introduced are used for checking the anomalies.

The ruleContainsPredicate/6 built-in is used in order to check if a rule contains given
literals. For representing the literals the term style representation is used as introduced
above. This built-in can actually be used in a different way as well where it is used to
decompose a rule with a given ruleID in order to process the head and body literals of the
rule. The signature of the built-in is as following:

_ruleContainsPredicate(module,headLiteral,fullHead
bodyLiteral,fullBody,ruleID)

Having the arguments:

module The module to be checked. A module can be seen as the ObjectLogic counterpart
of an ontology in OWL.

headLiteral The head literals in term style representation of the rule to be checked.
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fullHead A boolean value being true if the literals in the argument headLiteral are the
complete head literals of this rule. It is false if the literals in the argument headLit-
eral are only a subset of the head literals of the rule.

bodyLiteral The body literals in term style representation of the rule to be checked.

fullBody A boolean value being true if the literals in the argument bodyLiteral are the
complete body literals of this rule. It is false if the literals in the argument bodyLit-
eral are only a subset of the body literals of the rule.

module The id of the rule within the ontology to be checked.

Having the two boolean arguments for head and body literals allows us to use the built-in
to check if particular literals are part of the body or head of the rule. The built-in uses the
self-defined constant null to ignore the head or body of the particular rule.

The violatesConstraint/3 built-in is used in order to check if literals represented in
term style are violating a certain constraint. The signature of the built-in is as following:

_violatesConstraint(module,literals1,literals2,
constraintID)

Having the arguments:

module The module to be checked. A module can be seen as the ObjectLogic counterpart
of an ontology in OWL.

literals1 The first literals in term style representation to be checked.

literals2 The second literals in term style representation to be checked.

constraintID The id of the constraint to be checked.

The reason of using two lists of literals will get clear e.g. in the diagnosis of Self-
Contradicting Rule in Section 4.2.2 where head as well as body literals of a rule are
checked for violation of constraints.

The subsumes/2 built-in is used in order to check if a list of literals subsumes another
list of literals.

The signature of the built-in is as following:

_subsumes(literals1,listerals2)
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Having the arguments:

literals1 The literals in term style representation as reference.

literals2 The literals in term style representation to be checked against the reference.

The queryRuleLiteral/3 built-in is used in order to pose the given literal as query to
the knowledge base. The signature is:

_queryRuleLiteral(module,literal,results)

Having the arguments:

module The module to be checked. A module can be seen as the ObjectLogic counterpart
of an ontology in OWL.

literal The literal to be used for the query in term style representation.

results The query results.

The ruleContainsTerm/4 built-in is an internal OntoBroker built-in. It is used to find
terms in rules. The signature is:

_ruleContainsTerm(module,term,isHead,ruleID).

Having the arguments:

module The module to be checked. A module can be seen as the ObjectLogic counterpart
of an ontology in OWL.

term The term that is searched for.

isHead A boolean value stating that the head of the rule is included in the search. This
argument has either the constant value true or false.

ruleID The id of the rule within the ontology to be searched in.
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The count aggregate We are using the count aggregate in the diagnosis of Cardinality
Constraint in Section 4.2.5. The aggregate counts the occurrences of the elements defined
in the query while the grouping of the counts is done based on the grouping-vars.

?- ?count = count{ aggr-vars [ grouping-vars ] | query }.

Counting persons with a salary larger than 10000 grouped by their department could be
expressed by:

?- ?N = count{?I [?I, ?D] |
?I:Person AND ?I.department == ?D
AND ?I.salary > 10000}.

The query asks for instances of the concept Person that work in some department ?D
and have a salary larger than 1000. Here I is the aggregation variable. It is the actual
instance of the concept Person. The grouping is done via ?I grouping the results by
the individual instances of the concept Person as well as ?D additionally grouping those
results by department.

Selecting the ObjectLogic Module

The constraints checking the anomalies as specified below will need to get the module-id
of the module to be checked. A module can be seen as the ObjectLogic counterpart of
an ontology in OWL. To make the approach universally applicable we define the rules
with variables for the module id. We use a predicate cModule/1 to introduce the module
id that is actually checked. Having a module id like module1 one can define the fact
cModule(module1) in order to check this module with the proposed approach.

Supporting Rules

This section introduces different rules that are used by different diagnoses for checking
the anomalies. Together with the built-ins they build the framework for the checking
functionality within ObjectLogic using OntoBroker. The rules are adopted from [7].

The rules calculating the derives property define the relation under what circum-
stances a concept derives another.

?A[derives -> ?B] :- ?A::?B@?m AND
_cModule(?m).

?A[derives -> ?B] :- _ruleContainsPredicate(



CHAPTER 4. CONSISTENCY IN LOGICAL RULES 30

?m,instanceOf(_var1,?A),_false,
instanceOf(_var1,?B),_true,?)
_cModule(?m).

The first rule defines this relation in case a sub-concept relation exists between two con-
cepts A and B. The sub-concept relation in ObjectLogic is transitive.

The second rule defines the relation derives for rules of the form:

?a:A :- ?a:B.

with a single body literal ?a:B. Where A and B are concepts.

The rules deriving the transitive-derives relation define the transitive closure of the
derives relation.

?A[tc_derives -> ?B] :- ?A[derives ->?B].

?A[tc_derives -> ?B] :- ?A[derives -> ?C] AND
?C[tc_derives -> ?B].

The rule deriving the direct sub-concept relation is introduced for readability and
consistency. OntoBroker already comes with an internal predicate for the direct sub-
concept relation. However, for readability and consistency we define the relation direct-
SubConcept. The later part of the rule ?A::?B@?m is only needed to determine the mod-
ule.

?A[directSubConcept -> ?B] :- $assertedsub(?A,?B)
AND ?A::?B@?m
AND _cModule(?m).

The rules deriving the connectedConceptVia/3 predicate are introduced to calcu-
late the path of a concept which is connected to another concept. In this particular case
the connecting relation is the sub-concept relation. The path describes the intermediate
concepts via which the two concepts A and B are connected. The rule creates facts of the
predicate connectedConceptVia/3 with the first two arguments being the two concepts A
and B that are connected and the third argument being a list L of concepts describing the
path the two concepts are connected to.

_connectedConceptVia(?A,?B,?L) :-
?A[directSubConcept -> ?B] AND
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?A != ?B AND
?L = [].

_connectedConceptVia(?A,?B,?L) :-
?A[directSubConcept -> ?C] AND
_connectedConceptVia(?C,?B,?L2) AND
?A != ?B AND
?A != ?C AND
?B != ?C AND
NOT _contains(?L2,?C) AND
_concat(?L2,[?C],?L).

The rule deriving the direct-sub is introduced for readability and consistency. On-
toBroker already comes with an internal predicate for the direct sub-property relation.
However, for readability and consistency we define the relation directSubProperty. The
later part of the rule is only needed to distinguish the module to be checked. The variable
?m should contain the id of the ontology to be checked. This is analogous to the direct
sub-concept definition.

?A[directSubProperty -> ?B] :-
$assertedsubproperty(?A,?B)
AND ?A << ?B@?m
AND _cModule(?m).

The rules deriving the connectedPropertyVia/3 predicate are introduced to calcu-
late the path a property is connected to another property via sub-property relation. The
path describes the intermediate properties via which the two properties P1 and P2 are
connected. The rule creates facts of the predicate connectedPropertyVia/3 with the first
two arguments being the two properties P1 and P2 that are connected and the third argu-
ment being a list L of properties describing the path the two properties are connected to.
This is analogous to the connected property definition above.

_connectedPropertyVia(?P1,?P2,?L) :-
?P1[directSubProperty -> ?P2] AND
?P1 != ?P2 AND
?L = [].

_connectedPropertyVia(?P1,?P2,?L) :-
?P1[directSubProperty -> ?P3] AND
connectedPropertyVia(?P3,?P2,?L2) AND
?P1 != ?P2 AND
?P1 != ?P3 AND
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?P2 != ?P3 AND
NOT _contains(?L2,?P3) AND
_concat(?L2,[?P3],?L).

4.2.2 Contradiction

Ambivalent Rules

A pragmatic way to check this issue is to execute the constraint. The semantic of a
constraint is that if the constraints body is executed as query and it returns results it is
violated. To check if the violation is due to some rule one can turn inference off with the
OntoBroker query option @{options[inferOff]}. Turning inference off will only return
results already contained within the knowledge base without drawing conclusions firing
rules. If the query still returns the same results the query is violated by the fact base. If
there is a discrepancy at least some violation is due to the rules. To identify the rule that
is violating the constraint one can use e.g. the explanation functionality of OntoBroker
[48] to track back the created results. Additionally one can use the ObjectLogic debugger
[49] of OntoStudio 1 to track back the causes.

It would be possible to implement a built-in actually doing the different steps automati-
cally. The built-in would need to get the id of the constraint as well as the id of the rule in
order to perform. It can fire the constraint as query, one time with and one time without
inference off option. It could then compare the result sets.

Ambivalent Rule Pairs (Contradicting Rules)

Contradicting rules are rules that conclude contradicting facts while the body of one of
the rules subsumes the body of other rule.

Within ObjectLogic two conclusions are contradicting if they violate a certain given con-
straint of the form:

!- <body literals>.

To identify the contradiction of the rule heads we use the previously introduced Onto-
Broker built-in violatesConstraint/4. The subsumption of the body literals is checked by
the OntoBroker built-in subsumes/2. The additional built-in ruleContainsPredicate/6
decomposes the rule to its head and body literals. At least one fact for the predicate
cModule/1 must be defined which defines the module to be checked during runtime.

!-

1OntoStudio: ObjectLogic modeling environment by ontoprise GmbH
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_subsumes(?body1,?body2) AND
_violatesConstraint(?m,?head1,?head2,
?constraintID)

AND
_ruleContainsPredicate(?m,?head1,_true,?body1,

_true,?rule1)
AND
_ruleContainsPredicate(?m,?head2,_true,?body2,

_true,?rule2)
AND
_cModule(?m).

Incompatible Rule Antecedent

It needs to be checked if two or more body literals of a rule are incompatible. This is done
by getting the body literals of the rule and checking if they violate a constraint. The func-
tionality is provided by the previously defined OntoBroker built-ins violatesConstraint/4
and ruleContainsPredicate/6.

!-
_violatesConstraint(?module,?body,?body,?constraintID)
AND
_ruleContainsPredicate(?m,?head,_true,?body,
_true,?ruleID)

AND
_cModule(?m).

Self-Contradicting Rule

It needs to be checked if two or more head and body literals of a rule are incompatible.
This is done by getting the head and body literals of the rule and checking if they violate
a constraint. The functionality is provided by the previously defined OntoBroker built-ins
violatesConstraint/4 and ruleContainsPredicate/6.

!-
_violatesConstraint(?m,?head,?body,?constraintID)
AND
_ruleContainsPredicate(?m,?head,_true,?body,
_true,?ruleID)

AND
_cModule(?m).
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4.2.3 Completeness

Undefined Concept

In the following constraint we define that there is some violation of the constraint if the
instance unified with the variable ?i is instance of a concept unified with the variable ?A
that is not in some relation with some other concept unified with the variable ?B, and it is
not explicitly declared as concept.

!- ?i:?A@?m AND
(NOT EXIST ?B ?A::?B@?m) AND
(NOT EXIST ?B ?B::?A@?m) AND
(NOT EXIST ?P, ?B ?A[?P => ?B]@?m) AND
(NOT EXIST ?P, ?B ?A[?P *=> ?B]@?m) AND
(NOT EXIST ?A[]@?m)
AND
_cModule(?m).

Concept Leaf

In order to have a full check of this anomaly we use the previously introduced OntoBroker
built-in ruleContainsTerm/4. It searches for particular terms in the rule. In our case the
variable ?A must be a concept due to the first statement. Therefore we check if there exist
rules that contain this term. If not the condition is fulfilled and therefore the constraint
violated. Additionally it needs to be checked if the concept has instances or sub-concept
relations.

!- $concept(?A)@?m
AND (NOT EXIST ?a ?a:?A@?m)
AND (NOT EXIST ?B ?B::?A@?m)
AND (NOT EXIST ?ruleID

_ruleContainsTerm(?m,?A,_true,?ruleID))
_cModule(?m).

Rule Property Undefined

In order to check if a property used within a rule is defined, one needs to check if the
property is used in a rule and if the signature exists in the ontology.

The first step is done by the built-in ruleContainsPredicate/6 described in Section 4.2.1.
In this case we are particularly looking for properties used within the rule. The first
constraint is violated if a property is used within the rule head that is not defined within
the schema, the second does the same for the body.
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Checking the head properties.

!-
_ruleContainsPredicate(?m,
multi(propertyMember(_var1, ?P, _var2),
instanceOf(_var1,?C1),
instanceOf(_var2,?C2)),_false,

_null,_true, ?ruleID) AND
(NOT EXIST ?P, ?C1[?P => ?C2]@?m) AND
(NOT EXIST ?P, ?C1[?P *=> ?C2]@?m) AND
_cModule(?m).

Checking the body properties.

!-
_ruleContainsPredicate(?m,
null,_true,
multi(propertyMember(_var1, ?P, _var2),
instanceOf(_var1,?C1),
instanceOf(_var2,?C2)),_false,
_?ruleID) AND

(NOT EXIST ?p, ?C1[?P => ?C2]@?m) AND
(NOT EXIST ?p, ?C1[?P *=> ?C2]@?m) AND
_cModule(?m).

4.2.4 Relevance

Redundancy by Repetitive Taxonomic Definition

The indirect repetition can be identified by checking if two concepts are connected by a
sub-concept relation. If there exist two different paths of sub-concept relations via other
concepts defined in the lists ?L1 and ?L2 the definition of the sub-concept relations is
redundant.

!-
_connectedConceptVia(?A,?B,?L1) AND
_connectedConceptVia(?A,?B,?L2) AND
?L1 != ?L2 AND ?A::?B@?m
AND _cModule(?m).
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Unsatisfiable Rule Condition

To detect this anomaly one can identify the body literal that is causing the unsatisfiable
rule condition by the following way.

• Select a rule.

• Select a body literal of the rule.

• Check if it occurs in a head literal of another rule.

• Check if there are instances that unify with the body literal of the first rule.

The constraint below reflects this approach.

!-
_ruleContainsPredicate(?m,
null,_true,?literal,_false,
_?ruleID1) AND

(NOT EXIST _?ruleID2
_ruleContainsPredicate(?m,
?literal,_false, null,_true,
_?ruleID2)) AND

(NOT EXIST _?fact
_queryRuleLiteral(?m,?literal,?fact))

_cModule(?m).

Subsumed Rule

In Section 4.2.1 we introduced the built-in subsumes/2 which checks if a list of lit-
erals subsumes another list of literals. This built-in in addition with the rule built-in
ruleContainsPredicate/6 is used to check the subsumption. The subsumption test is done

for the head as well as for the body of the rules.

!-
_ruleContainsPredicate(?m,

?head1,_true,?body1,_true,?rule1)
AND
_ruleContainsPredicate(?m,

?head2,_true,?body2,_true,?rule2)
AND
_subsumes(?body1,?body2)
AND
_subsumes(?head1,?head2).
_cModule(?m).
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Redundant Rule

To check if all conclusions drawn from a rule are already contained within the knowledge
base one can query the rule consequent within OntoBroker one time with and one time
without inference off using the OntoBroker query option @{options[inferOff]}. Turning
inference off will only return results already contained within the knowledge base without
firing the rules. If the result sets are equal the rule is redundant.

It would be possible to implement a built-in actually doing the different steps automati-
cally. The built-in would need to get the id of the rule in order to perform. It can fire the
rule head as query, one time with and one time without inference off option. It could then
compare the result sets. If they are equal the built-in is satisfied.

Redundant Use of Transitivity

To check if a rule states a redundant transitivity relation we assume the general form of
such definition is:

?x[relation -> ?y] :-
?x:C[relation -> ?z]
AND
?z:C[relation -> ?y:C].

To identify such rules we decompose the rule using the previously introduced built-in
ruleContainsPredicate/6. The constraint additionally checks if there is a definition of

transitivity for a given property.

!-
_ruleContainsPredicate(?m,

propertyMember(_var1, ?P, _var3),_false,
multi(propertyMember(_var1, ?P, _var2),

propertyMember(_var2, ?P, _var3)),
_false,?ruleId)
AND
(?concept[?P{transitive} *=> ?concept]@?m

OR
?concept[?P{transitive} => ?concept]@?m)

AND _cModule(?m).

Redundant Use of Symmetry

Analogous to the Redundant Use of Transitivity we can define a constraint checking the
redundant use of symmetry. Assuming that the general form of symmetry is expressed
within ObjectLogic in the following form:
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?x[property -> ?y] :- ?y:C[property -> ?x:C].

we define the constraint as following:

!-
_ruleContainsPredicate(?m,

propertyMember(_var1,?P,_var2),_false,
propertyMember(_var2,?P, _var1),_false,
?ruleId)

AND
(?C[?P{symmetric} *=> ?C]@?m

OR
?C[?P{symmetric} => ?C]@?m)

AND _cModule(?m).

The first part decomposes the rule and checks for patterns in the rule as shown in the
general example above. The second part checks if there exist signature definitions for the
concept and relation that define the relation as symmetric.

Redundant Use of Inverse Property

Analogous to the Redundant Use of Transitivity and Redundant Use of Symmetry we can
define a constraint checking the redundant use for inverse relations. Assuming that the
general form of inverse relations is expressed within ObjectLogic in the following form:

?x[P1 -> ?x] :- ?y:C1[P2 -> ?x:C2].

we define the constraint as following:

!-
_ruleContainsPredicate(?m,

propertyMember(_var1, ?P1, _var2),_false,
propertyMember(_var2, ?P2, _var1),_false,
?ruleId)

AND
(?C1[?P1{inverseOf(?P2)} *=> ?C2]@?m
OR
?C1[?P1{inverseOf(?P2)} => ?C2]@?m)

AND _cModule(?m).

The first part decomposes the rule and checks for patterns in the rule as shown in the
general example above. The second part checks if there exist signature definitions for the
concept and relation that define the two relations as inverse.
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4.2.5 Language Conformance

Undefined Instance Property

The issue can be identified by the following constraint:

!-
?i1[?P -> ?i2]@?m AND
?i1:?C1@?m AND
?i2:?C2@?m AND
(NOT EXIST ?P, ?C2 ?C1[?P => ?C2]@?m) AND
(NOT EXIST ?P, ?C2 ?C1[?P *=> ?C2]@?m) AND
AND _cModule(?m).

It checks for properties defined on instance level they have a signature definition.

Property Range Type

Checking if the range type of a property is conform to its signature can be done with the
following constraint.

!-
?i1[?P -> ?i2]@?m AND
?i1:?C1@?m AND
(?C1[?P => ?C2]@?m OR
?C1[?P *=> ?C2]@?m) AND
?i2:?C3@?m AND
?C2 != ?C3 AND
_cModule(?m).

It checks for all domain-property-range triple if the range of the property is conform to
the signature.

Circular Sub-Concepts

Circular sub-concepts can be detected using the predicate connectedConceptVia/3 previ-
ously defined in Section 4.2.1. The first application of the predicate checks if a connection
exists between a concept ?A and ?B. The second application checks if there is a circular
definition for the sub-concept relation between the two concepts. The two lists define the
path through other concepts that connect the two concepts.
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!-
_connectedConceptVia(?A,?B,?L1) AND
_connectedConceptVia(?B,?A,?L2) AND
?L1 != ?L2 AND
?A != ?B AND
_cModule(?m).

Analogous to [7] one could also include derivations done by rules and not only the sub-
class derivation. To include this circularity we use the previously defined helper rules
defining the properties derives and tc derives.

!-
?A[derives -> ?B]@?m AND
?B[tc_derives -> ?A]@?m AND
?A != ?B AND
_cModule(?m).

Due to the inclusion of rules for checking derivation we cannot identify the path of the
sub-concept hierarchy.

Circular Properties

Circular properties can be detected using the predicate connectedPropertyVia/3 previ-
ously defined in Section 4.2.1. The first application of the predicate checks if a connec-
tion exists between a property ?P1 and ?P2. The second application checks if there is a
circular definition for the sub-property relation of the two properties. The two lists define
the path through other properties that connect the two properties.

!-
_connectedPropertyVia(?P1,?P2,?L1) AND
_connectedPropertyVia(?P2,?P1,?L2) AND
?L1 != ?L2 AND
?P1 != ?P2 AND
_cModule(?m).

Circular Dependency (Ambivalent Self-Reference)

To detect self-references within a rule the rule needs to be decomposed and the individual
head and body literals need to be compared. To do so we use the OntoBroker built-in
ruleContainsPredicate/6.
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!-
_ruleContainsPredicate(?m,?x,_false,?x,_false,?r) AND
_cModule(?m).

The condition checks if there is a particular head literal which is the body literal of the
same rule.

It must be stated that this constraint does not cover the case where a concept in the head of
a rule is sub-concept of the concept in the rule body as shown in the example of Circular
Dependency in Section 4.1.4.

The following constraint will cover this particular case.

!-
_ruleContainsPredicate(?m,
instanceOf(_var1,?C1),_false,
instanceOf(_var1,?C2),_false,?r)

AND
?C1::?C2 AND
_cModule(?m).

Cardinality Constraint

For checking min and max cardinality we use two different constraints. The OntoBroker
aggregate count counts the number of property values for each instance. This is stated by
the query ?i1[?R→ ?i2] of the aggregate. Then the counted number is checked against
the min and max cardinality defined in the signature.

Checking max cardinality:

!-
?Count = count{?i2 [?i1, ?R] | ?i1[?R -> ?i2]}
AND ?C1[?P {?:?Max} *=> ?C2] AND ?i1:?C1
AND ?Count > ?Max AND ?Max > -1.0.

Checking min cardinality:

!-
?Count = count{?i2 [?i1, ?R] | ?i1[?R -> ?i2]}
AND ?C1[?P {?Max:?} *=> ?C2] AND ?i1:?C1
AND ?COUNT < ?Min.



CHAPTER 4. CONSISTENCY IN LOGICAL RULES 42

4.3 Actions

This section describes hints on actions that can be performed in order to solve the issues
identified by the methods introduced in Section 4.2. Some of the issues might have more
than one action to be applied. In this case the user needs to decide what action he wants
to perform.

4.3.1 Contradiction

Ambivalent Rules

Having identified that a rule R contradicts a given constraint C one needs to check if the
rule or the constraint itself is incorrect. However, this is a very general anomaly and might
have different reasons. In some cases it might be that even a fact in the knowledge base is
incorrect. The rule might derive a correct fact but due to the constraint a violation of the
constraint is caused. In any case the interaction of the user is needed to solve the issue.

Ambivalent Rule Pairs (Contradicting Rules)

There are different possible causes for the anomaly. In any of these cases the interaction
of the user is needed to solve the issue.

One of the rule heads (their conclusion) or even both might be wrong and they can be
adopted. In this case one should check the rule heads for their correctness. If one of the
heads is incorrect either solve it or check if the rule is needed.

The rule bodies are wrong and the one should not subsume the other. In this case check
the rule bodies for their correctness. If one of the bodies should not subsume the other
one of the rules need to be adopted.

The constraint is wrong. In this case check the constraint for its correctness. If it is
incorrect the constraint needs to be adopted or removed.

Incompatible Rule Antecedent

There are different possible causes for the anomaly. In any of these cases the interaction
of the user is needed to solve the issue.

The two body literals B1 and B2 of a rule R are incorrectly used together within this rule.
In this case one should check if one of the body literals needs to be deleted or adopted.

The constraint is wrong. In this case check the constraint for its correctness. If it is
incorrect the constraint needs to be adopted or removed.
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Self-Contradicting Rule

There are different possible causes for the anomaly. In any of these cases the interaction
of the user is needed to solve the issue.

The body literals Bi or the head literal Hj of a rule R are incorrectly defined together in
the rule. In this case one should check if one of the literals needs to be deleted or adopted.

The constraint is wrong. In this case check the constraint for its correctness. If it is
incorrect the constraint needs to be adopted or removed.

4.3.2 Completeness

Undefined Concept

In order to solve the anomaly one should define the concept. This can be done by e.g.
explicitly stating that the term is a concept C[].. Another way would be to identify and
implement super-concept C::SC. or sub-concepts SC::C. or defining properties on the
concept C[P *=>C2]..

Concept Leaf

The solution of this anomaly is to either remove the concept since it is not used within
the knowledge base or it needs to be used within one of the described contexts of Concept
Leaf in Section 4.1.2. So either

• create an instance of the concept:

i:C.

• define sub-concepts of the concept:

S::C.

• define a rule where it is used as literal in the head or body of the rule:

?x:C :- ?x:B AND ?x[P -> V].

Rule Property Undefined

If a rule property is undefined it should be defined on schema level:

C[P *=> C2].



CHAPTER 4. CONSISTENCY IN LOGICAL RULES 44

4.3.3 Relevance

Redundancy by Repetitive Taxonomic Definition

One should check if this redundancy is correctly defined or if it can be omitted.

Unsatisfiable Rule Condition

The rule condition is not satisfied and therefore no conclusion can be drawn from the rule.
Therefore the rule is dispensable and can be removed from the knowledge base.

Subsumed Rule

Due to the fact that a rule R1 is subsuming another rule R2 and therefore deriving all facts
rule R2 is concluding the rule can be removed.

Redundant Rule

The rule does not conclude new facts. Therefore the rule is dispensable and can be re-
moved from the knowledge base.

Redundant Use of Transitivity

The rule does not conclude new facts. Therefore the rule is dispensable and can be re-
moved from the knowledge base.

Redundant Use of Symmetry

The rule does not conclude new facts. Therefore the rule is dispensable and can be re-
moved from the knowledge base.

Redundant Use of Inverse Property

The rule does not conclude new facts. Therefore the rule is dispensable and can be re-
moved from the knowledge base.
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4.3.4 Language Conformance

Undefined Instance Property

One should define the property on schema level.

C[P *=> C2].

Property Range Type

There are different possible causes for the anomaly

1. The range has not been defined correctly and needs to be adopted.

2. The range has been defined correctly but the membership of the instance of the
range value is incorrectly defined and needs to be adopted.

Circular Sub-Concepts

The circular sub-concept anomaly can be solved by identifying the wrong sub-concept
relation of two concepts and removing it.

Circular Dependency (Ambivalent Self-Reference)

Within bottom-up evaluation of OntoBroker the anomaly is not an issue. However, one
should check if the rule is correctly defined leading to this anomaly.

Cardinality Constraint

Cardinality violation can have several causes and therefore different ways to solve the
issue.

1. The restriction has been defined incorrectly and need to be adopted.

2. A rule is deriving new facts that lead to the contradiction. In this case it needs to be
checked if the rule is correctly defined.

3. The knowledge base already contains facts causing this issue. One should then
check if the contained facts are correct.

4. A combination of the last two causes could be the cause. In this case the rule and
the facts need to be checked.



Chapter 5

Consistency in Production Rules

The aim of this chapter is to describe some of the consistency problems in business rules
and to introduce a new framework for consistency maintenance in a Business Rules sys-
tems.

The general idea behind this work is to define a complete path between the symptoms
of inconsistency and the solution to these problems, through the identification of the
problems corresponding to the symptoms and the choice of the best solutions to these
problems. We will track the changes in the components of the rule system (ontologies,
business object models, or rules) and detect which changes produce consistency problems
and try to provide solutions.

The Changes Managements Pattern is the approach we have developed following this
general idea. It is an application of design pattern to rules management, inspired by a
similar work applying design patterns to ontology management.

The Chapter is organized as follows, we first describe some consistency problems in pro-
duction rules, then we introduce CMP our approach for inconsistency diagnosis. Finally
we provide a preliminary description of the inconsistency solving method.

5.1 Problems

This section gives a technical description of consistency problems for Production Rules.
The description is based on the framework consistency management defined in Task 2.4
and the given examples are inspired from the ArcelorMittal use case.

5.1.1 Contradiction

Definition 1. A contradiction (or a conflict) is detected in a Knowledge Base KB , if there
are at least two rules in the KB , which conduct to a conflicting actions.
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For example, if we define the following rules:

r1: IF condition1 THEN action1
r2: IF condition2 THEN action2

where conditioni is the condition part of a production rule in T (KB) and actioni the
action part, then the execution of r1 and r2 will produce a conflict if condition1 ≡
condition2 and action1 and action2 are contradictory.

Example 1. The rules r1 and r2 are conflicting because when the yield strength of the
coil sampling point is more than the yield strength target of the order of the product, the
first one sets true to the assignment while the second make it false.

r1: IF CoilSamplingPoint.yieldStrength > Product.Order.yieldStrengthTarget
THEN Product.assignment = false

r2: IF CoilSamplingPoint.yieldStrength > Product.Order.yieldStrengthTarget
THEN Product.assignment = true

5.1.2 Irrelevance

The irrelevance consists of five kinds of inconsistencies:

• rules that will never be applied;

• rules that conduct to a domain violation;

• rules that have equivalent condition part;

• equivalent rules;

• redundant rules.

Rule(s) never applied

Definition 2. A rule never applied inconsistency is detected in KB , if there is at least one
rule r ∈ KB that have a condition part, which is never verified.

It means that, there is r ∈ KB , for which the condition part will never be true in the KB .

Example 2. The rule r will never be applied because a mechanical defect cannot be
detected for more than 200 meters and for less than 100 meters in the same time.

r: IF there are mechanical defects for
less than 100 meters

and there are mechanical defects for
at least 200 meters

THEN the phenomenon of the product is a mechanical phenomenon.
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Domain violation

Definition 3. A domain violation inconsistency is detected if an action part of a rule sets
the value of a property out of the boundary of its domain.

It means that there is at least one rule r ∈ KB with an action part that concludes to the
modification of the value of a ∈ A(KB) and makes it out of range.

Example 3. r1 make the value of the yield strength of the coil sampling point out of range
because this value cannot be higher than the yield strength upper tolerance of the order
of the product.

r1: IF the yield strength of the coil sampling point is less than
the yield strength lower tolerance of the order of the product

THEN set the yield strength of the coil sampling point to the yield
strength upper tolerance of the order of the product + the yield
strength target of the order of the product.

Equivalent condition

Definition 4. An equivalent condition inconsistency is detected if the KB contains at least
two rules that have the same condition part but that their action part are not in conflict.

It means that there is at least two rules in a rule in the KB that have equivalent condition
parts but that produce the same actions or different actions that are not in conflict.

Example 4. r1 and r2 have equivalent condition and they produce the same results when
executing them.

r1: IF there are mechanical defects for less than 100 meters or
there are mechanical defects for at least 200 meters

THEN the phenomenon of the product is a mechanical phenomenon.

r2: IF there are mechanical defects for less than 100 meters
THEN the phenomenon of the product is a mechanical phenomenon.

Equivalent rules

Definition 5. An equivalent rules inconsistency is detected if KB contains rules that have
the same condition part and the same action part.

Example 5. r1 and r2 are equivalent because both their conditions and actions are the
same. One of them can be removed from the rule set.
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r1: IF there are mechanical defects for more than 100 meters
THEN the phenomenon of the product is a mechanical phenomenon.

r2: IF there are mechanical defects for at least 100 meters
THEN the phenomenon of the product is a mechanical phenomenon.

Redundant rules

Definition 6. A redundant rules inconsistency is detected if the KB contains rules that
make other rules redundant, for instance, if the conditions of one rule are included in the
conditions of the other, and the two rules produce the same action.

Example 6. r1 make r2 redundant because if there are mechanical defects for more than
200 meters there are necessarily mechanical defects for more than 100 meters thus r2 can
be removed from the rule set.

r1: IF there are mechanical defects for more than 100 meters
THEN the phenomenon of the product is a mechanical phenomenon.

r2: IF there are mechanical defects for more than 200 meters
THEN the phenomenon of the product is a mechanical phenomenon

5.2 Diagnosis

In this section we describe our approach to detect inconsistencies in production rules.

5.2.1 Change Management Pattern

In the deliverable D2.1 [22], we developed the OWL plug-in for JRules that enables au-
thoring business rules grounded in OWL ontologies. OWL ontologies are mapped into
the Business Object Model (BOM) of JRules and once the BOM is generated business
rules could be authored using the classes and properties of the ontology. Hence, business
rules depend on the entities of the ontology and the ontology evolution have impact on
the rule set.

In our approach of consistency management, we use design pattern and especially Change
Management Patterns (CMP). This approach is inspired from ONTO-EVOAL [16] which
is used to maintain the consistency of an OWL ontology while it evolves. The CMPs are
proposed to guide the evolution process of a rule set while maintaining its consistency.

We define three categories of patterns:

1. Change Patterns (CP): classifying types of changes
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2. Inconsistency Patterns (IP): classifying types of inconsistencies

3. Repair Patterns (RP): classifying types of inconsistency resolution alternatives

The rule evolution process is coupled with the ontology evolution process. Hence, the
ontology evolution may have impact on the rule set and vice versa. This impact consists of
generating consistency problem(s) either on the evolved ontology or the evolved rule set 1.
There is no easy way to establish intuitively the impact of change(s) on the consistency of
a rule set, that is why we start by defining the kinds of inconsistencies (see Section 5.1)
and the changes that could impact a rule set.

A rule set is composed of rules and each rule has a condition part and an action part.
Each condition and action part is composed of the concepts and properties of the domain
described by the ontology. We can distinguish two kinds of changes, structural changes
and contents changes. Structural changes consist of adding or deleting a rule from the
rule set, adding or deleting condition(s) or action(s) of a rule. Content changes consist of
changes impacting the concepts and properties used in the rules.

Name Design the name of the pattern
ID Design the unique identifier of the pattern
CMP Type Change Patterns, Inconsistency Patterns or Alternative Patterns
Intent A description of the goal behind the pattern and the reason for

using it
Applicability Situations in which this pattern is usable; the context for the pat-

tern
Structure A graphical representation of the pattern. Class diagrams and In-

teraction diagrams may be used for this purpose
Object Design the evolved entity (Rule set, or only a rule)
Participants Gives the ID of the entities impacted by the change
Consequences A description of the results and side effects caused by using the

pattern
Implementation A description of an implementation of the pattern; the solution

part of the pattern
Known Uses Examples of real usages of the pattern
Related Patterns Other patterns that have some relationship with the pattern; dis-

cussion of the differences between the pattern and similar patterns
Constraints 2 Define the constraints that a change should verify before being

applicable

Table 5.1: Generic Model of CMP

We define a generic model used to represent the CMPs, the Table 5.1 describes the general
properties that every kind of pattern should have. Nevertheless, each type of pattern has

1We only focus on consistency management of rule set.
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specifics properties as described in:

• Table 5.2 for the pattern of Adding a rule to a ruleset

• Table 5.3 for the pattern of Adding a condition to a rule

• Table 5.4 for the pattern of Adding an action to a rule

Name Add rule
ID CP-AddRule-1
CMP Type Change Patterns
Intent The pattern models a scenario of adding a rule r in a rule setR and

notifies about the constraints to verify to maintain the coherence
of the rule set

Applicability The pattern is used when adding a rule in a rule set
Scenario Add the rule r in the rule set R and notify that there is a rule r′

similar to r

Object R
Participants r,R
Consequences r will be added to R and the consistency of the R will be main-

tained
Constraint(s) ∀ ri ∈ R, C(r) 6⊆ C(ri) ∧ A(r) 6⊆ A(ri)
Implementation A description of an implementation of the pattern; the solution

part of the pattern
Known Uses Examples of real usages of the pattern
Related Patterns Inconsistency Pattern, Alternative Pattern

Table 5.2: Template of change pattern: Add a rule
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Name Add rule condition
ID CP-AddRuleCondition-1
CMP Type Change Patterns
Intent The pattern models a scenario of adding a condition part Ci(r) to

the rule r and notifies about the constraints to verify to maintain
the coherence of the rule set

Applicability The pattern is used when adding a condition part in a rule
Scenario Add the the condition Ci(r) to the rule r and notify that there is a

rule r′ similar to r

Object r
Participants r,R
Operator the used operator to add the condition (∧ or ∨)
Consequences Ci(r) will be added to r and the consistency of the R will be

maintained
Constraint(s) ∀ ri ∈ R, Ci(r) 6⊆ C(ri)
Implementation A description of an implementation of the pattern; the solution

part of the pattern
Known Uses Examples of real usages of the pattern
Related Patterns Inconsistency Pattern, Alternative Pattern

Table 5.3: Template of change pattern: Add a rule condition
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Name Add rule action
ID CP-AddRuleAction-1
CMP Type Change Patterns
Intent The pattern models a scenario of adding an action part Ai(r) to

the rule r and notifies about the constraints to verify to maintain
the coherence of the rule set

Applicability The pattern is used when adding an action part in a rule
Scenario Add the the action Ai(r) to the rule r and notify that there is a rule

r′ similar to r

Object r
Participants r,R
Consequences Ai(r) will be added to r and the consistency of the R will be

maintained
Constraint(s) ∀ ri ∈ R, Ai(r) 6⊆ A(ri)
Implementation A description of an implementation of the pattern; the solution

part of the pattern
Known Uses Examples of real usages of the pattern
Related Patterns Inconsistency Pattern, Alternative Pattern

Table 5.4: Template of change pattern: Add a rule action

5.2.2 Example 1: Adding a rule in a rule setR

The constraint to verify when adding a rule r is that there are no rules in the rule set which
are similar to this one. Which means that there is no rule that has the same condition or
action part.

∀ri ∈ R, C(r) 6⊆ C(ri) ∧ A(r) 6⊆ A(ri)

Let us define a rule r ∈ R, and the rule r′ to add toR:

r: IF there are mechanical defects for less than 100 meters or
there are mechanical defects for at least 200 meters

THEN the phenomenon of the product is a mechanical phenomenon.

r’: IF there are mechanical defects for less than 100 meters
THEN the phenomenon of the product is a mechanical phenomenon.

In this example, the condition parts of r and r′ are similar, which implies an equivalent
condition inconsistency. To repair this inconsistency r′ can be removed and the consis-
tency of the rule set will be maintained.
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5.2.3 Example 2: Adding a condition to a rule

Let us define the rule setR = {r, r′}:

r: IF there are mechanical defects for more than 100 meters
THEN set approved to false

r’: IF the yield strength of the coil sampling point is more than
the yield strength target of the order of the product

THEN set the assignment of the product to true

If we consider the change consisting in adding a condition C2: there are mechanical
defects for less than 150 meters, with the operator or to r′ to produce the follow-
ing rule:

IF the yield strength of the coil sampling point is more than
the yield strength target of the order of the product
or there are mechanical defects for less than 150 meters

THEN set the assignment of the product to true

then r and the new version of r′ will produce a conflict when there are mechanical defects
for a distance between 100 and 150 meters. To repair the caused inconsistency we have to
add another rule that handle the value of the variable the assignment of the product when
there are mechanical defects for a distance between 100 and 150 meters.

5.3 Actions

5.3.1 Using CMP to maintain consistency

The proposed approach for consistency maintenance in a production rules ruleset is com-
posed of three steps:

1. Change specification: consist of determining the type of the proposed change (add,
update or remove) based on its category (structural or content), the constraints to
verify and other properties. The idea here is to make a classification of changes
depending on their properties, by defining an ontology of change. Once the change
is determined, the corresponding pattern is instantiated.

2. Change analysis: consist of determining and localizing the type of the inconsistency
caused by the change based on the type of the change and on the constraint that are
not verified.

3. Repair inconsistency: consist of suggesting a solution based on the proposed change
and on the inconsistencies caused. It represents additional and/or substitutive changes
to implement, to maintain the consistency of the rule set.
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5.3.2 Example

Let us define the rule setR = {r1, r2, r3}

r1: IF the yearly income of the borrower is more than 900
and the yearly income of the borrower is less than 1200

THEN set the interest rate of the loan to 0.03%

r2: IF the yearly income of the borrower is more than 1200
and the yearly income of the borrower is less than 1500

THEN set the interest rate of the loan to 0.05%

r3: IF the yearly income of the borrower is more than 1500
THEN set the interest rate of the loan to 0.07%

if we consider the change consisting in adding the rule r′ toR

r’: IF the yearly income of the borrower is less than 1500\\
or the amount of the loan is more than 2000\\

THEN set the interest rate of the loan to 0.04\%

then we will proceed to the following operations:

1. Change specification: it is the identification of the structural change consisting of
add a rule r′ to R so it has to verify this constraint: ∀ ri ∈ R, ∀ Cj(r′), Cj(r′) 6⊆
C(ri) ∧ A(r) 6⊆ A(ri). Then the corresponding pattern is instantiated (see table 5.5).

2. Inconsistency analysis: it is the detection if the inconsistency resulting from exe-
cuting r′ and r2, it consists of a contradiction on the value of the interest of the loan
when the yearly income of the borrower is less than 1500.

3. Resolution alternative: in this case two alternatives could be proposed to resolve
the inconsistency problem:

(a) replace the operator or by and which will produce a new version of r′

r’: IF the yearly income of the borrower is less than 1500
AND the amount of the loan is more than 2000

THEN set the interest rate of the loan to 0.04%

(b) delete the condition C1: the yearly income of the borrower is less
than 1500from r′, which will produce the new version of r′:

r’: IF the amount of the loan is more than 2000
THEN set the interest rate of the loan to 0.04%



CHAPTER 5. CONSISTENCY IN PRODUCTION RULES 56

Name Add rule
ID CP-AddRule-1
CMP Type Change Patterns
Intent The pattern models a scenario of adding the rule r′ in a rule setR

and notifies that the constraints ∀ ri ∈ R, C1(r′) 6⊆ C(ri)∧ C2(r′)
6⊆ C(ri)∧ A(r′)6⊆ A(r) must be verified to maintain the coherence
of the rule set

Applicability The pattern is used to add r′ inR
Scenario Add r′ inR and notify that the constraint is not verified
Structure
Object R
Participants r1, r2, r3

Consequences Detection of entities making the constraint not verified
Constraint(s) ∀ ri ∈ R, C(r) 6⊆ C(ri) ∧ A(r) 6⊆ A(ri)
Implementation A description of an implementation of the pattern; the solution

part of the pattern
Known Uses Examples of real usages of the pattern
Related Patterns Inconsistency Pattern, Alternative Pattern

Table 5.5: Change pattern: Add a rule



Chapter 6

Consistency in Description Logics

In this chapter we give a summary of theoretical work on consistency related issues in
Description Logics. In the literature the clear focus is on problems of variants of logical
inconsistency. Handling logical inconsistency is an important problem field in Description
Logics, as it may arise, e.g., due to large amounts of data, like in the context of the
Semantic Web, erroneous modelling, ontology integration, and ontology updates. In the
next section we give preliminaries on Description Logics. In the subsequent sections,
we discuss consistency related problems, diagnosis approaches, respectively actions to
address the problems, following the general consistency framework.

6.1 Preliminaries on Description Logics

In the following, we recall syntax and the semantics of Description Logics, using the
terminology of Section 2.1. We focus on the basic Description LogicALC and will make
remarks where language features beyond ALC are mentioned in the remainder of the
document. We assume a signature Σ = (C,R, I), where C, R, and I are pairwise disjoint
(denumerable) sets of atomic concepts, role names, and individual names respectively.

An ALC knowledge base KB = (T ,A) consists of a TBox T = T (KB) which consti-
tutes the terminological part of the knowledge base and its assertional part A = A(KB),
called ABox which consists of assertions about actual individuals.

Each atomic concept A ∈ C, the universal concept >, and the bottom concept ⊥ are
concepts. Moreover, if C and D are concepts and R ∈ R is a role name then the following
are also concepts:

• the intersection C uD of C and D,

• the union C tD of C and D,

• the negation ¬C of C,
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• the existential restriction ∀R.C of C by R, and

• the universal restriction ∃R.C of C by R.

A TBox is a finite set of concept inclusion axioms of the form C v D (meaning the
extension of C is a subset of the extension of D; D is more general than C) or C ≡ D
(where C ≡ D is interpreted as C v D and D v C) with C and D being concepts.

An ABox is a finite set of concept assertions of the form a : C where a ∈ O and C is a
concept, and role assertions of the form (a, b) : R, where a, b ∈ I are individual names
and R ∈ R is a role name.

An interpretation I = (∆I , ·I) consists of a nonempty domain ∆I and a mapping ·I that
assigns to each atomic concept C ∈C a subset of ∆I , to each individual o∈ I an element
of ∆I , and to each role R∈R, a subset of ∆I ×∆I . The mapping ·I is defined as follows,
where C and D are concepts and R ∈ R is a role name:

• >I = ∆I ,

• ⊥I = ∅,

• (C uD)I = CI ∩DI ,

• (C tD)I = CI ∪DI ,

• (¬C)I = ∆I \CI ,

• (∃R.C)I = {x∈∆I | ∃y : (x, y)∈RI ∧ y ∈CI}, and

• (∀R.C)I = {x∈∆I | ∀y : (x, y)∈RI → y ∈CI}.

A concept inclusion axiom C v D is satisfied by an interpretation I , symbolically I |=
C v D iff CI ⊆ DI . Concerning assertional knowledge, a concept assertion a : C,
respectively a role assertion (a, b) : R, is satisfied by I iff aI ∈ CI , respectively (aI , bI) ∈
RI .

An interpretation I is a model of a TBox T iff I |= t for all t ∈ T . Moreover, I is a
model of an ABox A iff I |= a for all a ∈ A. Finally, I is a model of an ALC knowledge
base KB iff I |= T (KB) and I |= A(KB).

Next we define syntax and semantics of instance and conjunctive queries. An instance
query is of the form A(v) and a conjunctive query of the form ∃.~v.ϕ(~v, ~u), where ϕ is a
conjunction of atoms of the form A(t) and r(t, t′) where t and t′ are individual names or
variables. By terms(q) we denote the set of all individual names and variables in q. Let I
be an interpretation and q an instance or conjunctive query with variables v1, . . . , vk. For
~a = a1, . . . , an ∈ I, an ~a-match for q in I is a mapping π : terms(q) 7→ ∆I such that
π(a) = aI for all a ∈ terms(Q)∩ I, π(t) ∈ AI for all atoms A(t) ∈ q, and (π(t), π(t′)) ∈
rI for all atoms r(t, t′) ∈ q. Given a TBox T and an ABox A, ~a = a1, . . . , ak ∈ I is a
certain answer to q w.r.t. T and A if there is an ~a-match for all models I of T and A.
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6.2 Problems

6.2.1 Contradiction and Relevance

Classical inconsistency of a Description Logics knowledge base KB is given when it has
no model, i.e., there is no interpretation I such that both, I |= A(KB) and I |= T (KB).

There are different forms of terminological contradiction in Description Logic TBoxes.
On the one hand, there is classical inconsistency, i.e., a TBox is inconsistent if it has no
model. On the other hand, knowledge engineers are often interested in more fine-grained
aspects of satisfiability, namely satisfiability of individual concepts. In terms of our gen-
eral framework these belong to both types of problems, contradiction and relevance, since
unsatisfiable concepts can be seen as irrelevant.

Definition 7. A concept C is unsatisfiable w.r.t. a TBox T , respectively a Description
Logic knowledge base KB , if CI = ∅ for all models I of T , respectively for all models I
of T (KB).

A TBox T , respectively a Description Logic knowledge base KB , is incoherent if there is
an atomic concept in T , respectively in T (KB), that is unsatisfiable.

Besides these notions of contradictions, one can also have a look at problems in the pres-
ence of queries to a DL knowledge base. Here, the notions of query and predicate empti-
ness are important [4]. These properties show indicate whether a designed query can
produce a non-empty answer and whether a given concept name can be used in a query in
a meaningful way.

Query-emptiness is defined as follows.

Definition 8. Let Σ be a signature and T a TBox. A conjunctive or instance query q is
empty for Σ given T if for all Σ ABoxesA that are consistent w.r.t. T , it holds that the set
of all certain answers to q w.r.t.A and T is empty.

Definition 9. IQ-query emptiness, respectively CQ-query emptiness, is the problem of
deciding, given a TBox T , a signature Σ, and an instance query q, respectively a con-
junctive query q, whether Q is empty for Σ given T .

Next, we define predicate-emptiness.

Definition 10. Let Σ be a signature and T a TBox. A concept name (predicate) P is
IQ-empty for Σ given T if all instance queries q where P occurs in q are empty for Σ
given T . Likewise, P is CQ-empty for Σ given T if all conjunctive queries q where P
occurs in q are empty for Σ given T .

Definition 11. IQ-predicate emptiness, respectively CQ-predicate emptiness, is the prob-
lem of deciding, given a TBox T , a signature Σ, and an atom concept P whether P is
IQ-empty, respectively CQ-empty, for Σ given T .
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6.2.2 Language Conformance

There are many different Description Logics with varying language constructs. Also in
standards like OWL 2 [44], different language fragments are distinguished. Hence, deter-
mining in which language fragment a given knowledge base falls can be an important is-
sues. As the underlying logic gives bounds on the complexity of reasoning and determines
which Description Logics reasoner can be used, knowing the corresponding Description
Logic is a requirement in applications. Tools for classifying Ontologies were introduced
in [37].

6.3 Diagnosis

6.3.1 Explanation

Generally, explanations are information that can help humans to understand a given set
of facts. Here, we are interested in explanations for semantic properties of Description
Logic knowledge bases. Such information can be used in two ways. On the one hand,
it helps to understand the consequences of a knowledge base and their interrelations, and
on the other hand, it can be used to detect and locate problems of different kinds in the
knowledge base. Often potential repairs for a problem can be immediately obtained from
adequate explanations. In most of the previous work, explanations in Description Logics
are given in a proof-theoretic presentation.

McGuiness and Borgida [43] considered the issue of explaining subsumption reasoning
in Description Logics. Concept subsumption is considered as a main reasoning task in
Description Logics.

Definition 12. Let T be a TBox. A concept C is subsumed by a concept D with respect to
T , symbolically T |= C vD, if CI ⊆ DI for every model I of T .

Concept subsumption is relevant for different consistency problems in Description Logics.

• Incoherence: Subsumption checking can be used to identify incoherent concepts,
i.e., concepts that can be proven to have no satisfying instances. In particular, a con-
cept C is incoherent in a TBox T if T |= C v⊥. Regarding the classification of
problems outlined in the consistency framework in Chapter 2, incoherent concepts
can generally be considered as irrelevant. If such a concept is used in a meaningful
way within the knowledge base it can replaced by the bottom concept and can there-
fore also be considered as redundant. In many cases however, having an incoherent
concept C in a DL knowledge base KB is unintended and can therefore easily lead
to contradiction related problems. E.g.,

– we have an assertional contradiction if some individual is asserted to be con-
tained in C.
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– Moreover, a terminological contradiction occurs if KB contains an axiom
DvC, where concept D is guaranteed to contain some individual.

• Equivalence: By checking whether two concepts C and D mutually subsume each
other it can be checked whether they are equivalent, i.e., contain the same individ-
uals in each model. In such a case C and D can be regarded as redundant.

Explanation techniques for concept subsumption can therefore be used for analyzing rel-
evance and contradiction problems as the obtained explanations can guide the knowledge
engineer to the source of the problem in the knowledge base.

McGuiness and Borgida [43] propose to explain concept subsumption in the CLASSIC

system [10] by natural deduction style proofs. To this end they defined a number of nat-
ural deduction rules for deriving concept subsumptions. For avoiding lengthy proofs the
authors propose some filtering techniques as well as a two phase search strategy. For ex-
plaining a given subsumption C vD they propose to first find conjunctions A1u · · ·uAn

of concepts being equivalent to D such that A1, . . . , An fulfill certain simplicity proper-
ties. Then, it has to be shown that C vAi for all 1 ≤ i ≤ n. Here an aim is to choose
the individual Ai, called atomic descriptions, in a way such that they do not contain fur-
ther conjuncts themselves in order to prefer breadth over depth of search. An explanation
system could then in the first step return a list of atomic descriptions from which the
user can select interesting ones for further explanation. The authors show that this search
strategy however does not work for more expressive Description Logics involving role
compositions. Moreover, the approach relies on the applicability of structural subsump-
tion algorithms for the considered language, i.e., subsumption reasoning can be done
by normalizing descriptions and subsequent syntactic comparisons. However, structural
subsumption does not work for more expressive Description Logics. Reasoning in such
Description Logics is mainly done by tableaux based algorithms. Unfortunately, such
systems are rather unsuitable for explanations as they are based on refutation. Thus, a
subsumption C vD would be proven by unsatisfiability of C u¬D which might not be a
sufficient explanation for the inexperienced user.

Borgida et al. [9] choose another proof-theoretic approach for explaining subsumption in
ALC. Their method is based on a Gentzen-style calculus [27]. They developed sequent
rules that are parallel to the rules used in a tableaux system and tailored to be easy to
understand. In particular, rules are avoided that move formulas from sequent antecedents
to sequent succedents and vice versa, as they are considered potentially confusing by
the authors. Moreover, the inference rules are designed such that the structure of the
two concepts at hand is maintained. The correspondence to tableaux rules is beneficial
as explanations can then be obtained by standard reasoning algorithms using a tagging
method sketched by the authors together with lazy unfolding [31].

A third proof-theoretic approach for explanation is based on resolution [14, 13]. Here, the
aim is not to explain subsumption but unsatisfiability and inconsistency queries w.r.t.ALC
TBoxes and ABoxes. If a concept is unsatisfiable or an ABox or TBox is inconsistent, they
are first translated to first-order logic. Then, a resolution based automated theorem prover
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is used to generate a resolution proof. This proof is then translated to a corresponding
refutation graph [17]. This is a graph whose nodes are literals grouped together to clauses
such that the edges connect complementary literals within the clauses corresponding to
the steps of the resolution proof. Explanations are then generated as a list obtained from
a traversal of the refutation graph, where for each literal node passed its associated source
axioms are entered. The authors propose to translate this list into a natural language
representation.

6.3.2 Pinpointing

In contrast to explanation, where the focus is on allowing humans to understand the out-
come of a reasoning process, one can also be interested in the root cause of a problem
only. That is, instead of clarifying why something went wrong, the aim is to pinpoint arti-
facts, such as conflicting axioms, that are responsible for some undesired property of the
knowledge base, such as incoherence of the TBox. The motivation for that it to identify
parts of the knowledge base that need to be fixed.

Finding the core reasons for local incoherences in TBoxes was first addressed by Schlobach
and Cornet [57]. They introduced the notions of minimal unsatisfiability-preserving sub-
TBoxes (MUPS).

Definition 13. Let C be a concept that is unsatisfiable w.r.t. a TBox T . A set T ′ ⊆ T is a
MUPS for C in T if C is unsatisfiable in T ′ and C is satisfiable in every T ′′ ⊂ T ′.

Moreover, they defined minimal incoherence-preserving sub-TBoxes (MIPS).

Definition 14. A TBox T ′ ⊆ T is a MIPS of T if T ′ is incoherent and every T ′′ ⊂ T ′ is
coherent.

The authors devised a specialized algorithm for computing MIPS and MUPS in ALC
TBoxes that are unfoldable. A TBox is unfoldable when the left-hand side of the axioms
are atomic and the right-hand sides contain no reference to the defined concept [45]. The
algorithm is based on Boolean minimization of axioms in a tableaux proof. A similar
algorithm has been introduced earlier by Baader and Hollunder [3] that has later been
extended to ALC TBoxes with general concept inclusions that are not required to be
unfoldable [39].

MIPS and MUPS can be seen as minimal sets of components of the terminology that need
to be fixed or removed to restore satisfiability or coherence, following the ideas of model-
based diagnosis [54]. Based on Reiter’s Hitting Set algorithm, methods for computing
MIPS and MUPS where considered [56, 25].

Schlobach and Cornet also introduced the term axiom pinpointing for computing MIPS
and MUPS which was subsequently used by many authors. Their work has later been ex-
tended to SHIF , the Description Logic underlying OWL-Lite [36]. Moreover, a general
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approach for deriving pinpointing algorithms from tableaux algorithms has been investi-
gated by Baader and Peñaloza [5]. Here, a main research question for which Description
Logics techniques like in [57, 3] can be applied easily. For certain types of axioms such as
transitive roles or general concept inclusions, tableaux algorithms require certain blocking
conditions that need special treatment (like the algorithm in [39]) for ensuring termina-
tion. One finding in [5] was that termination of a pinpointing algorithm obtained from
a tableaux without major modifications is non-trivial. In particular it is not implied in
general by the termination of the tableaux, even if all tableaux rules are deterministic.
The authors show that termination is guaranteed when the tableaux produces forest-like
structures in their framework.

An approach towards pinpointing that uses both modified tableaux algorithms and Reiter’s
Hitting Set Tree (HST) algorithm [54] is given in the thesis of Kalyanpur [35]. In this
work, the problem of finding all MUPS of an unsatisfiable concept is reduced to finding
all justifications for a given entailment.

Definition 15. Let KB be a knowledge base and α a sentence such that KB |= α. A
fragment KB ′ ⊆ KB is a justification for α in KB if KB ′ |= α, and KB ′′ 6|= α for every
KB ′′ ⊂ KB ′.

Since justifications for an unsatisfiable entailment can be seen as minimal conflict sets in
Reiter’s theory, and by computing minimal hitting sets all minimal conflict sets can be
obtained, HST can be used to obtain all justifications for a given entailment. First, a justi-
fication KBR for the negation of α is computed using the modified tableaux approach [35].
KBR serves as root note for the hitting set tree. Subsequently, new leaf nodes are added
by removing an arbitrary axiom A from the justification KB of a former leaf node such
that the edge is labelled with A. The algorithm then checks consistency with respect to
KB \ {A}. If it is inconsistent, then we obtain another justification for α w.r.t. K \ {i}.
The algorithm repeats this process, namely removing an axiom, adding a node, checking
consistency and performing axiom tracing until the consistency test turns positive.

6.3.3 Checking Query and Predicate Emptiness

Baader et al. [4] investigated query and predicate emptiness, as defined in Section 6.2.
Altough considered as a general reasoning task, the motivation for reasoning services
based on these notions is detecting whether there is a chance that a designed query can
produce a non-empty answer and whether a given concept name can be used in a query
in a meaningful way. The authors distinguish between fixed and free queries. A fixed
query is formulated in advance where only the signature of the ontology has to be known.
In such a scenario checking query-emptiness can be used for detecting problems with a
given query. In the free query setting, where concrete queries are formulated later and not
known yet, it makes sense to check for predicate emptiness, i.e., to detect whether a given
concept name can be potentially be useful in some query. Baader et al. studied decidability
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DL IQ-query CQ-predicate CQ-query
EL in PTIME in PTIME in PTIME

EL⊥ EXPTIME-complete in EXPTIME-complete in 2-EXPTIME,
ELI EXPTIME-complete in EXPTIME-complete EXPTIME-hard
DL-Litecore in PTIME in PTIME CO-NP-complete
DL-Litehorn CO-NP-complete CO-NP-complete CO-NP-complete
ALC in NEXPTIME, in NEXPTIME, in 2-EXPTIME,

EXPTIME-hard in EXPTIME-hard EXPTIME-hard
ALCI 2-EXPTIME-complete
ALCF undecidable undecidable undecidable

Figure 6.1: Complexity Results for Query- and Predicate-Emptiness by Baader et al. [4]

and complexity of checking query and predicate emptiness for several Description Logics.
Their results are summarized in Figure 6.3.3.

6.4 Actions

About inconsistency handling of ontologies based on description logics, two fundamen-
tally different approaches can be distinguished. The first is based on the assumption that
inconsistencies indicate erroneous data which is to be repaired in order to obtain a consis-
tent knowledge base, e.g., by selecting consistent subsets for the reasoning process [32],
or revising the original ontologies with new contradict information [53]. In this respect
also pinpointing, as described in the previous section, can be seen as action towards han-
dling contradiction when fixing the parts of the knowledge base that where identified as
problematic. The other approach yields to the insight that inconsistencies are a natural
phenomenon in realistic data which are to be handled by a logic which tolerates it. Such
logics are called paraconsistent, and the most prominent of them are based on the use of
additional truth values standing for underdefined (i.e., neither true nor false) and overde-
fined (or contradictory, i.e., both true and false). Such logics are appropriately called
four-valued logics. We believe that either of the approaches is useful, depending on the
application scenario.

6.4.1 Repair Based Approaches

Selection Function

Huang et al. developed a general framework for handling inconsistency in ontologies
based on selection function [32]. A selection function is used to determine which con-
sistent subsets of an inconsistent ontology should be considered in its reasoning process.
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The general framework is independent of the particular choice of selection function. The
selection function can either be based on a syntactic approach , or based on semantic
relevance like for example in computational linguistics as in Wordnet.

Revisions in Description Logics

Revision of a Description Logic-based ontology to incorporate newly received informa-
tion consistently is an important problem for the lifecycle of ontologies [52]. Many ap-
proaches in the theory of belief revision have been applied to deal with this problem and
most of them focus on the postulate or logical properties of a revision operator in Descrip-
tion Logics [53, 52].

A revision operator in Description Logics is an operation that maps an ordered pair of DL
knowledge bases to a set of ontologies such that each of the revised ontology should be
consistent and can infer every axiom in the second ontology, and that can be constrained
by a set of postulates.

6.4.2 Inconsistency Tolerant Reasoning

Four Valued Description Logics

Instead of the two truth values (true and false) used in classical logic, four truth values
uses four truth values, namely True, False, Both, and None [8]. By using Both for con-
tradict information and None for incompleteness, 4-valued logic tolerates inconsistency.
Ma et al. introduced the 4-valued semantics to Description Logics for handling the incon-
sistency in DL based ontologies [42, 41].

The algorithm for 4-valued Description Logics can be classified as two categories. The
first approach is directly designing reasoning algorithm, e.g., paraconsistent resolution for
SHIQ4 [42]. However, such algorithms mean implementing the reasoner from scratch,
which leads to a lot of work. The second one is reducing the reasoning under 4-valued
semantics to reasoning under classical semantics. Thus we can use state-of-the-art DL
reasoners, such as Pellet, to do the paraconsistent reasoning over inconsistent ontologies.

One drawback of 4-valued Description Logics is the three inclusion semantics, namely
material inclusion, internal inclusion and strong inclusion, used for capturing the different
parts of the classical semantics for the inclusion. Then the users have to choose the appro-
priate inclusion for each TBox assertion themselves. Another drawback is the weakness
of the reasoning ability. For example, resolution laws does not hold for 4-valued inference
relation (|=4): {(C tD)(a),¬D(a)} 6|=4 C(a).
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Quasi Classical Description Logics

To improve the reasoning of 4-valued Description Logics, Zhang et al. introduced Quasi
Classical (QC) semantics to Description Logic [59]. In QC logic, two semantics, namely
the strong and weak semantics are used. The weak semantics is the same with 4-valued
semantics, which is used for paraconsistent reasoning, while the strong semantics is used
to enhance the reasoning ability, e.g., resolution laws are satisfied in QC inference relation
(|=Q): {(C tD)(a),¬D(a)} |=Q C(a).

Reasoning algorithms for QC Description Logics can also be classified as two categories.
One is directly algorithm, such as QC tableau; the other one is reducing the QC reasoning
to classical reasoning.



Chapter 7

Consistency in Combinations

In this chapter we present initial results on consistency maintenance in combinations of
Description Logics and logical rules. As in Deliverable 3.2 [30], we deal with loosely-
coupled combinations, in particular we focus on DL-programs [18]. Based on the prelim-
inaries on Description Logics in Section 6.1, we next outline the theoretical background
of DL-programs.

7.1 Preliminaries on DL-Programs

Syntax

A signature Σ = 〈C,R,P, I〉 for DL-programs consists of a set I of 0-ary function sym-
bols and sets Po , P of predicate symbols such that Σo = 〈C,R, I〉 is a DL-signature and
Σp = 〈P, I〉 is an LP-signature.

Informally, a DL-program consists of a Description Logic ontology Φ over Σo and a
normal logic program Π over Σp , which may contain queries to Φ. Roughly, in such a
query, it is asked whether a certain Description Logic formula or its negation logically
follows from Φ or not.

A DL-atom a(t) has the form

DL[S1 op1 p1, . . . , Sm opm pm; Q](t) , m ≥ 0, (7.1)

where each Si is either a concept from C or a role predicate from R, opi ∈ {], −∪, −∩}, pi

is a unary, resp. binary, predicate symbol from P, and Q(t) is a DL-query. We call γ =
S1 op1 p1, . . . , Sm opm pm the input signature and p1, . . . , pm the input predicate symbols
of a(t). Moreover, literals over input predicate symbols are input literals. Intuitively,
opi = ] (resp., opi = −∪) increases Si (resp., ¬Si) by the extension of pi, while opi = −∩
constrains Si to pi. A DL-rule r has the form

a← b1, . . . , bk, not bk+1, . . . , not bm , m ≥ k ≥ 0 , (7.2)

67
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where a is a classical literals and any literal b1, . . . , bm ∈ B(r) may be a classical literal
or a DL-atom. A DL-program KB = (Φ, Π) consists of a DL ontology Φ and a finite set
of DL-rules Π.

Semantics

In the sequel, let KB = (Φ, Π) be a DL-program over Σ = 〈C,R,P, I〉. By gr(Π) we
denote the grounding of Π w.r.t I, i.e., the set of ground rules originating from DL-rules
in Π by replacing, per DL-rule, each variable by each possible combination of constants
in I.

An interpretation I (over Σp) is a consistent subset of literals over Σp . We say that I
satisfies a classical literal l under Φ, denoted I |=Φ l, iff l ∈ I , and a ground DL-atom
a = DL[S1op1 p1, . . . , Smopmpm; Q](c) under Φ, denoted I |=Φ a, if Φ ∪ τ I(a) |= Q(c),
where the extension τ I(a) of a under I is defined as τ I(a) =

⋃m
i=1 Ai(I) such that

• Ai(I) = {Si(e) | pi(e) ∈ I}, for opi = ];

• Ai(I) = {¬Si(e) | pi(e) ∈ I}, for opi = −∪;

• Ai(I) = {¬Si(e) | pi(e) /∈ I}, for opi = −∩.

We say that I satisfies the positive (resp., negative) body of a ground DL-rule r under Φ,
symbolically I |=Φ B(r)+ (resp., I |=Φ B(r)−), if I |=Φ l (resp., I 6|=Φ l) for all l ∈ B(r)+

(resp., l ∈ B(r)−). I satisfies the body of r under Φ, denoted I |=Φ B(r), whenever
I |=Φ B(r)+ and I |=Φ B(r)−. I satisfies a ground DL-rule r under Φ, symbolically
I |=Φr, if I |=Φ H(r) whenever I |=Φ B(r). I is a model of a DL-program KB = (Φ, Π),
denoted I |= KB, iff I |=Φ r for all r ∈ gr(Π). We say KB is satisfiable (resp., unsatisfi-
able) iff it has some (resp., no) model.

In what follows, we base the answer set semantics of DL-programs on the Faber-Leone-
Pfeifer reduct [24].

Definition 16. Let Σ = 〈C,R,P, I〉 be a signature for DL-programs, Φ a DL knowledge
base over 〈C,R, I〉, Π a set of ground DL-rules over Σp = 〈P, I〉, and I an interpretation
over Σp . The FLP-reduct ΠI,Φ

FLP of Π under Φ relative to I is the set of rules r ∈ Π
such that I |=Φ B(r). Moreover, the FLP-reduct KBI

FLP of a (possibly non-ground) DL-
program KB = (Φ, Π) relative to I is given by gr(Π)I,Φ

FLP .

Definition 17. Let KB be a DL-program over Σ = 〈C,R,P, I〉. An interpretation I over
Σp is an answer set of KB if it is a minimal model of KBI

FLP . The set of all answer sets
of KB is denoted by AS(KB).

We use this answer set semantics (we will sometimes refer to it as FLP-semantics) rather
than one based on the traditional Gelfond-Lifschitz reduct [26], as it naturally handles
DL-atoms which are not monotonic.
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Definition 18. For a DL-program KB = (Φ, Π), a ground DL-atom l is monotonic rel-
ative to KB, if for all interpretations I, J with I ⊆ J , I |=Φ l implies J |=Φ l. KB is
monotonic if gr(Π) contains only DL-atoms that are monotonic relative to KB.

It was shown in [20] that for DL-programs that do not employ the −∩ operator, the FLP-
semantics coincides with strong answer set semantics, as originally introduced for DL-
programs [18] using the Gelfond-Lifschitz reduct. Note that this operator is rarely used
in practice and can in many cases be removed by simple translations.

We will later refer to the class of positive DL-programs, defined in [18] as follows.

Definition 19. A DL-program KB is positive, if it is monotonic and B(r)− = ∅ for each
rule r ∈ Π.

Note that a DL-atom a that does not employ the operator −∩ is always monotonic as I ⊆ J
implies τ I(a) ⊆ τJ(a).

7.2 Problems

7.2.1 Contradiction

The semantics of a DL-program KB is given by its answer sets AS(KB). We call KB
inconsistent if it has no answer sets, i.e., AS(KB) = ∅. In some applications of DL-
programs the absence of answer sets can be desired, e.g., when the encodings are designed
such that answer sets correspond to unwanted behavior of a system. However, in many
cases an inconsistent DL-program is not intended. Then, it is often hard to detect reasons
for that. As we are in particular interested in contradiction that is rooted in the combina-
tion of ontology and rules, in Section 7.3 we will discuss how to identify minimal sets of
calls from the rule part to the DL-part of a DL-program.

7.2.2 Language Conformance: Inconsistency when Combining On-
tologies and Rules

The flow of information from the rules to the ontology provides a powerful tool, as re-
sults from the program can be used as assertions in the DL knowledge base for further
deduction. However, it is possible that the assertions by which the ontology is extended
cause an inconsistency in the sense of logical contradiction. We say that in such a case
the respective DL-atom is DL-inconsistent. As then the respective query is trivially true,
we may end up with counterintuitive results, even though both the DL and the LP are
perfectly consistent in separation. Hence, this problem is not a matter of contradiction
per se, but falls into the language conformance category of the problem framework. Note
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that DL-inconsistency is not in general an unwanted effect as it is also exploited in some
applications of DL-programs, e.g., when using DL-programs for default reasoning [18].

Example 7 (Product Database). As a running example, we will adapt an example that has
been used previously in the context of DL-programs [21].

A small computer store obtains its hardware from several vendors. It uses the following
DL knowledge base Φex , which contains information about the product range that is pro-
vided by each vendor. For some parts, a shop may already be contracted as supplier and
shops which are known to be disapproved for some reason can never become an actual
supplier.

≥ 1 supplier v Shop; > v ∀supplier .Part ;
∃supplier .> u disapproved v⊥;
Shop(s1); Shop(s2); Shop(s3); disapproved(s2);

Part(harddisk); Part(cpu); Part(case);

provides(s1, cpu); provides(s1, case); provides(s2, cpu);
provides(s3, harddisk); provides(s3, case);

supplier(s3, case);

Here, the first two axioms determine Shop and Part as domain and range of the property
supplier , respectively, while the third axiom constitutes the incongruity between shops
that are contracted as supplier but are explicitly disapproved.

Consider the DL-program KBex = (Φex , Πex ), with Πex given as follows, choosing not-
deterministically a vendor for each needed part:

(1) needed(cpu); needed(harddisk); needed(case);
(2) alreadyContracted(P )← DL[; supplier ](S, P ),needed(P );
(3) offer(S, P )← DL[; provides](S, P ),needed(P ),not alreadyContracted(P);
(4) chosen(S, P )← offer(S, P ),not notChosen(S, P );
(5) notChosen(S, P )← offer(S, P ),not chosen(S, P );
(6) supplied(S, P )← DL[supplier ] chosen; supplier ](S, P ),needed(P );
(7) anySupplied(P )← supplied(S, P ),needed(P );
(8) fail ← not fail ,needed(P ),not anySupplied(P ).

Rule (2) extracts information on which parts already have a fixed vendor assigned from
the DL, whereas Rule (3) imports the available offers for the needed parts not yet as-
signed. Rules (4)-(5) nondeterministically decide whether an offer should be chosen. Rule
(6) summarizes the purchasing results by first sending the chosen assignments of vendors
and parts from the LP-part to the ontology, and then querying for the overall supplier
relation. Finally, Rules (7)-(8) ensure that for every needed part there is a vendor chosen
who supplies it. Note that Rule (8) acts as a constraint where the occurrences of the aux-
iliary atom fail in both, head and positive body, prevents all interpretations containing
needed(t) but not anySupplied(t) for any term t from being an answer set. As we will see
in Section 7.2.2, Φex has one intended and one counterintuitive answer set.
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We will now look at the semantics of our example DL-program in order to illustrate the
core problem that is tackled in our approach.

Example 8. KBex has two answer sets, I1 and I2, both containing the same atoms of
predicates needed , offer , alreadyContracted , and anySupplied :

I ′ = { needed(cpu), needed(harddisk), needed(case), alreadyContracted(case),
offer(s1, cpu), offer(s2 , cpu), offer(s3 , harddisk),
anySupplied(cpu), anySupplied(harddisk), anySupplied(case)}

The remaining atoms of I1 are given by

I1 \ I ′ = {chosen(s1, cpu), chosen(s3 , harddisk), notChosen(s2 , cpu),
supplied(s1, cpu), supplied(s3 , harddisk), supplied(s3 , case)} ,

expressing a solution where the cpu is provided by shop s1, whereas harddisk and case
are delivered by vendor s3.

The second answer set might seem surprising at first sight:

I2 \ I ′ = {chosen(s2, cpu), chosen(s3 , harddisk), notChosen(s2 , cpu),
supplied(s1, cpu), supplied(s1 , harddisk), supplied(s1 , case),
supplied(s2, cpu), supplied(s2 , harddisk), supplied(s2 , case),
supplied(s3, cpu), supplied(s3 , harddisk), supplied(s3 , case),
supplied(cpu, cpu), supplied(cpu, harddisk), supplied(cpu, case),
supplied(harddisk, cpu), supplied(harddisk , harddisk),
supplied(harddisk, case), supplied(case, cpu), supplied(case, harddisk),
supplied(case, case)}

Apparently a situation is described in which each of the shops s1, s2, and s3 supplies each
of the needed hardware parts cpu, case, and harddisk , although the intention was that
only a single shop supplies one part. Moreover, we also have atoms like supplied(cpu, harddisk)
in I2, completely lacking intuition, as the first argument of predicate supplied is supposed
to refer to vendors only. The reason for the unintuitive results lies in an inconsistency
emerging in the combination of the ontology and the logic programming part of KBex .
Note that atom chosen(s2, cpu) ∈ I2 suggests that shop s2 has been chosen to deliver the
cpu, although this shop is identified as disapproved in the DL-part (cf. Example 7). Con-
sider any ground instance a′ of DL-atom a = DL[supplier ] chosen; supplier ](S, P )
in Rule (6) of extended logic program Πex . We then have τ I(a′) = {supplier(e) |
chosen(e) ∈ I} and therefore supplier(s2, cpu) ∈ τ I (a ′). As a consequence, Φ ∪
τ I(a′) is inconsistent since ¬supplier(s2, cpu) follows from the axioms ∃supplier .> u
disapproved v⊥ and disapproved(s2) in Φex . Due to this inconsistency every ground
instance of a is true under I2.

Whenever information, passed from the logic programming part Π to the ontology Φ of a
DL-program, is inconsistent with Φ , unintuitive answer sets may arise as a consequence
of trivial satisfaction of DL-atoms. In such cases we call the respective DL-atom DL-
inconsistent.
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Definition 20. Let KB = (Φ, Π) be a DL-program and I an interpretation relative to Π.
A ground DL-atom a = DL[γ; Q](c) is DL-consistent under I w.r.t. Φ , if (1) Φ |= Q(c)
or (2) Φ ∪ τ I(a) is consistent, otherwise a is DL-inconsistent under I w.r.t. Φ .

Intuitively, we are interested in avoiding using rules that have DL-inconsistent atoms in
their bodies. Note that we use a notion of “inconsistency” that pertains to updates of the
ontology: if some atom Q(c) is entailed by the original ontology, we assume it is DL-
consistent, even if updates via γ make the ontology inconsistent. Indeed, if Φ |= Q(c),
we also have Φ ∪ τ I(a) |= Q(c) for any update τ I(a) due to monotonicity of usual
Description Logics. If we would not take this case into account, we would disregard the
whole rule (as seen in Definition 25).

7.3 Diagnosis of DL-calls

In what follows we are interested in finding diagnoses for inconsistency in the sense of
Reiter [54], i.e., finding minimal sets of components of a faulty system such that the
system would behave correctly if the components were. In our setting we will regard
ground DL-atoms, that we refer to as DL-calls, as basic components since they constitute
the interface between the logic programming and the Description Logics parts. Hence,
given a DL-program KB = (Φ, Π) that has no answer set, we are interested in minimal
sets of DL-calls such that if the boolean result of the query of the DL-call is inverted, KB
has an answer set.

Definition 21. A DL-call of a DL-programKB is a DL-atom l ∈ B(r)+∪B(r)− occurring
in some DL-rule r ∈ gr(Π). By CALL(KB) we denote the set of all DL-calls of KB.

Note that, since DL-atoms have at most arity 2, they have only polynomial many ground
instantiations.

Lemma 1. Let KB be a DL-program. Then the number of DL-calls of KB is polynomial
in the size of KB.

Definition 22. Given a ground DL-atom a = DL[γ; Q](c), by ¬a we denote the inverse
DL-atom DL[γ; ¬Q](c) of a.

Next, we formalize what we referred to as inverting of the boolean result of DL-calls by
means of a program transformation.

Definition 23. Let KB = (Φ, Π) be a DL-program and D a set of DL-calls of KB. By
KB¬D we denote the inverse grounding (Φ, Π′) of KB relative to D, where Π′ is obtained
from gr(Π) by replacing every occurrence of some a ∈ D by ¬a.

Based on the introduced notions we can define a diagnosis of an inconsistent DL-program
as follows.
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Definition 24. Let KB be an inconsistent DL-program. A set D of DL-calls of KB such
that KB¬D is consistent is called a diagnosis candidate of KB. Moreover, D is a diagnosis
of KB if it is a subset minimal diagnosis candidate of KB.

7.3.1 Computing Diagnosis and Complexity

Next, we are concerned about computational aspects of diagnosis. That is, we discuss
how to find diagnoses and the corresponding computational complexity.

A straightforward way of computing diagnosis candidates is by means of program trans-
formations, using the formalism of DL-programs itself. Given a KB = (Φ, Π) we in-
troduce for every DL-atom a(t) ∈ D(KB) of KB three fresh atoms a′(t), aba(t), and
noa(t). We then define the translations T1(·) and T2(·) from a DL-program to another
DL-program as T1(KB) = (Φ, T1(Π)), respectively T2(KB) = (Φ, T2(Π)), where T1(Π)
is obtained from Π by replacing every occurrence of some a(t) ∈ D(KB) by a′(t),
T2(Π) = T1(Π) ∪ P , and

P = { aba(t)←not noa(t), noa(t)←not aba(t),
a′(t)←a, not aba(t), a′(t)←not a, aba(t) | a ∈ D(KB)}.

We get the following correspondences.

Proposition 1. Let KB be an inconsistent DL-program. KB has a diagnosis iff T2(KB)
is consistent.

Proposition 2. Let KB be an inconsistent DL-program and S = {{a | aba(∈)I} | I ∈
AS(T2(KB))}. Then the subset minimal sets in S correspond to the diagnoses of KB.

Using the translations defined above we can establish the first complexity result.

Theorem 1. Let KB = (Φ, Π) be an inconsistent DL-program where query answering in
Φ is in complexity class C, deciding whether KB has a diagnosis is in NPNEXPTIME∪C.

Proof. First we guess a set D of DL-calls of KB. Then, we evaluate every of the
polynomially many DL-calls of KB using a C-oracle, and keep the DL-calls evaluated to
true in the set CALL+. Then the DL-program (∅, T1(Π) ∪ {a′(c) | a(c) ∈ (CALL+ \
D) ∪ (D \ CALL+)}) that is free of DL-atoms is computed and we check whether it is
consistent using a NEXPTIME-oracle. If so, some diagnosis D′ ⊆ D exists. 2

We obtain a completeness result when query answering is known to be in possible in
exponential time.

Lemma 2. Let KB = (Φ, Π) be a DL-program. Then, there exists a diagnosis for the
DL-program (Φ, T2(Π) ∪ {←aba(X)} | a ∈ D(KB) ∪ {←DL[; ⊥ v >]}) iff KB is
consistent.
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Theorem 2. Let KB = (Φ, Π) be an inconsistent DL-program where query answer-
ing in Φ is possible in exponential time, then deciding whether KB has a diagnosis is
NEXPTIME-complete.

Proof. Hardness follows from Lemma 2 and NEXPTIME-hardness of answer-set exis-
tence [20]. 2

For positive DL-programs we get the following complexity result.

Theorem 3. Let KB = (Φ, Π) be an inconsistent positive DL-program where query
answering in Φ is in complexity class C, deciding whether KB has a diagnosis is in
EXPTIME ∪ PC.

Proof. First we evaluate every of the polynomially many DL-calls of KB using a
C-oracle, and keep the DL-calls evaluated to true in the set CALL+. For every of the
exponentially many D ⊆ CALL(KB), we compute the positive DL-program (∅, T1(Π) ∪
{a′(c) | a(c) ∈ (CALL+ \ D) ∪ (D \ CALL+)}) that is free of DL-atoms and check
whether it is consistent in exponential time. If so, some diagnosis D′ ⊆ D exists. 2

Next, we investigate the complexity of checking whether a particular DL-call is contained
in a diagnosis.

Theorem 4. Let KB = (Φ, Π) be an inconsistent DL-program where query answering
in Φ is in complexity class C, and consider a DL-call a for KB. Deciding whether a is
contained in a diagnosis of KB is in NPNEXPTIME∪C.

Proof. We proceed as in the proof of Theorem 1. We just need a further NEXPTIME-
oracle call for checking consistency of the DL-program

KB′ = (∅, T1(Π) ∪
{aba(c)←not noa(c), noa(c)←not aba(c) | a(c) ∈ CALL(KB)} ∪
{←aba(c) | a(c) ∈ CALL(KB) \ D} ∪
{←{aba(c) | a(c) ∈ D}} ∪
{a′(c)←not aba(c) | a(c) ∈ CALL+} ∪
{a′(c)←aba(c) | a(c) ∈ CALL(KB) \ CALL+}).

The idea is that KB′ guesses a combination of abnormal atoms for a set of DL-calls that
is strictly smaller than D. If ’reversing’ the boolean values for these DL-calls establishes
an answer set of KB, we have an answer set for KB′. If the oracle returns ’yes’ the
branch fails as then D is no diagnosis for not being minimal. Otherwise, the computation
succeeds. 2

Finally, we state a corresponding result for positive DL-programs.

Theorem 5. Let KB = (Φ, Π) be an inconsistent positive DL-program where query an-
swering in Φ is in complexity class C, and consider a DL-call a forKB. Deciding whether
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a is contained in a diagnosis of KB is in PC ∪ EXPTIME. In case query answering in
Φ is EXPTIME-complete also deciding whether a is contained in a diagnosis of KB is
EXPTIME-complete.

Proof. For membership in case of an arbitrary C, we proceed as in the proof of Theo-
rem 3, for computing all sets D ⊆ CALL(KB) such that some diagnosis D′ ⊆ D exists.
For every such D we additionally check whether for all D′ ⊂ D the positive DL-program
(∅, T1(Π)∪{a′(c) | a(c) ∈ (CALL+ \D′)∪ (D′ \CALL+)}) is inconsistent in exponen-
tial time. If so, no D′ ⊂ D is a diagnosis and hence D is one. We show hardness when
query answering in Φ is EXPTIME-complete, by a reduction from query answering in Φ.
Given a query Q(c), some DL-call DL[; Q](c) is in a diagnosis of the inconsistent pos-
itive DL-program (Φ, {h←DL[; ⊥ v >], h←DL[; Q](c), ¬h}), where h is a fresh
propositional atom, iff Q(c) holds. 2

7.4 Actions: DL-Inconsistency Tolerant Semantics

In what follows we introduce and discuss a refined semantics for DL-programs that limits
the negative side effects of DL-inconsistency. It was developed within the ONTORULE
project and published at the Extended Semantic Web Conference 2010 [51]. After intro-
ducing the new semantics, we provide some of its central properties and discuss strate-
gies for implementation. Moreover, we define a stratification property that guarantees the
uniqueness of answer sets under the new semantics and EXPTIME-completeness of decid-
ing answer set existence. Based on these results, we present an algorithm for computing
the answer set of a stratified program whenever one exists. We also analyze the complex-
ity of deciding whether a DL-program has an answer set under the new semantics.

The central idea of the approach is to deactivate a rule whenever a DL-atom contained
in its body becomes DL-inconsistent, in order to behave tolerant in the sense that flawed
information does not influence the derived results. This way literals with unexpected
argument types such as supplied(cpu, harddisk) in Example 8, can be avoided in the
information flow from the ontology to the logic program.

Definition 25. Let KB = (Φ, Π) be a DL-program and I an interpretation. I t-satisfies
the body of a ground DL-rule r under Φ , denoted I 6|=Φ B(r) if I |=Φ B(r) and all
DL-atoms in B(r) are DL-consistent under I w.r.t. Φ . Moreover, I t-satisfies r under Φ
, symbolically I 6|=Φ r, if I 6|=Φ B(r) implies that I |=Φ H(r). I is a t-model of a set Q
of ground DL-rules under Φ denoted I 6|=Φ Q if I 6|=Φ r for all r ∈ Q. Finally, I is a
t-model of KB, denoted I 6|= KB, if I 6|=Φ gr(Π).

Note that every model of KB is also a t-model of KB. Moreover, if DL-atoms occur only
in the negative bodies of rules in Π, also the converse holds. The reason for the latter is that
a rule that is not applicable under DL-inconsistency tolerant semantics only because of a
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DL-inconsistent DL-atom a ∈ B(r)− for some rule r ∈ Π would also not be applicable
under standard semantics as a would be satisfied as a consequence of DL-inconsistency.

Example 9. Consider the ground instantiation

r = supplied(cpu, harddisk)←DL[supplier ] chosen; supplier ](cpu, harddisk),
needed(harddisk)

of Rule (6) of our running example. For interpretation I2, as defined in Example 8, we
have that I2 |=Φ B(r) but, as the DL-atom in B(r) is DL-inconsistent under I2 w.r.t. Φex ,
it holds that I2 66|=Φ B(r). As H(r) ∈ I2, both I2 |=Φ r and I2 6|=Φ r. More general, since
I2 is a model of KBex it is also a t-model of KBex . However, as we will see next, I2 is not
a t-answer set of KBex .

For defining the notion of a t-answer set, we first give a modified version of the FLP-
reduct, called t-reduct.

Definition 26. Let Σ = 〈C,R,P, I〉 be a signature for DL-programs, Φ a DL knowledge
base over 〈I,Po〉, Π a set of ground DL-rules over Σp = 〈P, I〉, and I an interpretation
over Σp . The t-reduct ΠI,Φ

t of Π under Φ relative to I is the set of rules r ∈ Π such
that I 6|=Φ B(r). Moreover, the t-reduct KBI

t of a (possibly non-ground) DL-program
KB = (Φ, Π) relative to I is given by gr(Π)I,Φ

t .

Definition 27. Let KB be a DL-program. An interpretation I is a t-answer set of KB, if
I is a subset-minimal t-model of KBI

t . The set of all t-answer sets of KB is denoted by
ASt(KB).

Example 10. For the program KBex of the product database example, the only t-answer
set is given by interpretation I1, as defined in Example 8. As stated in Example 9, I2

is a t-model of KBex ; however, I2 is not a minimal t-model of (KBex )
I2
t , as required

in Definition 27 for being a t-answer set. In fact, the ground instance of Rule (6) in
Example 9 is not contained in (KBex )

I2
t . Therefore, we can remove the head of the rule,

atom supplied(cpu, harddisk), from I2 such that the resulting interpretation I ′2 is still a
t-model of KBex .

Whenever no DL-atoms are present in a DL-program KB = (Φ, Π), DL-inconsistency
tolerant semantics reduces to answer set semantics of the ordinary logic program Π.
Therefore, the next result is a proper extension to a similar one that is folklore for standard
logic programs.

Theorem 6. For every t-answer set I of a DL-program KB, I is a minimal t-model of
KB.

Note that the converse does not generally hold. For example, consider the set

I3 = I ′ ∪ {chosen(s2, cpu), chosen(s3 , harddisk), notChosen(s2 , cpu),
notChosen(s2, harddisk)} ,
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where I ′ is given as in Example 8. I3 is a minimal t-model of KBex but, since the ground
instantiation

fail ← not fail , needed(cpu), not anySupplied(cpu)

of Rule (8) from our example is not contained in (KBex )
I3
t , we can remove atom anySupplied(cpu)

from I3 such that the resulting interpretation I ′3 is still a t-model of (KBex )
I3
t . Conse-

quently, by Definition 27, I3 is no t-answer set of KBex .

The next result relates the refined semantics to the FLP-semantics.

Proposition 3. Let KB = (Φ, Π) be a monotonic DL-program and let I be an answer set
of KB. If all DL-atoms in gr(Π) are DL-consistent under I w.r.t. Φ , then I is a t-answer
set of KB.

Note that DL-programs with no occurrences of the −∩ operator are monotonic and, as
remarked in Section 7.1, this operator can typically be avoided in applications.

While counterintuitive literals a là supplied(cpu, harddisk) cannot occur in a t-answer
set, Proposition 3 suggests that results that are intuitive are preserved under the refined
semantics, as answer sets of a DL-program where inconsistency is immaterial are selected.
On the other hand, a DL-program may have t-answer sets that do not correspond to any
answer set (due to inconsistency avoidance).

Example 11. Consider the DL-program KB = (Φ, Π) where Φ = {¬C(a)} and Π =
{ p(a); fail ← not fail , DL[C ] p; C ](a) }. Clearly, KB has no answer set, as the
DL-atom in Π is DL-inconsistent; its single t-answer set is I = {p(a)}.

7.4.1 Computational Aspects

Translation to FLP Semantics The DL-inconsistency tolerant semantics of DL-programs
can be simulated by the FLP semantics as in Definition 17 using a linear rule-by-rule
transformation ρ(·) on generalized normal programs, defined as

ρ(Π) ={ρ(r) | r ∈ Π} ∪
{a′ ← DL[γ; > v ⊥], not DL[; Q](t) | r ∈ Π, not a ∈ A(r)}, where

ρ(r) = H(r)← B(r) ∪ A(r), and
A(r) = {not a′ | a = DL[γ; Q](t) ∈ B(r)}.

In the translation for each DL-atom a = DL[γ; Q](t) occurring in the body of a rule r,
we add a new atom a′ to the negative body of r and a rule that deduces a′ exactly when
I |=Φ DL[γ; > v ⊥] and I 6|=Φ DL[; Q](t) for some interpretation I , i.e., when Φ ∪
τ I(a) is inconsistent and Φ 6|= Q(c), and thus a is DL-consistent. Deduction of a′ thus
causes the body of the transformed rule to be false under FLP-semantics corresponding
exactly the case where the atom a is DL-inconsistent. Thus for a rule r in Π under a
DL-inconsistency tolerant semantics and its corresponding rule ρ(r) in the transformed
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program ρ(Π) under FLP-semantics, we have that r and ρ(r) have bodies whose truth
values correspond under the respective semantics, thus effectively mimicking the DL-
inconsistency tolerant semantics with the FLP-semantics.

Theorem 7. For every DL-program KB = (Φ, Π), ASt(KB) = {I ∩ HB(Π) | I ∈
AS((Φ, ρ(Π)))}.

By means of this translation, the t-answer sets ofKB can be computed utilizing DLVHEX,
a solver for non-monotonic logic programs admitting higher-order atoms and external
atoms, or HEX-programs for short [20], that have a semantics based on the FLP-reduct. A
plug-in for evaluating DL-programs, without the −∩ operator, is available for DLVHEX that
gives access to the DL-knowledge base by means of a third-party DL-reasoner [19, 38].

Due to the close relationship to HEX-programs, results on their computational complex-
ity carry over to DL-inconsistency tolerant semantics of DL-programs. In particular, as
corollaries of Theorem 7 and 8 in [20], due to the existence of transformation ρ(·), we
obtain the following two results.

Theorem 8. Given a DL-program KB = (Φ, Π), where query answering in Φ is in
complexity class C, deciding whether KB has a t-answer set is in NEXPTIMEC.

Theorem 9. Given a DL-program KB = (Φ, Π), where query answering in Φ is in
EXPTIME, deciding whether KB has a t-answer set is NEXPTIME-complete.

Hardness in Theorem 9 follows from the special case of DL-programs without any DL-
atoms, for which the DL-inconsistency tolerant semantics reduces to the standard answer
set semantics of normal logic programs. It is known that answer set existence for this
class of programs is NEXPTIME-complete. On the other side, membership follows again
from the translation to HEX-programs, as it is known that checking the answer sets of
HEX-programs is NEXPTIME-complete under the restriction that the external atoms can
be evaluated in exponential time [20].

The result is especially interesting as query answering is in EXPTIME for many important
Description Logics such as the basic DL ALC, the DL underlying OWL-Lite (SHIF),
and the Description Logics corresponding to the fragments OWL 2 EL, OWL 2 RL, OWL
2 QL of the upcoming standard for a Web Ontology Language [44].

Another important aspect of the complexity results is that for DL-programs, reasoning
under DL-inconsistency tolerant semantics is not harder than under the FLP-semantics.

Stratification Eiter et al. [18] defined an iterative least model semantics for DL-programs
that have a certain stratification property (which we will here refer to as standard strati-
fication). The idea of stratification is to layer a program into a number of ordered strata
that can be efficiently evaluated one-by-one where lower strata do not depend on higher
strata.
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A DL-program KB which is standard stratified has at most one answer set that coincides
with its iterative least model and conversely, ifKB has an iterative least model it coincides
with the unique answer set ofKB. However, a DL-program that is standard stratified may
have multiple t-answer sets. Too see this, note that a positive DL-program always has
a standard stratification with a single stratum. Consider, e.g., the DL-program KB =
(Φ, Π), with

Π = { h(c),
a(c)←DL[B −∪ b, H ] h; H](c),
b(c)←DL[A −∪ a, H ] h; H](c)} ,

where Φ |= A(c) and Φ |= B(c). This program has two t-answer sets, viz. I1 =
{a(c), h(c)} and I2 = {b(c), h(c)}.
In the following, we define a different kind of stratification (which we call t-stratification)
that guarantees a unique t-answer set iff the respective t-stratified program has a t-answer
set. The major difference to standard stratification is to enforce that the information nec-
essary for evaluating DL-atoms must be already available on a strictly lower stratum then
the current one during a computation.

Definition 28. A t-stratification of a DL-programKB = (Φ, Π) is a mapping µ : HB(Π)∪
D(Π)→ {0, 1, . . . , k}, where D(Π) is the set of DL-atoms occurring in gr(Π), such that

(i) for each r ∈ gr(Π), µ(H(r)) ≥ µ(l′) for all l′ ∈ B(r)+, µ(H(r)) > µ(l′) for all
l′ ∈ B(r)−, and µ(H(r)) > µ(l′) for each DL-atom l′ ∈ B(r), and

(ii) µ(a) ≥ µ(l) for each input literal l of each DL-atom a ∈ D(Π).

We call k ≥ 0 the length of µ. For every i ∈ {0, . . . , k}, we then define the DL-programs
KBµ,i as (Φ, Πi), where Πi = {r ∈ gr(Π) | µ(H(r)) = i} and KB∗µ,i as (Φ, Π∗

µ,i) where
Π∗

µ,i = {r ∈ gr(Π) | µ(H(r)) ≤ i}. Likewise, we define HBµ,i(Π) (resp., HB∗
µ,i(Π)) as

the set of all l ∈ HB(Π) such that µ(l) = i (resp., µ(l) ≤ i). We say that a DL-program
KB is t-stratified, if it has a t-stratification µ of length k ≥ 0. It is easy to see that
for DL-programs without DL-atoms, t-stratification reduces to standard stratification of
logic programs. Moreover, checking whether a DL-program is t-stratified and computing
a t-stratification can be done by modified algorithms for standard stratification in linear
time.

Note that by Definition 28, KB∗µ,0 is always a positive DL-program without DL-atoms.
Consequently, Π0 coincides with a positive logic program, for which DL-inconsistency
tolerant semantics coincides with the answer set semantics of logic programs. Therefore,
the following proposition holds.

Proposition 4. Let KB be a DL-program KB = (Φ, Π) with t-stratification µ. Then,
KB∗µ,0 has a unique minimal t-model that is also the unique t-answer set of KB∗µ,0.

Next we want to establish uniqueness of t-answer sets for arbitrary strata.
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Lemma 3. Let KB be a DL-program KB = (Φ, Π) with t-stratification µ. If I1 and I2

are t-answer sets of KB∗µ,i for i ≥ 0, then I1 = I2.

As a consequence of this lemma and Proposition 4, we get the next result.

Theorem 10. Let KB be a t-stratified DL-program KB = (Φ, Π). If KB has a t-answer
set, then this t-answer set is unique.

As can be seen in the next result, the t-answer set of a t-stratified DL-program is com-
positional in the sense that, roughly speaking, we get t-answer sets for the part of the
DL-program that is below a certain stratum, if we remove all atoms of higher strata from
I .

Theorem 11. Let KB be a DL-program KB = (Φ, Π) with t-stratification µ. If I is a
t-answer set of KB∗µ,i for i > 0, then I ∩ HB∗

µ,i−1(Π) is a t-answer set of KB∗µ,i−1.

Approaching from this result, we aim at computing the t-answer set I ofKB step-by-step,
starting with I ∩ HB∗

µ,0(Π) and extending the interpretation one stratum a time until we
reach I = I ∩ HB∗

µ,k(Π). Hence, we define a series of sets ∆i,h for each stratum i, that
can be seen as the results of repeatedly applying a consequence operator.

Definition 29. Let KB be a DL-program KB = (Φ, Π) with t-stratification µ and Ii−1

a t-answer set of KB∗µ,i−1 for some i > 0. We define sets of literals ∆i,h for h ≥ 0 as
follows:

(i) ∆i,0 = ∅ and

(ii) ∆i,m =
⋃

o<m ∆i,o ∪ {H(r) | µ(H(r)) = i, Ii−1 ∪∆i,m−1 6|=Φ B(r)} for m > 0.

As gr(Π) contains only a finite number of rules, and ∆i,h ⊆ ∆i,h+1 for all h, we must
always reach some fixpoint ∆i. That is, ∆i = ∆i,f when ∆i,f = ∆i,f+1.

In order to establish our main result on computing the unique t-answer set (whenever one
exists), we make use of the following lemma.

Lemma 4. Let KB be a DL-program KB = (Φ, Π) with t-stratification µ. If I1 and I2

are t-models of KB∗µ,i for i ≥ 0 such that I1∩HB∗
µ,i−1(Π) = I2∩HB∗

µ,i−1(Π) then I1∩ I2

is a t-model of KB∗µ,i.

Intuitively, when we can extend a t-model of lower strata of the DL-program to a further
stratum, there is always a subset minimal extension of this t-model.

By computing the t-answer set of KB∗µ,0 and subsequently ∆i for each stratum i, we can
compute the t-answer set of KB, whenever it exists:

Theorem 12. Let KB be a DL-program KB = (Φ, Π) with t-stratification µ and let I be
a t-answer set of KB∗µ,i for some i > 0. Then, I = I ′ where I ′ = (I ∩ HB∗

µ,i−1(Π)) ∪∆i.
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Proof. Towards a contradiction assume I 6= I ′. From Theorem 10 follows that I ′ 6∈
ASt(KB∗µ,i). As I is a minimal t-model of KB∗µ,i, we get I ∩ I ′ 66|=Φ Π∗

µ,i. From this and
Lemma 4 follows by modus tollens that I ′ 66|=Φ Π∗

µ,i. Hence, there is a rule r ∈ Π∗
µ,i with

I ′ 6|=Φ B(r) and I ′ 66|=Φ H(r). Consider the case that µ(H(r)) < i. Then, I ′ 66|=Φ r is a
contradiction to I 6|=Φ r, since I ∩ HB∗

µ,i−1(Π) = I ′ ∩ HB∗
µ,i−1(Π). Now consider case

µ(H(r)) = i and number m ≤ 0 such that ∆i,m = ∆i. As ∆i,m ⊆ I ′ and I ′ 66|=Φ H(r),
we have H(r) 6∈ ∆i,m. Moreover, since I ′ 6|=Φ B(r) and I ′ = (I ∩ HB∗

µ,i−1(Π)) ∪∆i,m,
by Definition 29 we have that H(r) ∈ ∆i,m+1. As then ∆i,m 6= ∆i,m+1, we have a
contradiction to ∆i,m being the fixpoint ∆i. 2

So far we established that in case there is a t-answer set we can compute it stratum by
stratum. In the following, we provide means for deciding the existence of a t-answer set
during this computation.

Theorem 13. Let KB be a DL-program KB = (Φ, Π) with t-stratification µ and Ii−1 a
t-answer set of KB∗µ,i−1 for some i > 0. If Ii = Ii−1 ∪∆i is a t-model of KB∗µ,i then Ii is
a t-answer set of KB∗µ,i.

This enables us to pursue the following approach. After computing Ii = Ii−1 ∪ ∆i for
a stratum i, we check whether I 6|=Φ Π∗

µ,i. If yes, we know by Theorem 13 that Ii is
a t-answer set of KB∗µ,i and we are either done or continue our computation for stratum
i + 1. If I 66|=Φ Π∗

µ,i, we know by Theorem 12 that KB∗µ,i has no t-answer set and stop the
computation.

Algorithm 1 for computing the t-answer set of a given DL-programKB with a t-stratification
follows precisely this strategy after having computed the unique t-answer set of KB∗µ,0.
This can be done by a standard answer set solver as KB∗µ,0 does not involve DL-atoms.
Overall, the algorithm runs in exponential time with an additional effort of external calls
to a DL-reasoner for evaluating the DL-queries of DL-atoms in lines 10 and 16. The
time necessary for this evaluations depends on the complexity of query answering in the
respective DL. Altogether, there may be an exponential number of such calls.

Theorem 14. Given a DL-program KB = (Φ, Π) with t-stratification µ, where query
answering in Φ is in complexity class C, deciding whether KB has a t-answer set is in
EXPTIMEC.

When query answering in Φ is possible in exponential time, in the worst case the algo-
rithm has to perform an exponential number of exponential time calls which can in turn
be done in exponential time.

Theorem 15. Given a DL-program KB = (Φ, Π) with t-stratification µ, where query an-
swering in Φ is in EXPTIME, deciding whetherKB has a t-answer set is EXPTIME-complete.

Hardness follows from EXPTIME-completeness of ordinary stratified logic programs. For
lightweight Description Logics such as those underlying OWL 2 EL, OWL 2 RL, and
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Algorithm 1 Computing the t-answer set of a t-stratified DL-program KB
Require: KB = (Φ, Π), µ is a t-stratification of KB of length k ≥ 0

1: I0 := the unique t-answer set of KB∗µ,0 // computable in exponential time
2: for i := 1 to k do
3: // compute ∆i

4: ∆′ := ∅
5: repeat
6: ∆i := ∆′

7: for all r ∈ gr(Πi) do
8: // loop may have exponentially many iterations
9: // the following check requires two queries to Φ per DL-atom in B(r):

10: if ∆i ∪ Ii−1 6|=Φ B(r) then
11: ∆′ := ∆′ ∪ {H(r)}
12: end if
13: end for
14: until ∆i = ∆′ // number of iterations limited by number of rules in gr(Πi)
15: Ii := Ii−1 ∪∆i

16: if Ii 66|=Φ gr(Π∗
µ,i) then

17: print ”KB has no t-answer set.”
18: return
19: end if
20: end for
21: return Ik // Ik is the unique t-answer set of KB

OWL 2 QL, where query answering has polynomial data complexity, reasoning for DL-
programs is feasible in polynomial time under data complexity (where all of KB except
facts in Φ and Π is fixed).



Chapter 8

Conclusion

In this document we have reported the preliminary achievements towards consistency
maintainance within the ONTORULE project. It will be succeeded and finalized by De-
liverable 2.6 “Consistency maintenance. Final Report”.

The current achievements include a general consistency framework as a basis for com-
municating consistency related requirements and methods for the individual formalisms
considered within the project. The framework defines common terminology, classifies
consistency related problems, and identifies main tasks for consistency maintenance. On
the problem side, four abstract problem types for classification of consistency problems
have been presented. These are contradiction, completeness, relevance, and language
conformance. We identified problems of these categories for rule and ontology languages
used in ONTORULE and additionally, we examined inconsistencies in the context of
texts. Here, we have an additional potential for inconsistencies caused by the ambigu-
ities of natural language semantics. However, most problems that arise in formal rule
languages can also occur in texts. One example are completeness problems such as case
distinctions where not every case that may arise in practice is covered. As texts are the
major source for acquisition in ONTORULE, inconsistency prevention should be done
already in the natural language representation.

We have developed methods for diagnosing inconsistencies and anomalies for logical
rules as well as production rules. In the case of logical rules we describe a declarative ap-
proach towards detecting anomalies in the ObjectLogic language which originates from
F-Logic which is a key rule language in WP3. The method identifies typical cases of
inconsistency using ObjectLogic itself. For production rules, we have introduced Change
Management Patterns that classify different types of changes, inconsistencies. While
some types of anomalies such as contradicting rules, subsumed rules, or rules whose
antecedent cannot become true are shared by logical and production rules, the rich Ob-
jectLogic language gives rise to further sources of inconsistency. In particular, Object-
Logic can also be seen as an ontology language and therefore also shares inconsistency
problems with Description Logics such as concepts without instances. For both types of
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rule languages we identify actions to resolve the individual types of anomalies.

For ontology languages, we have examined the state-of-the-art on research into inconsis-
tency in Description Logics. Most approaches focus on problems related to logical con-
tradictions, i.e., inconsistency in the sense of logical unsatisfiability. Actions for handling
inconsistencies include consistency restoring methods on the one hand, and inconsistency
tolerant approaches on the other hand.

Besides methods for established formalisms we have also provided initial results on con-
sistency maintenance in formalisms that combine ontologies and rules as developed in
WP3. We have focussed on loosely coupling of Description Logics and logical rules re-
alized by DL-programs. Results carry over to the related language of F-Logic# which
was developed within WP3. We have tackled two consistency related phenomena that are
intrinsic to the coupling mechanism. On the one hand, we have provided definitions and
complexity analysis for diagnosing minimal sets of calls to the Description Logic knowl-
edge base that can restore consistency of inconsistent DL-programs when reversed. On
the other hand, we have introduced a semantics for DL-programs that tolerates certain
inconsistencies due to the ontology update-feature of the loose-coupling mechanism.
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Glossary

ABox Synonym of Assertion Box, 3, 57

Assertion Box The Assertion Box is the population of assertions. Another way of look-
ing at an assertion is to consider it as a fact. The Assertion box in OWL is restricted
to unary and binary facts., 3, 57

Consistency In its narrower sense, consistency refers to the absence of contradictory
information. A knowledge base is consistent if it has a model. Inconsistency, on
the other hand, is the presence of a contradiction. A knowledge base is inconsistent
if it has no model. In Task 2.4 - Consistency Maintainence, we refer to this notion
of inconsistency as contradiction and also identify completeness, relevance, and
language conformance as consistency related problem categories., 1, 3, 7, 15, 46,
57, 69, 71, 72, 75

Datalog Datalog is a query and rule language for deductive databases that syntactically
is a subset of Prolog., 15

Decidability A decision problem, i.e., a yes-or-no question with a potentially infinite
input domain, is decidable if there is an algorithm that computes the correct answer
for every finite input within a finite amount of time., 63

Description Logics Description Logics (DLs) are a family of knowledge representation
languages. The modeling primitives in most DLs are classes, which represent sets
of objects, properties, which are relations between classes, and individuals. Con-
stants may be defined using logical axioms. The language constructs available for
writing such axioms depends on the DL at hand. Typical language constructs in-
clude class intersection, union, and complement, as well as universal and existential
property restrictions., 57, 67

DL-Programs DL-Programs is a loosely coupled approach of integration of Ontology
and Rules., 67

Entailment In model theory, a set S of formulas entails or implies a formula F if every
model of S is also a model of F ., 6, 63, 72
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F-logic F-logic is a deductive, object oriented database language which combines the
declarative semantics and expressiveness of deductive database languages with the
rich data modeling capabilities supported by the object oriented data model. Classes
and properties are represented as terms and interpreted as objects. This is one of
the major differences to OWL where classes are represented as unary predicates and
properties are represented as binary predicates. F-logic has been proposed for as an
ontology language for the Semantic Web as well as extending existing approaches
with F-logic based rules., 15

Knowledge engineer A knowledge engineer is a person who masters a knowledge acqui-
sition methodology; a knowledge engineer need not have knowledge of any specific
domain except the generic domain., 59, 61

Model A model of a sentence or a theory in the sense of model theory is a structure that
satisfies the sentence, respectively theory. Intuitively, this means that the interpre-
tation represented by the structure makes the sentence or theory true., 4, 5, 58–61,
68, 75–79, 81

ObjectLogic ObjectLogic is a newly developed ontology language which is based on the
development of F-logic. It is developed at ontoprise GmbH., 15

OntoBroker 6.x OntoBroker http://www.ontoprise.de/en/home/products/ontobroker/ (cf.
[AKL09], [Hey09]) is a Semantic Web middleware with inference engine that al-
lows seamlessly accessing heterogeneous data sources using ontologies. OntoBro-
ker 6.0 comes in different flavours. It incorporates an ObjectLogic engine (cf.
[AKL09]) for ObjectLogic and RDF/S reasoning, and an OWL reasoner (cf. [dB09]
section 2.2.2,) for reasoning over OWL ontologies. Within OntoBroker 6.1 it is
planed to integrate OWL 2 RL reasoning into the ObjectLogic reasoner. The syn-
tactical integration of OWL 2 into the ObjectLogic data model has already be done.
The axiomatization of OWL 2 RL is already in progress (as by 22. Sep. 2010).
There will be no separate reasoner for OWL., 20, 26, 32

OntoStudio 3.x OntoStudio http://www.ontoprise.de/en/home/products/ontostudio/ is a
professional development environment for building, testing and maintaining on-
tologies. Data in various formats can be imported. OntoStudio is based on the
eclipse framework. Therefore, OntoStudio has a modular design that is familiar to
a large community of developers. Its rich set of features can be easily extended by
writing new plug-ins that integrate via well-defined extension-points., 32

OWL The Web Ontology Language OWL is an ontology language for the Semantic Web
that extends Description Logics. To RDFS it adds features such as class intersec-
tion, union and complement, local property restrictions, cardinality restrictions, and
reflexive, symmetric, functional, transitive and inverse properties., 26–29, 49, 59,
62, 78
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Reasoner A reasoner, also called a reasoning engine, is a software that can compute
logical consequences of a given knowledge base. Many reasoners support frag-
ments of first-order predicate logic. Reasoners for Description Logics include Pel-
let, OntoBroker, FaCT++, KAON2, and RacerPro., 3, 6, 59, 65, 78, 81

Rule In the context of ONTORULE, a rule is a statement expressing a fact or process
that depends on a condition., 3, 15, 46, 67


