
Big Data Research 23 (2021) 100177
Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Ontology-Mediated SPARQL Query Answering over Knowledge Graphs

Guohui Xiao ∗, Julien Corman

Faculty of Computer Science, Free University of Bozen-Bolzano, 390100, Bolzano, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 June 2020
Received in revised form 16 November 2020
Accepted 29 November 2020
Available online 21 December 2020

Ontology-Mediated Query Answering (OMQA) is a well-established framework to answer queries over
Knowledge Graphs (KGs), enriched with rdfs or owl ontologies. OMQA was originally designed for
Unions of Conjunctive Queries (UCQs), and based on certain answers. More recently, OMQA has been
extended to sparql queries, but to our knowledge, none of the efforts made in this direction (either in
the literature, or the so-called W3C sparql entailment regimes) is able to capture both certain answers for
UCQs and the standard interpretation of sparql over a plain graph. We formalize these as requirements to
be met by any semantics that aims at conciliating certain answers and sparql answers, and extend these
with three additional requirements. Then we define two semantics that satisfies all requirements for
sparql queries with select, union, join, and optional. Finally, we investigate the combined complexity
of query answering under these semantics over a KG enriched with a DL-LiteR ontology, showing that
for several fragments of sparql, known upper-bounds for query answering over a plain KG are matched.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Knowledge Graphs (KGs) and ontologies play an important role in big data management and processing. A standard task in this setting
is querying a KG enriched with a background theory, specified as an ontology. The sparql query language, standardized by the W3C, is
an expressive SQL-like language designed for rdf KGs [14]. Recently, sparql has been extended with so-called entailment regimes, which
specify different semantics to query an rdf KG enriched with an rdfs or owl ontology [12]. This allows retrieving answers to a query not
only over the facts explicitly stated in the KG, but more generally over what can be inferred from the KG and ontology.1

The sparql entailment regimes are in turn largely influenced by theoretical work on Ontology-Mediated Query Answering (OMQA),
notably in the field of Description Logics (DLs) [3]. However, OMQA was initially developed for unions of conjunctive queries (UCQs), which
have a limited expressivity when compared to sparql. And as explained in [1], conciliating the standard (compositional) semantics of
sparql on the one hand, and the semantics used for OMQA on the other hand, called certain answers, is non-trivial. In this work, we build
upon [1], and further investigate how sparql and certain answers can be combined.

As an illustration, Example 1 provides a simple rdf KG, an owl ontology and a sparql query. The KG (a.k.a. ABox) A states that Alice
is a driver, whereas the ontology (a.k.a. TBox) T states that a driver must have a license (for conciseness, we use DLs as an abstract syntax,
rather than some concrete syntax(es) for rdf and owl). Finally, the sparql query q retrieves all individuals that have a license.

Example 1.
A = {Driver(Alice)}
T = {Driver� ∃hasLicense}
q = SELECT ?x WHERE { ?x hasLicense ?y }

One may expect Alice to be retrieved as an answer to q. And it would be the case under certain answer semantics, if one considers
the natural translation of this query into a UCQ: q(x) ← hasLicense(x, y). However, under the standard semantics of sparql 1.1 [14], this

* Corresponding author.
E-mail addresses: xiao@inf.unibz.it (G. Xiao), corman@inf.unibz.it (J. Corman).

1 Different conventions are used in the literature for the meanings of “Knowledge Graph” and “ontology”. In this paper, we make a clear distinction between the two
(although in practice both can be encoded as sets of rdf triples). So we consider that a KG contains only statements about individuals, whereas an ontology contains only
conceptual knowledge about the underlying domain. In Description Logics, KG and ontology in this sense correspond to the so-called ABox and TBox, respectively.
https://doi.org/10.1016/j.bdr.2020.100177
2214-5796/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.bdr.2020.100177
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bdr.2020.100177&domain=pdf
mailto:xiao@inf.unibz.it
mailto:corman@inf.unibz.it
https://doi.org/10.1016/j.bdr.2020.100177

G. Xiao and J. Corman Big Data Research 23 (2021) 100177
query has no answer. This is expected, because Alice has no driving license declared in the ABox, and because this semantics does not
take into account knowledge that may be inferred from the graph and ontology. More surprisingly though, under all sparql entailment
regimes [12], this query also has no answer.

This mismatch between certain answers and entailment regimes has already been discussed in depth in [1], where the interpretation
of the optional operator of sparql is identified as a key challenge, when trying to define a suitable semantics for sparql that complies
with certain answers for UCQs. A concrete proposal is also made in [1] in this direction. However, this semantics does not comply with
the standard semantics of sparql when the TBox is empty. This means that a same query over a plain rdf graph may yield different
answers, depending on whether it is evaluated under this semantics, or under the one defined in the sparql 1.1 specification [14].

We propose in this article to investigate whether and how this dilemma can be solved. To this end, we first formulate in Section 4 four
requirements to be met by any reasonable semantics meant to conciliate certain answers and standard sparql answers. Then in Section 5,
we use these requirements to review different (existing and new) semantics. We also show that all requirements can be met, for the
fragment of sparql with select, union, join, and optional, by proposing two semantics, the first one defined only for DLs with the so-
called canonical model property, and the second one for arbitrary DLs. Finally, in Section 6, we provide combined complexity results for
query answering under these semantics, over KGs and ontologies in DL-LiteR , a popular DL tailored for query answering, which underpins
the owl 2 ql standard. We show in particular that for several (sub-)fragments of sparql, upper bounds for these problems match results
already known to hold for sparql over KGs, which means that under this semantics, and as far as worst-case complexity is concerned, the
presence of a TBox does not introduce a computational overhead.

An earlier conference version of this article was presented in JIST 2019, the 9th Joint International Semantic Technology Conference [8].
In the current version, apart from more explanations, examples and proofs, the most significant addition is the second semantics, called
epistemic certain answers (defined in Section 5.4). This semantics also satisfies all four requirements, and has a more declarative flavor than
the one proposed in the earlier version, called maximal admissible canonical answers (defined in Section 5.3).

Before presenting our technical contributions, Section 2 introduces preliminary notions, and Section 3 reviews existing semantics for
sparql over a KG and ontology.

2. Preliminaries

We assume infinite and mutually disjoint sets NI , NC , NR , and NV of individuals (constants), concept names (unary predicates), role names
(binary predicates), and variables respectively. We also assume an infinite universe U, such that NI ⊆ U. For clarity, we abstract away from
concrete domains (as well as rdf term types), since these are irrelevant to the content of this paper. We also assume that NI , NC and NR

do not contain any reserved term from the rdf/rdfs/owl vocabularies (such as rdfs:subClassOf, owl:disjointWith, etc.).

2.1. rdf and sparql

An (rdf) triple is an element of (NI × {rdf:type} × NC) ∪ (NI × NR × NI). An rdf KG, or simply graph, is a set of triples, noted A.
For the concrete syntax of sparql, we refer to the specification [14]. Following [1], we focus on sparql queries whose triple patterns

are either in (NV ∪ NI) × {rdf:type} × NC , or in (NV ∪ NI) × NR × (NV ∪ NI). For readability, we represent triples and triple patterns as
atoms in prefix notation, i.e. we use A(e) rather than (e, rdf:type, A) and for r ∈ NR , we use r(e1, e2) rather than (e1, r, e2). If q is a
sparql query, we use vars(q) to denote the set of variables projected by q.

We adopt (roughly) the abstract syntax provided in [24] for the fragment of sparql with the SELECT, UNION and OPTIONAL operators,
using the following grammar, where t is a sparql triple pattern, and X ⊆ NV:

q ::= t | selectX q | q union q | q join q | q opt q

In addition, if q = selectX q′ , then X ⊆ vars(q′) must hold. In order to refer to fragments of this language, we use the letters S, U, J and O
(in this order), for select, union, join, and opt respectively. E.g. “SUJO” stands for the full language, “UJ” for the fragment with union and
join only, etc.

If ω is a function, we use dom(ω) (resp. range(ω)) to designate its domain (resp. range). Two functions ω1 and ω2 are compatible,
denoted with ω1 ∼ ω2, iff ω1(x) = ω2(x) for each x ∈ dom(ω1) ∩ dom(ω2). If ω1 and ω2 are compatible, then ω1 ∪ ω2 is the only function
with domain dom(ω1) ∪ dom(ω2) that is compatible with ω1 and ω2. We say that a function ω2 extends a function ω1, noted ω1 � ω2, iff
dom(ω1) ⊆ dom(ω2) and ω1 ∼ ω2. Finally, we use ω|X (resp. ω‖X) to designate the restriction of function ω to domain (resp. co-domain)
X , i.e. ω|X is the only function compatible with ω that verifies dom(ω|X) = dom(ω) ∩ X , and ω‖X is the only function compatible with ω
that verifies dom(ω‖X) = {v ∈ dom(ω) | ω(v) ∈ X}.

A solution mapping is a function from a finite subset of NV to U. If �1 and �2 are sets of solutions mappings and X ⊆ NV , then:

�1 �� �2 = {ω1 ∪ ω2 | (ω1,ω2) ∈ �1 × �2 and ω1 ∼ ω2}
�1 \ �2 = {ω1 | ω1 ∈ �1 and ω1 �ω2 for all ω2 ∈ �2}
πX� = {ω|X | ω ∈ �}

If q is a sparql query and ω a solution mapping s.t. vars(q) ⊆ dom(ω), we use ω(q) to designate the query identical to q, but where
each occurrence of variable x in a triple pattern is replaced by ω(x).

We now reproduce the inductive definition of answers to a sparql query q over a graph A, denoted sparqlAns(q, A), provided in [24]
for the SUJO fragment (and for set semantics).
2

G. Xiao and J. Corman Big Data Research 23 (2021) 100177
Definition 1 (sparql answers over a plain graph).

sparqlAns(t,A) = {ω | dom(ω) = vars(t) and ω(t) ∈ A}
sparqlAns(q1 union q2,A) = sparqlAns(q1,A) ∪ sparqlAns(q2,A)

sparqlAns(q1 join q2,A) = sparqlAns(q1,A) �� sparqlAns(q2,A)

sparqlAns(q1 opt q2,A) = (sparqlAns(q1,A) �� sparqlAns(q2,A)) ∪
(sparqlAns(q1,A) \ sparqlAns(q2,A))

sparqlAns(selectX q,A) = πX sparqlAns(q,A)

2.2. Description logic KB, UCQs and certain answers

A Knowledge Base (KB) is a KG enriched with an ontology. As is conventional in the DL literature, we represent a KB K as a pair
K = 〈T , A〉, where A is the KG, i.e. an rdf graph, also called the ABox of K, and T is the ontology, also called the TBox of K. A TBox is a
finite set of logical axioms in some DL. For the syntax of DLs, we refer to [4]. For a KB K = 〈T , A〉, the active domain of K, denoted with
aDom(K), is the set of elements of NI that appear (syntactically) in T or A.

The semantics of DL KBs is defined in terms of (first-order) interpretations. We adopt in this article the standard name assumption: an
interpretation is a structure I = 〈�I , ·I〉, where the domain �I of I is a non-empty subset of U, and the interpretation function ·I of I
maps each c ∈ NI to itself, and each A ∈ NC (resp. r ∈ NR) to a unary (resp, binary) relation AI (resp. rI) over �I . An interpretation I is
a model of a KB K = 〈T , A〉 if it satisfies every assertion in A and axiom in T . For the formal definition of “satisfies”, we refer to [4].

If K is a KB, we use mod(K) to denote the set of models of K. We focus on satisfiable KBs only, i.e. KBs that admit at least one
model, since any formula can be trivially derived from an unsatisfiable KB. We also omit this precision for readability. So “a KB” below is
a shortcut for “a satisfiable KB”.

For a DL KB K, an interpretation Ic ∈ mod(K) is a canonical model of K if Ic can be homomorphically mapped to any I ∈ mod(K). We
say that a DL L has the canonical model property if every KB in L has a canonical model. This is a key property of DLs tailored for query
answering, and many DLs, e.g. DL-LiteR , EL or Horn-SHIQ, have this property [10].

An interpretation can also be viewed as a (possibly infinite) rdf graph, with triples {A(d) | d ∈ AI , A ∈ NC} ∪{r(d1, d2) | (d1, d2) ∈ rI , r ∈
NR}. This is a slight abuse (the rdf standard does not admit infinite graphs), but we will nonetheless use this convention throughout the
article, in order to simplify notation.

A conjunctive query (CQ) h is a expression of the form:

h(x) ← p1(x1), . . . , pm(xm)

where h, pi are predicates and x, xi are tuple over NV . Abusing notation, we may use x (resp. xi) below to designate the elements of x
(resp. xi) viewed as a set. An additional syntactic requirement on a CQ is that x ⊆ x1 ∪ .. ∪ xm . The variables in x are called distinguished,
and we use vars(h) to designate the distinguished variables of CQ h. We focus in this article on CQs where each pi is unary or binary, i.e.
pi ∈ NC ∪ NR . A match for h in an interpretation I is a total function ρ from x1 ∪ . . . ∪ xm to �I such that ρ(xi) ∈ (pi)

I for i ∈ {1..m}.
A mapping ω is an answer to h over I iff there is a match ρ for h in I s.t. ω = ρ|vars(h) .

A union of conjunctive queries (UCQ) is a set q = {h1, . . . , hn} of CQs sharing the same distinguished variables, and ω is an answer to q
over I iff ω is an answer to some hi over I .

Definition 2 (Certain answer). A mapping ω is a certain answer to q over a KB K iff ω is an answer to q over each I ∈ mod(K). We use
certAns(q, K) to designate the set of certain answers to q over K.

CQs and UCQs have a straightforward representation as sparql queries. The CQ h(x) ← p1(x1), . . . , pm(xm) in sparql syntax is written:

selectx (p1(x1) join .. join pm(xm))

And a UCQ in sparql syntax is of the form:

h1 union .. union hn

where each hi is a CQ in sparql syntax, and vars(hi) = vars(h j) for i, j ∈ {1..n}.

3. Querying a DL KB with SPARQL: existing semantics

In this section, we review existing semantics for sparql over a DL KB. We start by briefly recalling some features of the W3C specifi-
cation for the sparql 1.1 entailment regimes [12]. This specification defines different ways to take into account the semantics of rdf, rdfs

or owl, in order to infer additional answers to a sparql query. We ignore the aspects pertaining to querying blank nodes and concept/role
names, which fall out of the scope of this paper, and focus on the entailment regimes parameterized by an owl profile, i.e. a DL L. In
short, the L-entailment regime modifies the evaluation of a sparql query q over an L-KB K = 〈T , A〉 as follows:

1. Triple patterns are not evaluated over the ABox A, but instead over the so-called entailed graph, which consists of all ABox assertions
entailed by K. This includes assertions of the form C(a), where C is a complex concept expression allowed in L. The semantics of
other sparql operators is preserved.

2. The sparql query can use L-concepts in triple pattern, e.g. ∃hasLicense(x).
3

G. Xiao and J. Corman Big Data Research 23 (2021) 100177
Consider again Example 1 under the owl 2 QL entailment regime for instance, which corresponds (roughly) to the DL DL-LiteR . In this
example, the query ∃hasLicense(x) has {x �→ Alice} as unique answer: since the entailed graph contains all ABox assertions entailed by
K, it contains the assertion ∃hasLicense(Alice) (again, we use the DL syntax rather than owl, for readability).

So the expressivity of the L-entailment regime is limited by the concepts that can be expressed in L. This is why [16] proposed to ex-
tend the semantics of the owl 2 QL profile, retrieving instances of concepts that cannot be expressed in DL-LiteR (e.g. concepts of the form
∃r1.∃r2). Still, under this semantics as well as all entailment regimes defined in the specification, the query select{x}hasLicense(x, y) has
no answer over the KB of Example 1, because the entailed graph does not contain any assertion of the form hasLicense(Alice, e).

This point was discussed in depth in [1], for the SUJO fragment, and based on remarks made earlier in [2]. The current paper essentially
builds upon this discussion, which is why we reproduce it below. A first remark made in [2] and [1] is that the opt operator of sparql

prevents the usage of certain answers, even when querying a plain graph (or equivalently, a KB with empty TBox). This can be seen with
Example 2.

Example 2.
A = {Person(Alice)}
q = Person(x) opt hasLicense(x, y)

In this example, according to the sparql specification, the mapping ω = {x �→ Alice} is the only answer to q over A, i.e.
sparqlAns(q, A) = {ω}. But ω is not a certain answer to q over the KB 〈∅, A〉. Consider for instance the interpretation I defined by
I =A ∪ {hasLicense(Alice, 123)}. Then sparqlAns(q, I) = {{x �→ Alice, y �→ 123}}. So ω /∈ certAns(q, 〈∅, A〉).

Then in [2] and [1] still, the authors remark that in this example, ω can nonetheless be extended to an answer in every model of
〈∅, A〉. This is the main intuition used in [1] to adapt the definition of certain answers to sparql queries with opt.

Definition 3 ([1]). If q is a query and I an interpretation, let eAns(q, I) designate all mappings that can be extended to an answer to q in
I , i.e.:

eAns(q,I) = {ω | ω � ω′ for some ω′ ∈ sparqlAns(q,I)}
Then if K is a KB, the set eCertAns(q, K) of mappings that can be extended to an answer in every model of K is defined as:

eCertAns(q,K) =
⋂

I∈mod(K)

eAns(q,I)

But as pointed out in [1], eCertAns(q, I) does not comply with sparql answers over a plain graph (i.e. when the TBox is empty).
Indeed, if some ω can be extended to an answer in every model of the KB, then this is also the case of any mapping that ω extends (e.g.
trivially the empty mapping). So in Example 2, eCertAns(q, 〈∅, A〉) = {{}, {x �→ Alice}}, whereas sparqlAns(q, A) = {{x �→ Alice}}.

The semantics proposed in [1] is designed to solve this issue. The precise scope of the proposal is so-called well-designed SUJO queries
(see [24] for a definition), in some normal form (no union in the scope of select, join or opt, no select in the scope of join or opt, and
no opt in the scope of join).2 Given a KB K, the solution consists in retaining, for each maximal SJO subquery q′ , the maximal elements
of eCertAns(q′, K) w.r.t. �. An additional restriction is put on the domain of such solution mappings, based on the so-called pattern-tree
representation (defined in [19]) of well-designed SJO queries. The union operator on the other hand is evaluated compositionally, as in
Definition 1.

But as illustrated by the authors, this proposal does not comply with the standard semantics for sparql over plain graphs. Example 3
below reproduces the one given in [1, Example 4]:

Example 3.
A = {teachesTo(Alice, Bob), knows(Bob, Carol), teachesTo(Alice, Dan)}
q = select{x,z}(teachesTo(x, y) opt knows(y, z))

In this example, sparqlAns(q, A) = {{x �→ Alice, z �→ Carol}, {x �→ Alice}}. Instead, the semantics proposed in [1] yields {{x �→
Alice, z �→ Carol}}.

Sections 5.3 and 5.4 below define different semantics for evaluating a sparql query over a KB, which coincides not only with certain
answers for UCQs (as opposed to the sparql entailment regimes and [16]), but also with the sparql specification in the case where the
TBox is empty (as opposed to the proposal made in [1]).

Before continuing, other works need to be mentioned, even though they are not immediately related to the problem addressed in this
paper. First, a modification of the entailment regimes’ semantics was proposed in [17] for the SJO fragment extended with the sparql

FILTER operator. For DLs with negation, it consists in ruling out a partial solution mappings if it cannot be extended to an answer in any
model of the KB. Finally, another topic of interest when it comes to sparql and certain answers, but which falls out of the scope of this
paper, is the treatment of blank nodes, discussed in the specification of sparql entailment regimes [12], and more recently in [13] and [15].

4. Requirements

As seen in the previous section, existing semantics for sparql answers over a KB fail to comply either with certain answers (for the
fragment of sparql that corresponds to UCQs), or with sparql answers over a plain graph when the TBox is empty.

2 This is without loss of expressivity, but normalization may cause an exponential blowup.
4

G. Xiao and J. Corman Big Data Research 23 (2021) 100177
We will show in Section 5 that these two requirements are compatible for some DLs and fragments of sparql. But first, in this section,
we formalize these two requirements, as properties to met by any semantics whose purpose is to conciliate certain answers and sparql

answers. We also define two additional requirements (called opt extension and strong variable binding, which generalize to KBs some basic
properties of sparql answers over plain graphs. We note that these requirements apply to arbitrary DLs, whereas Section 5 focuses instead
on specific families of DLs.

If q is a sparql query and K a KB, we use ans(q, K) below to denote the answers to q over K under some (underspecified) semantics.
This allows us to define properties to be met by such a semantics.

Requirement 1 states that ans(q, K) should coincide with certain answers for UCQs.

Requirement 1 (Certain answer compliance). For any UCQ q and KB K,

ans(q,K) = certAns(q,K)

Requirement 2 corresponds to the limitation of [1] identified in Section 3. It requires that ans(q, 〈∅, A〉) coincide with answers over A,
as defined in the sparql specification.

Requirement 2 (sparql answer compliance). For any query q and ABox A,

ans(q, 〈∅,A〉) = sparqlAns(q,A)

As will be seen in the next section, it is easy to define semantics that verify Requirements 1 and 2, but fail to comply with basic
properties of sparql answers over a plain graph. This is why we define additional requirements.

First, as observed in [17] for instance, the opt operator of sparql was introduced to “not reject the solutions because some part of the
query pattern does not match” [14]. Or in other words, for each answer ω to the left operand of an opt, either ω or some extension of
ω is expected be present in the answers to the whole expression. Let �g be the partial order over sets of solution mappings defined by
�1 �g �2 iff, for each ω1 ∈ �1, there is a ω2 ∈ �2 s.t. ω1 � ω2. Then this property is expressed with Requirement 3.

Requirement 3 (opt extension). For any queries q1, q2 and KB K:

ans(q1,K) �g ans(q1 opt q2,K)

Another important property of sparql answers over plain graphs pertains to bound variables. Indeed, a sparql query q (with union

and/or opt) may allow partial solution mappings, i.e. whose domain does not cover all variables projected by q. For instance, in Example 2,
ω = {x �→ Alice} ∈ sparqlAns(q, A), even though the variables projected by q are x and y. In such a case, we say that variable x is bound
by ω, whereas variable y is not. Then a sparql query may only admit answers that bind certain sets of variables. For instance the query
A(x) opt (R(x, y) join R(y, z)) admits answers that bind either {x} or {x, y, z}. But it does not admit answers that bind another set of
variables ({y}, {x, y}, etc.). So a natural requirement when generalizing sparql answers to KBs is to respect such constraints. We say that a
set X of variables is admissible for a query q iff there exists a graph A and solution mapping ω s.t. ω ∈ sparqlAns(q, A) and dom(ω) = X .
Unfortunately, for queries with opt, whether a given set of variables is admissible for a given query is undecidable. So we adopt instead a
relaxed notion of admissible bindings. For a SUJO query q, we use adm(q) to denote the family of sets of variables defined inductively as
follows:

Definition 4 (Definition of adm(q) for the SUJO fragment).

adm(t) = {vars(t)}
adm(selectX q) = { X ∩ X ′ | X ′ ∈ adm(q) }
adm(q1 join q2) = { X1 ∪ X2 | (X1, X2) ∈ adm(q1) × adm(q2) }
adm(q1 opt q2) = adm(q1) ∪ adm(q1 join q2)

adm(q1 union q2) = adm(q1) ∪ adm(q2)

We can now formulate the corresponding property, as follows:

Property 1 (Variable binding). For any SUJO query q, KB K and ω ∈ ans(q, K):

dom(ω) ∈ adm(q)

This constraint on variable bindings is still arguably weak though, if one consider queries with union. Take for instance the query
q = A(x) union R(x, y). Then adm(q) = {{x}, {x, y}}. But the semantics of sparql over plain graphs puts a stronger requirement on variable
bindings. If ω is a solution to q, then ω may bind {x} only if ω is an answer to the left operand A(x), and ω may bind {x, y} only if ω is
an answer to the right operand R(x, y). It is immediate to see that Property 1 on variable bindings does not enforce this property. So we
formulate a stronger requirement:

Requirement 4 (Strong variable binding). For any SUJO queries q1, q2, KB K and solution mapping ω:

if ω ∈ ans(q1 union q2,K) and ω /∈ ans(q2,K), then dom(ω) ∈ adm(q1)

if ω ∈ ans(q1 union q2,K) and ω /∈ ans(q1,K), then dom(ω) ∈ adm(q2)
5

G. Xiao and J. Corman Big Data Research 23 (2021) 100177
Table 1
Requirements met by alternative semantics for sparql over a DL KB (with the canonical model property). “A/B”
stands for all fragments between A and B.

Semantics Fragment req1 req2 req3 req4

Ahmetaj et al. ([1]) pwdPT (⊆ SJO) � x ? �
Entailment regime (Definition 5) UJO � � � �

SJ / SUJO x � � �
Canonical (Definition 6) O / SUJO � � x �
Restricted (Definition 7) SUJO � � � x

Maximal admissible canonical answers (Definition 10)
SUJO � � � �

Epistemic certain answers (Definition 12)

Observe that Requirement 4 is stronger than Property 1. To see this, by contraposition, let us assume a semantics that violates Prop-
erty 1. Then there is a query q1, KB K and solution mapping ω s.t. ω ∈ ans(q1, K) and dom(ω) /∈ adm(q1). Now let q2 be a SUJO query
whose signature is disjoint with the signature of K (i.e. none of the predicates in q2 appears in K). Then ω /∈ ans(q2, K) = ∅. Therefore,
q1, q2, K and ω violate (the first condition of) Requirement 4.

5. Semantics

We now investigate different semantics for answering sparql queries over a KB, in view of the requirements expressed in the previous
section. We note that each semantics is defined for a specific fragment of sparql only, and that this is also the case of Requirements 1
and 4 (the other two requirements are defined for arbitrary sparql queries). So when we say below that a semantics defined for fragment
L1 satisfies a requirement defined for fragment L2, this means that the requirement holds for the fragment L1 ∩ L2.

Section 5.1 shows that adopting a compositional interpretation of certain answers, analogous to sparql entailment regimes (restricted
to SUJO queries), is sufficient to satisfy Requirement 2, but fails to satisfy Requirement 1 for the SJ and U fragments already. Then
Section 5.2 focuses on DLs with the canonical model property, and investigates semantics with a “procedural” flavor. In particular, we
consider generalizing a well-known property of certain answers to UCQs: they are equivalent to answers over the canonical model, but
restricted to those that range over the active domain of the KB. We show that this solution satisfies Requirements 1 and 2 for the
SUJO fragment, but fails to satisfy Requirement 3 for the O fragment already. Next, Section 5.3 builds upon this last observation, and
shows that it is possible to define a semantics, called maximal admissible canonical answers, that satisfies all requirements for the SUJO
fragment. Finally, Section 5.4 proposes a more declarative semantics, called epistemic certain answers, considering the (standard) encoding
of opt with join, union and a minus operator. It consists in evaluating the right operand of minus under certain answer semantics, in an
inductive fashion. We show that although this semantics also satisfies all the requirements, it differs from maximal admissible canonical
answers.

Table 1 summarizes our observations (for KBs with the canonical model property only), together with observations about the proposal
made in [1] (discussed in Section 3).

5.1. sparql entailment regimes

Example 2 above showed that certain answer to a query with opt may fail to comply with the standard compositional semantics of
sparql (Definition 1) over a plain graph (i.e. when the TBox is empty). Then a natural attempt to conciliate the two is to proceed “the
other way around”: stick to the compositional semantics of sparql, and use certain answers for the base case only. This is in essence what
the sparql entailment regimes propose for queries that correspond to the SUJO fragment (recall the restrictions on reserved rdf/rdfs/owl

keywords in triple patterns expressed in Section 2).
Because the specification of sparql entailment regimes [12] is too low-level for the scope of this paper, we provide a more abstract

characterization of this approach for the SUJO fragment (using certain answer semantics as the base case). If q is a query and K a KB, we
call the resulting set of solution mapping the entailment regime answers to q over K, denoted with eRAns(q, K), defined as follows:

Definition 5 (Entailment regime answers).

eRAns(t,K) = certAns(t,K)

eRAns(q1 union q2,K) = eRAns(q1,K) ∪ eRAns(q2,K)

eRAns(q1 join q2,K) = eRAns(q1,K) �� eRAns(q2,K)

eRAns(q1 opt q2,K) = (eRAns(q1,K) �� eRAns(q2,K)) ∪
(eRAns(q1,K) \ eRAns(q2,K))

eRAns(selectX q,K) = πX eRAns(q,K)

It is immediate to see that entailment regime answers and sparql answers coincide over a plain graph. Indeed, in the base case
(i.e. when q is a triple pattern), for any graph A, sparqlAns(q, A) = certAns(q, 〈∅, A〉). Then the inductive definitions of sparqlAns(q, A)

(Definition 1) and eRAns(q, K) (Definition 5) coincide. So entailment regime answers satisfy Requirement 2.
But they fail to comply with certain answers for UCQs (Requirement 1), for two reasons. First, the union operator is not compositional

for certain answers in some DLs. Consider for instance Example 4 below:
6

G. Xiao and J. Corman Big Data Research 23 (2021) 100177
Example 4.
A = {Driver(Alice)}
T = {Driver� CarDriver � TruckDriver}
q = CarDriver(x) union TruckDriver(x)
Then certAns(q, 〈T , A〉) = {{x �→ Alice}}, but eRAns(q, 〈T , A〉) = ∅.

Second, the select operator is not compositional for certain answers, even for some DLs that have the canonical model property.
Consider for instance Example 5 below:

Example 5.
A = {Driver(Alice)}
T = {Driver� ∃hasLicense}
q = select{x} (Driver(x) join hasLicense(x, y))

Then certAns(q, 〈T , A〉) = {{x �→ Alice}}, but eRAns(q, 〈T , A〉) = ∅.

So entailment regime answers fail to satisfy Requirement 1 for the U and SJ fragments already.

5.2. Canonical answers

We now focus on DLs with the canonical model property. We assume some underspecified DL Lcan with the canonical model property,
and use “an Lcan KB” to refer to a KB in such DL. Then if K is an Lcan KB, we use can(K) to designate one of its canonical models.

An equivalent definition of certain answers for DLs with the canonical model property is the following: certain answers to a UCQ q
over a KB K coincide with answers to q over can(K), restricted to those that range over aDom(K). We show that extending this definition
to queries with opt is sufficient to satisfy Requirement 2 (in addition to Requirement 1), but fails to satisfy Requirement 3.

If � is a set of solution mappings and B ⊆ NI , let � � B = {ω ∈ � | range(ω) ⊆ B}. Then we define the canonical answers to a query q
over an Lcan KB K, denoted with canAns(q, K), as follows:

Definition 6 (Canonical answers). For any SUJO query q and Lcan KB K:

canAns(q,K) = sparqlAns(q, can(K)) � aDom(K)

Proposition 1 states that canonical answers coincide with sparql answers over a plain graph, i.e. satisfy Requirement 2 (the proof is in
Appendix A).

Proposition 1. For any SUJO query q and Lcan KB K, canAns(q, K) satisfies Requirement 2.

From the observation made above, canonical answers also comply with certain answers for UCQs (Requirement 1). But they fail to
satisfy opt extension (Requirement 3), as illustrated with Example 6.

Example 6.
A = {Driver(Alice)}
T = {Driver� ∃hasLicense}
q = Driver(x) opt hasLicense(x, y)

In this example, Let K = 〈T , A〉. Then canAns(Driver(x), K) = {{x �→ Alice}}. However, sparqlAns(q, can(K)) = {{x �→ Alice, y �→ e}},
for some e /∈ aDom(K). Therefore canAns(q, K) = sparqlAns(q, can(K)) � aDom(K) = ∅. So canAns(Driver(x), K) �g canAns(q, K), which
violates Requirement 3.

5.3. Maximal admissible canonical answers

The canonical answers defined in the previous section fail to satisfy Requirement 3. We show how this definition can be adapted to
satisfy all requirements, for the whole SUJO fragment.

Intuitively, in Definition 6, the restriction of sparqlAns(q, can(K)) to solution mappings that range over can(K) is too strong. Consider
again Example 6, where sparqlAns(q, can(K)) = {{x �→ Alice, y �→ e}}. In this example, rather than filtering out this solution mapping
(because it does not range over aDom(K)), one would like instead to restrict it to the active domain, which yields the desired mapping
{x �→ Alice}.

To formalize this intuition, if � is a set of solution mappings and B ⊆ NI , let � � B = {ω‖B | ω ∈ �}. We can now define the restricted
canonical answers restCanAns(q, K) to a query q over an Lcan KB K, as follows:

Definition 7 (Restricted canonical answers). For any SUJO query q and Lcan KB K:

restCanAns(q,K) = sparqlAns(q, can(K)) � aDom(K)

However, restricted canonical answers still fail to satisfy the above requirement on admissible variable bindings (Requirement 4), as
illustrated with Example 7 below:
7

G. Xiao and J. Corman Big Data Research 23 (2021) 100177
Example 7.
A = {Teacher(Alice)}
T = {Teacher� ∃teachesTo, teachesTo� hasTeacher−}
q = Teacher(x) opt (teachesTo(x, y) join hasTeacher(y, z))

In this example, sparqlAns(q, can(K)) = {{x �→ Alice, y �→ e, z �→ Alice}}, for some e /∈ aDom(K). So restricting this solution mapping
to aDom(K) would yield the mapping {x �→ Alice, z �→ Alice}. However, {x, z} is not an admissible set of variables for q, because q
requires that whenever variable z is bound, variable y must be bound as well.

We now propose to further constrain restricted canonical answers in order to satisfy Requirement 4. We call the resulting solution
mappings maximal admissible canonical answers, noted mCanAns(q, K).

We start with the SJO fragment (i.e. queries without union) for simplicity, since for this fragment, in order to satisfy Requirement 4, it
is sufficient to satisfy Property 1. If S is a family of sets, let max⊆(S) designate the set of maximal elements of S w.r.t. set inclusion. And
if � is a set of solution mappings and X a family of sets of variables, let:

� ⊗X = {ω|X | ω ∈ �, X ∈ max⊆(X ∩ 2dom(ω))}
We can now define maximal admissible canonical answers for the SJO fragment, as follows:

Definition 8 (Maximal admissible canonical answers (SJO)).

mCanAns(q,K) = restCanAns(q,K) ⊗ adm(q)

This definition, if extended to SUJO queries, is sufficient to satisfy Property 1 (see Lemma 7 in Appendix B), but not Requirement 4. To
see this, consider Example 8 below, which is almost identical to Example 7:

Example 8.
A={Teacher(Alice)}
T ={Teacher� ∃teachesTo,teachesTo� hasTeacher−}
q = (

Teacher(x) opt (teachesTo(x, y) join hasTeacher(y, z))
)

union hasLicense(x, z)
As opposed to Example 7, {x, z} is now an admissible set of variables for q (i.e. {x, z} ∈ adm(q)), due to the right operand hasLicense(x, z)
of the union operator. As a result, the undesired mapping {x �→ Alice, z �→ Alice} is now in restCanAns(q, K) ⊗ adm(q), even though
this mapping is returned by the left operand of the union, for which {x, z} is not admissible.

So in order to generalize Definition 8 to queries with union while satisfying Requirement 4, the provenance of each solution
mapping needs to be taken into account. To this end, we define the set of branches of a SUJO query q, denoted with branches(q),
as the set of SJO queries that may produce a solution to q, by intuitively “choosing” one operand of each union. For instance, if
q = A(x) opt (R1(x, y) union R2(x, z)), then branches(q) = {A(x) opt R1(x, y), A(x) opt R2(x, z)}. The function branches(q) is defined
inductively over q as expected:

Definition 9 (Branches of a SUJO query q).

branches(t) = {t}
branches(selectX q) = { selectX q′ | q′ ∈ branches(q) }
branches(q1 join q2) = { q′

1 join q′
2 | (q′

1,q′
2) ∈ branches(q1) × branches(q2) }

branches(q1 opt q2) = { q′
1 opt q′

2 | (q′
1,q′

2) ∈ branches(q1) × branches(q2) }
branches(q1 union q2) = branches(q1) ∪ branches(q2)

According to the semantics of sparql over plain graphs, an answer to a SUJO query q must be an answer to some branch of q (the
converse does not hold though; see e.g. [25, Example 1]). Or formally, for any SUJO query q and graph A:

sparqlAns(q,A) ⊆
⋃

q′∈branches(q)

sparqlAns(q′,A)

So if q′ ∈ branches(q), we use sparqlAns(q, A, q′) to denote the answers to q over A that may be obtained by evaluating branch q′ , i.e.:

sparqlAns(q,A,q′) = sparqlAns(q,A) ∩ sparqlAns(q′,A)

Similarly, we adapt Definition 8 to a branch q′ of q:

mCanAns(q,K,q′) = (sparqlAns(q, can(K),q′) � aDom(K)) ⊗ adm(q′)
We can now generalize maximal admissible canonical answers to the SUJO fragment:

Definition 10 (Maximal admissible canonical answers (SUJO)).

mCanAns(q,K) =
⋃

′
mCanAns(q,K,q′)
q ∈branches(q)

8

G. Xiao and J. Corman Big Data Research 23 (2021) 100177
It can be easily verified that Definitions 8 and 10 coincide for SJO queries, since in this case branches(q) = {q}.
Proposition 2 shows that maximal admissible canonical answers satisfy all requirements expressed in Section 4 (the proof is in Ap-

pendix B).

Proposition 2. For any SUJO query q and Lcan KB K, mCanAns(q, K) satisfies Requirements 1, 2, 3 and 4.

5.4. Epistemic certain answers

In this section, we propose a more declarative semantics, which we call epistemic certain answers.
In Definition 1, the evaluation of the opt operator over a graph A is defined by means of the “\” operator between sets of solution

mappings. So in a sense, the opt operator expresses a form of negation. Intuitively, epistemic certain answers consist in treating it like
negation as failure.

We make negation explicit in the definition of this semantics by extending the SUJO fragment with a difference operator, denoted
minus in what follows. And we will use the letter “M” (in addition to S, U, J, and O) to designate queries with minus. We will also use an
additional base case: as an alternative to a triple pattern, we allow a (finite) set � of solution mappings, similar to the VALUES operator
of sparql. Hence we use the letter “V” to designate the corresponding queries.

So the syntax of SUJOMV queries is:

q ::= � | t | selectX q | q union q | q join q | q opt q | q minus q

Let us first extend Definition 1 with the evaluation of these two operators:

Definition 11. If q1, q2 are SUJO queries, � a (finite) set of solution mappings and A a graph, then:

sparqlAns(�,A) = �

sparqlAns(q1 minus q2,A) = sparqlAns(q1,A) \ sparqlAns(q2,A)

Then a SUJO query can be transformed into an equivalent SUJM query, by replacing inductively each “q1 opt q2” with “(q1 join q2)

union (q1 minus q2)”. “Equivalent” here means that the answers to both queries over a plain graph coincide.
The semantics that we propose amounts to evaluating the right operand of minus under certain answer semantics: if q = q1 minus q2

is a (sub)-query, K a KB and I a model of K, then the answers to q over I under this semantics are the answers to q1 over I , minus the
certain answers to q2 over K. This intuition of is formalized below:

Definition 12 (Epistemic certain answers). If q is a SUJO query and K a KB, then

epCertAns(q,K) = certAns(partEval(q,K),K),

where partEval(q, K) is the SUJMV query defined inductively as follows:

partEval(t,K) = t
partEval(selectX q,K) = selectX partEval(q,K)

partEval(q1 join q2,K) = partEval(q1,K) join partEval(q2,K)

partEval(q1 union q2,K) = partEval(q1,K) union partEval(q2,K)

partEval(q1 opt q2,K) = partEval(q1 join q2,K) union

(partEval(q1,K) minus epCertAns(q2,K))

Note that in the definition of partEval(q1 opt q2, K), epCertAns(q2, K) evaluates to a set of solution mappings, so it corresponds
to a subquery of the form �. Note also that the definitions of epCertAns(q, K) and partEval(q, K) are mutually recursive. For a better
understanding of this definition, we illustrate with an example the inductive computation of epistemic certain answers.

Example 9.
A = {Driver(Alice), Driver(Bob), hasLicense(Bob,b)}
T = {Driver� ∃hasLicense}
q = Driver(x) opt hasLicense(x, y)

First, epCertAns(hasLicense(x, y),K) = certAns(partEval(hasLicense(x, y),K))

= certAns(hasLicense(x, y),K) = {{x �→ Bob, y �→ b}}.
Then epCertAns(q,K) = certAns(partEval(q,K),K)

= certAns(
partEval(Driver(x) join hasLicense(x, y),K)

union

(partEval(Driver(x),K) minus epCertAns(hasLicense(x, y),K)),K)

= certAns(
(Driver(x) join hasLicense(x, y))

union

(Driver(x) minus {{x �→ Bob, y �→ b}}),K)

= {{x �→ Bob, y �→ b}, {x �→ Alice}}.

9

G. Xiao and J. Corman Big Data Research 23 (2021) 100177
The KB in this example admits a canonical model, so the canonical answers canAns(q, K) are defined. But neither canAns(q, K) nor
certAns(q, K) contains the mapping {x �→ Alice}. Instead, under epCertAns, the right operand hasLicense(x, y) of the minus operator
is first evaluated under certain answer semantics. The result {{x �→ Bob, y �→ b}} does not contain any answer that maps x to Alice,
because variable y cannot be mapped to the same license for Alice in every model of K. This way the mapping {{x �→ Alice}} is not
discarded when evaluating the minus operator. Intuitively, this allows distinguishing the “anonymous” license of Alice from the “named”
license b of Bob.

Proposition 3 shows that epistemic certain answers satisfy all requirements expressed in Section 4 (the proof is in Appendix C).

Proposition 3. For any SUJO query q and KB K, epCertAns(q, K) satisfies Requirements 1, 2, 3 and 4.

Relationship with existing formalisms. The treatment of negation in this semantics is often called epistemic, and has been extensively studied
in the logic programming literature, among others (see for instance [11,26,9]).

Numerous formal languages and associated semantics have been proposed that can express epistemic negation, usually by means of
two different negation operators (“strong” and “weak”), or with an epistemic operator in the language (often noted K), thus allowing
explicit quantification over models. Interestingly, one of these formalisms, called MKNF [20], has been used in [22] to reason over DLs
extended with rules, as a unified way to combine closed and open-world reasoning. In this framework, called MKNF+ , a knowledge base
can be viewed as a pair 〈K, P〉, where K is DL KB and P a set of rules, and epistemic certain answers may be captured by means of a K
operator. For instance, Example 6 can be encoded as a knowledge base 〈〈T , A〉, P〉, where P is the set of rules:

ans(x, y) ← K q(x, y)

q(x, y) ← Driver(x),hasLicense(x, y)

q(x,NULL) ← Driver(x),¬K hasLicense(x, y)

This example can be generalized, translating a SUJO query q into a set of rules (as in [23] for instance), and expressing (possibly nested)
certain answers with the K operator. We did not adopt directly the MKNF+ syntax and semantics though, because such expressivity is not
needed in our setting. Instead, we chose to formulate epistemic certain answers in a concise way by means of certain answers. A detailed
analysis of the relationship with such formalism is left for future work.

epCertAns over Lcan KBs. Epistemic certain answers are defined for arbitrary KBs. However, for the case where the underlying KB K
admits a canonical model, a key property of this semantics is the following: the epistemic certain answers to a query q coincide with the
answers to partEval(q, K) over the canonical model of K, restricted to solution mappings that range over the active domain. Or formally
(the proof is in Appendix D):

Proposition 4. For any Lcan KB K and SUJO query q,

epCertAns(q,K) = sparqlAns(partEval(q,K), can(K)) � aDom(K)

This property will be instrumental in comparing epCertAns and mCanAns (in Section 5.5), but also in investigating the complexity of
query answering for epCertAns (in Section 6).

5.5. Comparing maximal canonical answers and epistemic certain answers

Both maximal canonical answers (mCanAns, defined in Section 5.3) and epistemic certain answers (epCertAns, defined in Section 5.4)
satisfy the requirements proposed in Section 4. So a natural question is whether (and when) these two semantics coincide.

We first observe that mCanAns is only defined for DLs with the canonical model property, whereas epCertAns is defined for arbitrary
DLs. So we restrict the comparison to DLs where both are defined, i.e. for Lcan KBs. Proposition 5 shows that the two semantics differ for
SUJO queries.

Proposition 5. There is a KB K and SUJO query q such that K admits a canonical model, and mCanAns(q, K) �= epCertAns(q, K).

Proof. Consider the KB K = 〈T , A〉, with T = {B � ∃R} and A = {A(a), B(b)}, and the query q = A(x1) join

(
B(x2) opt R(x2, x1)

)
.

Then mCanAns(q, K) = ∅, whereas epCertAns(q, K) = {{x1 �→ a, x2 �→ b}}. �
Next, we show that both semantics coincide for SUJ queries, i.e. without the opt operator (the proof is in Appendix E).

Proposition 6. For any Lcan KB K and SUJ query q,

mCanAns(q,K) = epCertAns(q,K)

Interestingly, the sparql query used in the proof of Proposition 5 is not well-designed. So an interesting open question is whether
these two semantics coincide for well-designed SUJO queries. This is left for future work.
10

G. Xiao and J. Corman Big Data Research 23 (2021) 100177
Table 2
Combined complexity of evalsparqlAns , evalmCanAns and evalepCertAns . “-c” stands for
complete, “-h” for hard, and “A/B” for all fragments between A and B.

Fragment evalsparqlAns evalmCanAns evalepCertAns

UJ/SUJ NP-c NP-c NP-c

well-designed JO coNP-c coNP-c coNP-h / in PSpace

well-designed SJO* ΣP
2 -c ΣP

2 -c ΣP
2 -h / in PSpace

OJ/SUJO PSpace-c PSpace-c PSpace-c

6. Complexity

We now provide complexity results for query answering under the semantics defined in Sections 5.3 and 5.4, for different sub-
fragments of the SUJO fragment, and focusing on KBs in DL-LiteR [3], a DL tailored for query answering, which corresponds to the
owl 2 ql profile. As is conventional, we focus on the decision problem for query answering, i.e. the problems evalmCanAns and evalepCertAns

below.

evalmCanAns

Input: DL-LiteR KB K, query q, mapping ω
Decide: ω ∈ mCanAns(q,K)

evalepCertAns

Input: DL-LiteR KB K, query q, mapping ω
Decide: ω ∈ epCertAns(q,K)

We focus on combined complexity, i.e. measured in the size of the whole input (KB and query), and leave data complexity (parameterized
either by the size of the query and TBox) as future work. Complexity of sparql query evaluation over plain graphs has been extensively
studied (see [21] for a recent overview). When these results are tight, they provide us immediate lower bounds. Indeed, from Proposi-
tions 1 and 3, maximal admissible canonical answers and epistemic certain answers satisfy Requirement 2, so evalmCanAns and evalepCertAns

are at least as hard as the problem evalsparqlAns below.

evalsparqlAns

Input: graph A, query q, mapping ω
Decide: ω ∈ sparqlAns(q,A)

Table 2 reproduces results for evalsparqlAns in several commonly studied fragments that fall within the SUJO fragment. The opt operator
has been the focus of a large part of the literature, as evalsparqlAns has been shown to be PSpace-complete for the OJ fragment already,
in [25]. Particular attention has also been paid to so-called well-designed SJO and JO queries (see [24] for a definition), which have a
natural representation as pattern trees [19], with a significant reduction from PSpace to ΣP

2 and coNP-completeness respectively. For SJO,
we follow [19] and focus on queries where the select operator is terminal, i.e. where it does not appear in the scope of join or opt. The
corresponding fragment is called SJO*. Finally, another fragment of interest is UJ, for which query answering is already intractable [25],
thus contrasting with projection-free UCQs.

So for each fragment, we investigate whether evalmCanAns and evalepCertAns match the upper bounds for evalsparqlAns . The results are
summarized in Table 2.

6.1. Complexity of maximal admissible canonical answers

Interestingly, for evalmCanAns , all upper bounds are matched. This means that for these fragments and this semantics, the presence of a
TBox does not induce an extra computational cost (as far as worst-case complexity is concerned) when compared to sparql answers over
a plain graph. This observation is analogous to well-known results for answering UCQs under certain-answer semantics over a DL-LiteR
KB [7], which matches the (NP) upper bound for UCQs over a plain graph.

Before explaining these results, we isolate a key observation:

Proposition 7. If q is a JO query and X1, X2 ⊆ vars(q), then it can be decided in O (|q|2) whether X1 ∈ max⊆(adm(q) ∩ 2X2)

Proof. (Sketch.) If q is a JO query, we compute a family base(q) of sets of variables s.t. |base(q)| = O (|q|), and s.t. each V ∈ adm(q) is the
union of some elements of base(q) and conversely, i.e. adm(q) = {⋃B | B ∈ 2base(q)}. The family base(q) can be computed inductively as
follows:

• If q is a triple pattern, then base(q) = {vars(q)}.
• If q = q1 join q2, then base(q) = {B1 ∪ B2 | B1 ∈ min⊆(base(q1)), B2 ∈ base(q2)}∪

{B1 ∪ B2 | B1 ∈ base(q1), B2 ∈ min⊆(base(q2))}.
• If q = q1 opt q2, then base(q) = base(q1) ∪ base(q1 join q2).
11

G. Xiao and J. Corman Big Data Research 23 (2021) 100177
The induction guarantees that | min⊆(base(q))| = 1, so that |base(q))| = O (|q|) must hold. Then in order to decide X1 ∈ max⊆(adm(q) ∩
2X2), it is sufficient to: (i) check whether X1 ∈ adm(q), i.e. check whether X1 ⊆ ⋃{B ∈ base(q) | B ⊆ X1}, and (ii) check whether there is
an X ′ ∈ adm(q) ∩ 2X2 s.t. X � X ′ . This is the case iff there is a B ∈ base(q) s.t. X1 � X1∪B � X2. �

We note that from the definition of adm(q), this property is independent from the semantics under investigation, so it holds for sparql

over a plain graph. It also follows that deciding whether X ∈ adm(q) for an arbitrary X and JO query q is tractable (consider the case
where X1 = X2). Interestingly, this does not hold for the UJ fragment already. Indeed, immediately from the reduction used in [25] for
hardness of evalsparqlAns in this fragment, deciding X ∈ adm(q) for any X and UJ query q is NP-hard.

We now sketch the argument used to derive upper bounds for the SUJO, well-designed SJO* and UJ fragments. For simplicity, we
focus on the well-designed SJO* fragment. The argument for queries with union is similar, but with additional technicalities, because the
definition of maximal admissible canonical answers in this case is more involved (compare Definitions 8 and 10 above). We also simplify
the explanation by assuming that the Gaifman graph of the query is connected. If G is a graph, we will use V (G) below to designate its
vertices.

From the definition of evalmCanAns , 〈K, q, ω〉 is a positive instance iff ω ∈ mCanAns(q, K), i.e. iff there is an ω′ s.t. (i) ω = ω′|X for
some X ∈ max⊆(adm(q) ∩ 2dom(ω′‖aDom(K)))} and (ii) ω′ ∈ sparqlAns(q, K).

So a (non-deterministic) procedure to verify ω ∈ mCanAns(q, K) consists in guessing an extension ω′ or ω, then verify (i), and then
verify (ii). From Proposition 7 above, (i) can be verified in O (|q|2). For (ii), if ω′ ∈ sparqlAns(q, can(K)), from well-known properties of
can(K) for DL-LiteR , it can be shown that:

• there must exist a subgraph G of can(K) s.t. V (G) ∩ V (A) �= ∅, and the size of the subgraph of G induced by V (G) \ V (A) is linearly
bounded by max(|q|, |T |);

• for each maximal connected subgraph G′ of G s.t. V (G′) ∩ V (A) = ∅, it can be verified in O ((|G′| +|T |) · |T |) whether G′ is a subgraph
of can(K).

So in order to verify (ii), it is sufficient to guess G , then verify that G is a subgraph of can(K), and then verify that ω′ ∈ sparqlAns(q, G).
Since evalsparqlAns is in ΣP

2 , ω′ ∈ sparqlAns(q, G) can be nondeterministically verified in time in O (|q| + |G| + |ω′|) = O (|q| + |K| + ω) by
some algorithm with an oracle for coNP problems. And a witness for this algorithm can be guessed together with G and ω′ (without
gaining a level in the polynomial hierarchy). We note that this last remark does not apply to the well-designed JO fragment: since
evalsparqlAns is coNP-hard, such a procedure would instead imply a quantifier alternation.

The proof of coNP-membership for the well-designed JO fragment is significantly simpler. First, because the fragment does not allow
projection, for any JO query q, mCanAns(q, K) = canAns(q, K) must hold. Then we consider the ABox A′ that contains all atoms over
the active domain that are entailed by K, i.e. A′ = {A(c) ∈ can(K) | c ∈ aDom(K)} ∪ {r(c1, c2) ∈ can(K) | c1, c2 ∈ aDom(K)}. A′ can be
computed in time polynomial in K and, by immediate induction on q, it can be shown that canAns(q, K) = sparqlAns(q, A′). Finally,
from [24], ω ∈ sparqlAns(q, A′) is in coNP.

6.2. Complexity of epistemic certain answers

For evalepCertAns , we only provide two results, namely NP-membership for the SUJ fragment, and PSpace-membership for the SUJO
fragment. These two results match the corresponding known upper bounds for evalsparqlAns , i.e. for query evaluation over a plain graph.
For the other fragments, the question remains open (meaning that the known upper bounds for evalsparqlAns may also be matched).

NP-membership for the SUJ fragment follows immediately from the upper bound for evalmCanAns , and from the fact that both semantics
coincide over Lcan KBs for this fragment (Proposition 6).

The proof of PSpace-membership for the SUJO fragment can be found in Appendix G. First, since DL-LiteR has the canonical model
property, from Lemma 4, ω ∈ epCertAns(q, K) can be decided by checking whether ω ranges over the active domain on the one hand, and
deciding whether ω is an answer to partEval(q, K) over can(K) on the other hand. Then we define a top-down procedure that decides
ω ∈ sparqlAns(partEval(q, K), can(K)), and requires an amount of space at most polynomial in |K| + |q| + |ω|.

7. Conclusion and perspectives

We identified in this article simple properties to be met by a semantics meant to conciliate certain answers to UCQs over a KB on the
one hand, and sparql answers over a plain KG on the other hand. We formalized these properties as requirements, and evaluated different
proposals (some of which were taken from the literature) against these requirements.

We also showed that these requirements can be all satisfied (under set semantics) for the fragment of sparql with select, union,
join and opt. More precisely, we defined two semantics that satisfy these requirements, one with a more procedural flavor, defined for
DLs with the canonical model property only, and the other with a more declarative flavor, defined for arbitrary DLs. We also provided
combined complexity results for query answering over a DL-LiteR KB under these semantics, for different (sub-)fragments of sparql.

As for future work, data complexity may also be investigated, as well as algorithmic aspects, in particular first-order rewritability, i.e. the
possibility to rewrite a query over a KB into a query over its ABox only, which is a key property for OMQA/OBDA [28,29]. Other fragments
of sparql and/or DLs may also be considered. E.g., after adding the sparql FILTER operator, we can study the satisfiability problem [32].
Finally, on the practical side, we are interested in implementing these semantics in an OBDA system like Ontop [6,30], studying the
optimization techniques in a distributed environment [31,27], and evaluating the performance of query answering [18].

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.
12

G. Xiao and J. Corman Big Data Research 23 (2021) 100177
Acknowledgements

This research has been partially supported by the EU H2020 project INODE (863410), by the Italian PRIN project HOPE (2017MMJJRE),
by the European Regional Development Fund (ERDF) Investment for Growth and Jobs Programme 2014-2020 through the project IDEE
(FESR1133), by the Free University of Bozen-Bolzano through the projects KGID and GeoVKG, and by the National Natural Science Founda-
tion of China (61972455).

Appendix A. Proof of Proposition 1

Proposition 1. For any SUJO query q and Lcan KB K, canAns(q, K) satisfies Requirement 2.

Proof. Lemma 1 below states the proposition. �
Lemma 1. For any UCQ q and ABox A,

canAns(q, 〈∅,A〉) = sparqlAns(q,A)

Proof. If A is an ABox, then aDom(〈∅, A〉) is the set of constants appearing in A.
In addition, can(〈∅, A〉) = A.
So if q is a query, trivially, sparqlAns(q, 〈∅, A〉) � aDom(〈∅, A〉) = sparqlAns(q, 〈∅, A〉).
So from Definition 6, canAns(q, 〈∅, A〉) = sparqlAns(q, 〈∅, A〉). �
Appendix B. Proof of Proposition 2

Proposition 2. For any SUJO query q and Lcan KB K, mCanAns(q, K) satisfies Requirements 1, 2, 3 and 4.

Proof. The proposition is split into Lemmas 2, 4, 5 and 6 below, one for each requirement. �
Lemma 2. For any UCQ q and Lcan KB K, mCanAns(q, K) = certAns(q, K)

Proof. Let q be a UCQ and K an Lcan KB.
Lemma 3 below states that mCanAns(q, K) = canAns(q, K).
Then the claim follows immediately from the observation (made in Section 5.2) that canAns(q, K) satisfies Requirement 1. �
Lemma 3. For any UCQ q and Lcan KB K, mCanAns(q, K) = canAns(q, K)

Proof. Let q be a UCQ.
Then q is of the form h1 union..union hn , where each hi can only contains select or join operators, and vars(hi) = vars(h j) for all
i, j ∈ {1..n}.
So immediately from Definition 1, for each q′ ∈ branches(q), adm(q′) = {vars(q)}.
Therefore for any q′ ∈ branches(q), adm(q′) = {vars(q)}
Then from the definition of mCanAns(q, K, q′):

mCanAns(q,K,q′) = (sparqlAns(q, can(K),q′) � aDom(K)) ⊗ adm(q′)

= (sparqlAns(q, can(K),q′) � aDom(K)) ⊗ {vars(q)}
= {ω‖aDom(K) | ω ∈ sparqlAns(q, can(K),q′)} ⊗ {vars(q)}

Then for each ω ∈ sparqlAns(q, can(K), q′), ω ∈ sparqlAns(q, can(K)) must hold.
So since adm(q) = {vars(q)}, dom(ω) = vars(q) must hold as well.
Therefore vars(q) ⊆ dom(ω‖aDom(K)) iff ω‖aDom(K) = ω, i.e. iff range(ω) ⊆ aDom(K). So from (B.1):

mCanAns(q,K,q′) = {ω ∈ sparqlAns(q, can(K),q′) | range(ω) ⊆ aDom(K)} (B.1)

mCanAns(q,K,q′) = sparqlAns(q, can(K),q′) � aDom(K) (B.2)

Finally:

mCanAns(q,K) =
⋃

q′∈branches(q)

mCanAns(q,K,q′) (B.3)

So from (B.2) and (B.3):
13

G. Xiao and J. Corman Big Data Research 23 (2021) 100177
mCanAns(q,K) =
⋃

q′∈branches(q)

sparqlAns(q, can(K),q′) � aDom(K)

=
⋃

q′∈branches(q)

(sparqlAns(q, can(K)) ∩ sparqlAns(q′, can(K))) � aDom(K)

=
⎛
⎝sparqlAns(q, can(K)) ∩

⋃
q′∈branches(q)

sparqlAns(q′, can(K))

⎞
⎠ � aDom(K)

And since:

sparqlAns(q,K) ⊆
⋃

q′ ∈branches(q)

sparqlAns(q′, can(K))

we get:

mCanAns(q,K) = sparqlAns(q, can(K)) � aDom(K) �
Lemma 4. For any SUJO query q and ABox A,

mCanAns(q, 〈∅,A〉) = sparqlAns(q,A)

Proof. If A is an ABox, then aDom(〈∅, A〉) is the set of constants appearing in A.
In addition, can(〈∅, A〉) = A.
Then from the definition of mCanAns(q, K, q′):

mCanAns(q, 〈∅,A〉,q′) = (sparqlAns(q,A,q′) � aDom(〈∅,A〉)) ⊗ adm(q′)

= sparqlAns(q,A,q′) ⊗ adm(q′) (B.4)

Then since sparqlAns(q, A, q′) ⊆ sparqlAns(q′, A), for each ω ∈ sparqlAns(q, A, q′), ω ∈ sparqlAns(q′, A) must hold.
So dom(ω) ∈ adm(q′) must hold as well.
Therefore {ω|X | X ∈ max⊆(adm(q′) ∩ 2dom(ω)} = {dom(ω)}.
So from (B.4):

mCanAns(q, 〈∅,A〉,q′) = sparqlAns(q,A,q′) (B.5)

Finally:

mCanAns(q, 〈∅,A〉) =
⋃

q′∈branches(q)

mCanAns(q, 〈∅,A〉,q′) (B.6)

So from (B.5) and (B.6):

mCanAns(q, 〈∅,A〉) =
⋃

q′∈branches(q)

sparqlAns(q,A,q′)

=
⋃

q′∈branches(q)

(sparqlAns(q,A) ∩ sparqlAns(q′,A))

= sparqlAns(q,A) ∩
⋃

q′∈branches(q)

sparqlAns(q′,A)

And since:

sparqlAns(q, 〈∅,A〉) ⊆
⋃

q′ ∈branches(q)

sparqlAns(q′,A)

we get:

mCanAns(q, 〈∅,A〉) = sparqlAns(q,A) �
Lemma 5. For any SUJO queries q1, q2 and Lcan KB K:

mCanAns(q1,K) �g mCanAns(q1 opt q2,K)
14

G. Xiao and J. Corman Big Data Research 23 (2021) 100177
Proof. Let q1, q2 be SUJO queries, let K be an Lcan KB, and let ω1 ∈ mCanAns(q1, K).
We need to show that there is an ω2 ∈ mCanAns(q1 opt q2, K) s.t. ω1 � ω2.
Since ω1 ∈ mCanAns(q1, K), there must be an SJO query q′ ∈ branches(q1) s.t. ω1 ∈ mCanAns(q1, K, q′).
So there is a ρ1 ∈ sparqlAns(q1, can(K)) ∩ sparqlAns(q′, can(K)) and an X ∈ max⊆(adm(q′) ∩ 2dom(ρ1)) s.t. ω1 = ρ1|X .
Since ρ1 ∈ sparqlAns(q′, can(K)), from Definition 1, there must be a ρ2 ∈ sparqlAns(q′

opt q2, can(K)) s.t. ρ1 � ρ2.
We first show that ρ2 ∈ sparqlAns(q1 opt q2, can(K)) must hold.
For this, we distinguish two cases:

• ρ1 = ρ2.
From Definition 1, for each ρ3 ∈ sparqlAns(q2, can(K)), ρ1 � ρ3 must hold.
Then because ρ1 ∈ sparqlAns(q1, can(K)), from Definition 1 still, ρ1 = ρ2 ∈ sparqlAns(q1 opt q2, can(K)) must hold.

• ρ1 �= ρ2.
Because ρ1 ∈ sparqlAns(q′, can(K)), ρ2 ∈ sparqlAns(q′

opt q2, can(K)) and ρ1 � ρ2, from Definition 1, there must be a ρ3 ∈
sparqlAns(q2, can(K)) s.t. ρ2 = ρ1 ∪ ρ3.
So ρ1 ∼ ρ3 holds.
Then because ρ1 ∈ sparqlAns(q1, can(K)), ρ3 ∈ sparqlAns(q2, can(K)) and ρ1 ∼ ρ3, from Definition 1 still, ρ1 ∪ ρ3 = ρ2 ∈ sparqlAns(q1
opt q2, can(K)) must hold.

Now because ρ1 � ρ2, dom(ρ1) = X ⊆ dom(ρ2).
And since X ∈ adm(q′), X ∈ adm(q′) ∩ 2dom(ρ2) holds.
So there must be an X ′ s.t. X ⊆ X ′ and X ′ ∈ max⊆(adm(q′) ∩ 2dom(ρ2)).
Finally, because q′ ∈ branches(q1), from Definition 9, q′ ∈ branchesq1 opt q2.
So from Definition 8, ρ2|X ′ ∈ mCanAns(q1 opt q2, K).
Now let ω2 = ρ2|X ′ .
To complete the proof, we only need to show that ω1 � ω2.
First, since ω1 = ρ1|X , ω1 � ρ1 must hold.
Then from the definition of ρ2, ρ1 � ρ2.
So from the transitivity of �, ω1 � ρ2.
Finally, since X ⊆ X ′ , ω1|X � ρ2|X ′ must hold, i.e. ω1 � ω2. �
Lemma 6. For any queries q1, q2 , Lcan KB K and solution mapping ω:

if ω ∈ mCanAns(q1 union q2) and ω /∈ mCanAns(q2), then dom(ω) ∈ adm(q1)

Proof. Let ω ∈ mCanAns(q1 union q2, K) s.t. ω /∈ mCanAns(q2, K).
Then from Definition 10, because ω ∈ mCanAns(q1 union q2, K):

ω ∈
⋃

q′∈branches(q1 union q2)

mCanAns(q1 union q2,K,q′)

And from Definition 9:

branches(q1 union q2) = branches(q1) ∪ branches(q2)

So:

ω ∈
⋃

q′∈branches(q1)∪branches(q2)

mCanAns(q1 union q2,K,q′)

So there is an SJO query q′ ∈ branches(q1) ∪ branches(q2) s.t. ω ∈ mCanAns(q1 union q2, K, q′)
So there is an ω′ ∈ sparqlAns(q1 union q2, can(K)) ∩ sparqlAns(q′, can(K)) s.t.
ω = ω′|X for some X ∈ max⊆(adm(q′) ∩ 2dom(ω′)).
Then we can distinguish three cases:

• q′ ∈ branches(q1) \ branches(q2).
Since ω′ ∈ sparqlAns(q′, can(K)) and q′ /∈ branches(q2), ω′ /∈ sparqlAns(q2, can(K)) must hold.
Then because ω′ ∈ sparqlAns(q1 union q2, can(K)), from Definition 1, ω′ ∈ sparqlAns(q1), must hold.
So from Definition 8, ω ∈ mCanAns(q1, K, q′).
And since q′ ∈ branches(q1), from Definition 10, ω ∈ mCanAns(q1, K).
So from Lemma 7 below, dom(ω) ∈ adm(q1)

• q′ ∈ branches(q2) \ branches(q1).
Since ω′ ∈ sparqlAns(q′, can(K)) and q′ /∈ branches(q1), ω′ /∈ sparqlAns(q1, can(K)) must hold.
Then because ω′ ∈ sparqlAns(q1 union q2, can(K)), from Definition 1, ω′ ∈ sparqlAns(q2), must hold.
So from Definition 8, ω ∈ mCanAns(q2, K, q′).
And since q′ ∈ branches(q2), from Definition 10, ω ∈ mCanAns(q2, K), which would contradict the hypothesis.
15

G. Xiao and J. Corman Big Data Research 23 (2021) 100177
• q′ ∈ branches(q1) ∩ branches(q2).
Since ω′ ∈ sparqlAns(q1 union q2, can(K)), from Definition 1,
ω′ ∈ sparqlAns(q1, can(K)) or ω′ ∈ sparqlAns(q2, can(K)) must hold.
If ω′ ∈ sparqlAns(q1, can(K)), then from Definition 8, ω ∈ mCanAns(q1, K, q′).
And since q′ ∈ branches(q1), from Definition 10, ω ∈ mCanAns(q1, K).
So from Lemma 7 below, dom(ω) ∈ adm(q1)

If ω′ ∈ sparqlAns(q2, can(K)) instead, then from Definition 8, ω ∈ mCanAns(q2, K, q′).
And since q′ ∈ branches(q2), from Definition 10, ω ∈ mCanAns(q2, K), which would contradict the hypothesis. �

Lemma 7. For any SUJO query q, Lcan KB K and ω ∈ mCanAns(q, K):

dom(ω) ∈ adm(q)

Proof. Let q be a SUJO query and K an Lcan KB.
Then mCanAns(q, K) = ⋃

q′∈branches(q)

(sparqlAns(q, A, q′) � aDom(K)) ⊗ adm(q′).

So for each ω ∈ mCanAns(q, K), there is a q′ ∈ branches(q) and solution mapping ω′ s.t. ω = ω′|X for some X ∈ max⊆(adm(q′) ∩ 2dom(ω′)).
So dom(ω) ∈ adm(q′).
Then Lemma 8 below shows that for any q′ ∈ branches(q), adm(q′) ⊆ adm(q).
So dom(ω) ∈ adm(q′). �
Lemma 8. For any SUJO query q and SJO q′ ∈ branches(q):

adm(q′) ⊆ adm(q)

Proof. Let q be a SUJO query, q′ ∈ branches(q) and X ∈ adm(q′).
We need to show that X ∈ adm(q).
By induction on q:

• q is a triple pattern.
Then branches(q) = {q}, so the property trivially holds.

• q = selectY q2.
From Definition 9, q′ = selectY q′

2 for some q′
2 ∈ branches(q2).

So from Definition 4, X = Y ∩ Y ′ for some Y ′ ∈ adm(q′
2).

Then by IH, Y ′ ∈ adm(q2).
So X = Y ∩ Y ′ for some Y ′ ∈ adm(q2).
And again from Definition 4, X ∈ adm(selectY q2) = adm(q).

• q = q1 join q2.
From Definition 9, q′ = q′

1 join q′
2 for some (q′

1, q
′
2) ∈ branches(q1) × branches(q2).

So from Definition 4, X = X1 ∪ X2 for some (X1, X2) ∈ adm(q′
1) × adm(q′

2).
Then by IH, X1 ∈ adm(q1) and X2 ∈ adm(q2).
So X = X1 ∪ X2 for some (X1, X2) ∈ adm(q1) × adm(q2).
And again from Definition 4, X ∈ adm(q1 join q2) = adm(q).

• q = q1 union q2.
From Definition 9, q′ ∈ branches(qi) for some i ∈ {1, 2}.
So from Definition 4, X ∈ adm(qi) for some i ∈ {1, 2}.
Then again from Definition 4, X ∈ adm(q1 union q2) = adm(q).

• If q = q1 opt q2, then q′ ∈ branches(q1 join q2) or q′ ∈ branches(q1) must hold.
– If q′ ∈ branches(q1 join q2), then we showed above that X ∈ adm(q1 join q2) must hold.

And from Definition 4, adm(q1 join q2) ⊆ adm(q).
So X ∈ adm(q).

– If q′ ∈ branches(q1), then by IH, X ∈ adm(q1).
And from Definition 4, adm(q1) ⊆ adm(q).
So X ∈ adm(q). �

Appendix C. Proof of Proposition 3

Proposition 3. For any SUJO query q and KB K, epCertAns(q, K) satisfies Requirements 1, 2, 3 and 4.

Proof. The proposition is split into Lemmas 9, 10, 11 and 12 below, one for each requirement. �
Lemma 9. For any UCQ q and KB K, epCertAns(q, K) = certAns(q, K)

Proof. Let q be a UCQ and K a KB.
Since q contains no opt operator, from Definition 12, partEval(q, K) = q.
16

G. Xiao and J. Corman Big Data Research 23 (2021) 100177
So (i) certAns(partEval(q, K), K) = certAns(q, K).
And from Definition 12 still, (ii) certAns(partEval(q, K), K) = epCertAns(q, K).
So from (i) and (ii), epCertAns(q, K) = certAns(q, K). �
Lemma 10. For any SUJO query q and ABox A,

epCertAns(q, 〈∅,A〉) = sparqlAns(q,A)

Proof. Let q be a SUJO query, let A be an ABox, and let K = 〈∅, A〉.
Then A = can(K).
Now by induction on q:

• q is a triple pattern.
Then partEval(q, K) = q.
– (⇒).

Let ω ∈ epCertAns(q, K).
Then from Definition 12, ω ∈ certAns(partEval(q, K), K).
And since partEval(q, K) = q, ω ∈ certAns(q, K).
So for every model I of K, ω ∈ sparqlAns(q, I).
In particular, ω ∈ sparqlAns(q, A).

– (⇐).
Let ω ∈ sparqlAns(q, A).
Then range(ω) ⊆ aDom(K).
And since A = can(K), for any model I of K, there is a homomorphism h from A to I .
Then because range(ω) ⊆ aDom(K), h ◦ ω = ω must hold.
So for any model I of K, ω ∈ sparqlAns(q, I).
And since partEval(q, K) = q, for any model I of K,
ω ∈ sparqlAns(partEval(q, K), I).
Therefore from Definition 12, ω ∈ epCertAns(q, K).

• q = selectX q′ .
– (⇒).

Let ω ∈ epCertAns(q, K).
Then from Definition 12, ω ∈ certAns(partEval(q, K), K).
So for every model I of K, ω ∈ sparqlAns(partEval(q, K), I).
In particular, ω ∈ sparqlAns(partEval(q, K), A).
So from Definitions 1 and 12, ω = ω′|X for some ω′ ∈ sparqlAns(partEval(q′, K), A).
So range(ω′) ⊆ aDom(K).
Then since A = can(K), for any model I of K, there is a homomorphism h from A to I .
And because range(ω′) ⊆ aDom(K), h ◦ ω′ = ω′ .
Therefore for any model I of K, ω′ ∈ sparqlAns(partEval(q′, K), I).
So from Definition 12, ω′ ∈ epCertAns(q′, K).
Then by IH, ω′ ∈ sparqlAns(q′, A).
And since ω = ω′|X , from Definition 1,
ω ∈ sparqlAns(selectX q′, A) = sparqlAns(q, A).

– (⇐).
Let ω ∈ sparqlAns(q, A).
Then from Definition 1, ω = ω′|X for some ω′ ∈ sparqlAns(q′, A).
And by IH, ω′ ∈ epCertAns(q′, K).
So from Definition 12, for any model I of K,
ω′ ∈ sparqlAns(partEval(q′, K), I).
And since ω = ω′|X , from Definition 1, for any model I of K,

ω ∈ sparqlAns(selectX partEval(q′,K),I) =
sparqlAns(partEval(q,K),I).

Therefore from Definition 12, ω ∈ epCertAns(q, K).
• q = q1 join q2.

– (⇒).
Let ω ∈ epCertAns(q, K).
Then from Definition 12, ω ∈ certAns(partEval(q, K), K).
So for every model I of K, ω ∈ sparqlAns(partEval(q, K), I).
In particular, ω ∈ sparqlAns(partEval(q, K), A).
So from Definitions 1 and 12, ω = ω1 ∪ ω2 for some (ω1, ω2) ∈ sparqlAns(partEval(q1, K), A) × sparqlAns(partEval(q2, K), A).
So for i ∈ {1, 2}, range(ωi) ⊆ aDom(K).
Then since A = can(K), for any model I of K, there is a homomorphism h from A to I .
17

G. Xiao and J. Corman Big Data Research 23 (2021) 100177
And because range(ωi) ⊆ aDom(K), h ◦ ωi = ωi .
Therefore for any model I of K, ωi ∈ sparqlAns(partEval(qi, K), I).
So from Definition 12, ωi ∈ epCertAns(qi, K).
Then by IH, ωi ∈ sparqlAns(qi, A).
So from Definition 1, ω = ω1 ∪ ω2 ∈ sparqlAns(q1 join q2, A) = sparqlAns(q, A).

– (⇐).
Let ω ∈ sparqlAns(q, A).
Then from Definition 1, ω = ω1 ∪ ω2 for some (ω1, ω2) ∈ sparqlAns(q1, A) × sparqlAns(q2, A).
So by IH, for i ∈ {1, 2}, ωi ∈ epCertAns(qi, K).
So from Definition 12, for any model I of K, ωi ∈ sparqlAns(partEval(qi, K), I).
Therefore from Definition 1, for any model I of K, ω = ω1 ∪ ω2 ∈ sparqlAns(partEval(q1, K) join partEval(q2, K), I).
And since partEval(q1, K) join partEval(q2, K) = partEval(q, K), for any model I of K, ω ∈ sparqlAns(partEval(q, K), I).
So from Definition 12, ω ∈ epCertAns(q, K).

• q = q1 union q2.
– (⇒).

Let ω ∈ epCertAns(q, K).
Then from Definition 12, ω ∈ certAns(partEval(q, K), K).
So for every model I of K, ω ∈ sparqlAns(partEval(q, K), I).
In particular, ω ∈ sparqlAns(partEval(q, K), A).
So range(ω) ⊆ aDom(K).
In addition, from Definitions 1 and 12,
ω ∈ sparqlAns(partEval(qi, K), A) for some i ∈ {1, 2}.
Then since A = can(K), for any model I of K, there is a homomorphism h from A to I .
And because range(ω) ⊆ aDom(K), h ◦ ω = ω.
So for any model I of K, ω ∈ sparqlAns(partEval(qi, K), I).
So from Definition 12, ω ∈ epCertAns(qi, K).
Then by IH, ω ∈ sparqlAns(qi, A) must hold.
So from Definition 1, ω ∈ sparqlAns(q1 union q2, A) = sparqlAns(q, A).

– (⇐).
Let ω ∈ sparqlAns(q, A).
Then from Definition 1, ω ∈ sparqlAns(qi, A) for some i ∈ {1, 2}.
So by IH, ω ∈ epCertAns(qi, K).
So from Definition 12, for any model I of K,
ω ∈ sparqlAns(partEval(qi, K), I).
Then from Definition 1, for any model I of K,
ω ∈ sparqlAns(partEval(q1, K) union partEval(q2, K), I).
And since partEval(q1, K) union partEval(q2, K) = partEval(q, K), for any model I of K, ω ∈ sparqlAns(partEval(q, K), I).
So from Definition 1, ω ∈ epCertAns(q, K).

• q = q1 opt q2
– (⇒).

Let ω ∈ epCertAns(q, K).
Then from Definition 12, ω ∈ certAns(partEval(q, K), K).
So for every model I of K, ω ∈ sparqlAns(partEval(q, K), I).
In particular, ω ∈ sparqlAns(partEval(q, K), A).
So from Definitions 1 and 12,
ω ∈ sparqlAns(partEval(q1, K) join partEval(q2, K), A) or
ω ∈ sparqlAns(partEval(q1, K) minus epCertAns(q2, K), A) must hold.
∗ If ω ∈ sparqlAns(partEval(q1, K) join partEval(q2, K), A),

as shown in the proof for the case q = q1 join q2,
ω ∈ sparqlAns(q1 join q2, A) must hold.
So from Definition 1, ω ∈ sparqlAns(q1 opt q2, A) = sparqlAns(q, A).

∗ If ω ∈ sparqlAns(partEval(q1, K) minus epCertAns(q2, K), A), then
(i) ω ∈ sparqlAns(partEval(q1, K), A) and
(ii) for all ω′ ∈ epCertAns(q2, K), ω �ω′ .
From (i), range(ω) ⊆ aDom(K) must hold.
And since A = can(K), for any model I of K, there is a homomorphism h from A to I .
Then because range(ω) ⊆ aDom(K), h ◦ ω = ω.
So for any model I of K, ω ∈ sparqlAns(partEval(q1, K), I).
So from Definition 12, ω ∈ epCertAns(q1, K).
So by IH, (iii) ω ∈ sparqlAns(q1, A).
And by IH still, (iv) epCertAns(q2, K) = sparqlAns(q2, A).
So from (ii) and (iv), (v) for all ω′ ∈ sparqlAns(q2, A), ω �ω′ .
So from (iii), (v) and Definition 1, ω ∈ sparqlAns(q1 opt q2, A) = sparqlAns(q, A).

– (⇐).
Let ω ∈ sparqlAns(q, A).
Then from Definition 1, ω ∈ sparqlAns(q1 join q2, A) or ω ∈ sparqlAns(q1 minus q2, A) must hold.
18

G. Xiao and J. Corman Big Data Research 23 (2021) 100177
∗ If ω ∈ sparqlAns(q1 join q2, A), as shown for the case q = q1 join q2, ω ∈ epCertAns(q1 join q2, K) must hold.
So from Definition 12, for every model I of K,

ω ∈ sparqlAns(partEval(q1 join q2,K),I)

= sparqlAns(partEval(q1,K) join partEval(q2,K),I)

⊆ sparqlAns((partEval(q1,K) join partEval(q2,K))

union (partEval(q1,K) minus epCertAns(q2,K)),I)

= sparqlAns(partEval(q,K),I).

So from Definition 1, ω ∈ epCertAns(q, K).
∗ If ω ∈ sparqlAns(q1 minus q2, A), then

(i) ω ∈ sparqlAns(q1, A) and
(ii) for all ω′ ∈ sparqlAns(q2, A), ω �ω′ .
From (i), by IH, ω ∈ epCertAns(q1, K).
So from Definition 12,
(iii) for any model I of K, ω ∈ sparqlAns(partEval(q1, K), I).
Then again by IH, sparqlAns(q2, A) = epCertAns(q2, K).
So from (ii), (iv) for all ω′ ∈ epCertAns(q2, K), ω �ω′ .
Therefore from (iii), (iv) and Definitions 1 and 12, for any model I of K,

ω ∈ sparqlAns(partEval(q1,K) minus epCertAns(q2,K),I)

⊆ sparqlAns((partEval(q1,K) minus epCertAns(q2,K))

union (partEval(q1,K) join partEval(q2,K)),I)

= sparqlAns(partEval(q,K),I).

So from Definition 12, ω ∈ epCertAns(q, K). �
Lemma 11. For any SUJO queries q1, q2 and KB K:

epCertAns(q1,K) �g epCertAns(q1 opt q2,K)

Proof. Let q1, q2 be SUJO queries, let K be a KB, and let ω1 ∈ epCertAns(q1, K).
We need to show that there is an ω′ ∈ epCertAns(q1 opt q2, K) s.t. ω1 � ω′ .
Since ω1 ∈ epCertAns(q1, K), from Definition 12, for every model I of K, ω1 ∈ sparqlAns(partEval(q1, K), I).
Then we have two cases:

• there is an ω2 ∈ epCertAns(q2, K) s.t. ω1 ∼ ω2.
Then for every model I of K, ω2 ∈ sparqlAns(partEval(q2, K), I).
So from Definitions 1 and 12, for every model I of K:

ω1 ∪ ω2 ∈ sparqlAns(partEval(q1,K) join partEval(q2,K),I)

⊆ sparqlAns((partEval(q1,K) join partEval(q2,K))

union (partEval(q1,K) minus certAns(q2,K)),I)

= sparqlAns(partEval(q1 opt q2,K),I)

So from Definition 12, ω1 ∪ ω2 ∈ epCertAns(q1 opt q2, K).
And ω1 � ω1 ∪ ω2.

• there is no ω2 ∈ epCertAns(q2, K) s.t. ω2 ∼ ω.
Then from Definitions 1 and 12, for every model I of K:

ω1 ∈ sparqlAns(partEval(q1,K) minus epCertAns(q2,K),I)

⊆ sparqlAns((partEval(q1,K) join partEval(q2,K))

union (partEval(q1,K) minus certAns(q2,K)),I)

= sparqlAns(partEval(q1 opt q2,K),I)

So from Definition 12, ω1 ∈ epCertAns(q1 opt q2, K).
And ω1 � ω1. �

Lemma 12. For any SUJO queries q, q′, KB K and solution mapping ω,

if ω ∈ epCertAns(q union q′,K) and ω /∈ epCertAns(q′,K), then dom(ω) ∈ adm(q)
19

G. Xiao and J. Corman Big Data Research 23 (2021) 100177
Proof. Let q, q′ be two SUJO queries let K be a KB,
and let ω ∈ epCertAns(q union q′, K) s.t. ω /∈ epCertAns(q′, K).
From Definition 12,
epCertAns(q union q′, K) = certAns(partEval(q, K) union partEval(q′, K), K)

and epCertAns(q′, K) = certAns(partEval(q′, K), K).
So there is a model I of K s.t.
ω ∈ sparqlAns(partEval(q, K) union partEval(q′, K), I) and
ω /∈ sparqlAns(partEval(q′, K), I).
Therefore from Definition 1, ω ∈ sparqlAns(partEval(q, K), I) must hold.
Then from Lemma 13 below, it follows that dom(ω) ∈ adm(q). �
Lemma 13. For any SUJO query q and graph I , for any ω ∈ sparqlAns(partEval(q, K), I),

dom(ω) ∈ adm(q)

Proof. Let q be a SUJO query, let I be a graph, and let ω ∈ sparqlAns(partEval(q, K), I).
By induction on q:

• q is a triple pattern.
Then partEval(q, K) = q.
And from Definitions 1 and 4,
dom(ω) = vars(partEval(q, K)) = vars(q) ∈ adm(q).

• q = selectX q′ .
Then partEval(q, K) = selectX partEval(q′, K).
So from Definition 1, there is a ω′ ∈ sparqlAns(partEval(q′, K), I)

s.t. ω = ω′|X .
And by IH, dom(ω′) ∈ adm(q′).
So from Definition 4, dom(ω′) ∩ X = dom(ω) ∈ adm(q).

• q = q1 join q2.
Then partEval(q, K) = partEval(q1, K) join partEval(q2, K).
So from Definition 1, ω = ω1 ∪ ω2 for some (ω1, ω2) ∈ sparqlAns(partEval(q1, K), I) × sparqlAns(partEval(q2, K), I).
And by IH, for i ∈ {1, 2}, dom(ωi) ∈ adm(qi).
So from Definition 4, dom(ω) = dom(ω1) ∪ dom(ω2) ∈ adm(q).

• q = q1 union q2.
Then partEval(q, K) = partEval(q1, K) union partEval(q2, K).
So from Definition 1, ω ∈ sparqlAns(partEval(q1, K), I) or
ω ∈ sparqlAns(partEval(q2, K), I) must hold.
So by IH, for some i ∈ {1, 2}, dom(ω) ∈ adm(qi).
And from Definition 4, adm(qi) ⊆ adm(q).
So dom(ω) ∈ adm(q).

• q = q1 opt q2.
Then partEval(q, K) = (partEval(q1, K) join partEval(q2, K)) union

(partEval(q1, K) minus epCertAns(q2, K)).
So from Definition 1,
ω ∈ sparqlAns(partEval(q1, K) join partEval(q2, K), I) or
ω ∈ sparqlAns(partEval(q1, K) minus epCertAns(q2, K), I) must hold.
– If ω ∈ sparqlAns(partEval(q1, K) join partEval(q2, K), I),

from the proof above for the case q = q1 join q2,
dom(ω) ∈ adm(q1 join q2) must hold.
And from Definition 4, adm(q1 join q2) ⊆ adm(q).
So dom(ω) ∈ adm(q).

– If ω ∈ sparqlAns(partEval(q1, K) minus epCertAns(q2, K), I),
then ω ∈ sparqlAns(partEval(q1, K)).
So by IH, dom(ω) ∈ adm(q1).
And from Definition 4, adm(q1) ⊆ adm(q).
So dom(ω) ∈ adm(q). �

Appendix D. Proof of Proposition 4

Proposition 4. For any Lcan KB K and SUJO query q,

epCertAns(q,K) = sparqlAns(partEval(q,K), can(K)) � aDom(K)

Proof. Let q be a SUJO query and K an Lcan KB.
20

G. Xiao and J. Corman Big Data Research 23 (2021) 100177
• (⇒).
Let ω ∈ epCertAns(q, K).
Then from Definition 12, ω ∈ certAns(partEval(q, K), K).
So range(ω) ⊆ aDom(K) and ω ∈ sparqlAns(partEval(q, K), can(K)) both hold.

• (⇐).
By induction on q.
For the cases:
– q is a triple pattern,
– q = selectX q′ ,
– q = q1 join q2,
– q = q1 union q2,
the proof is identical to the one of Lemma 10 (left direction).
For the case q = q1 opt q2, let
ω ∈ sparqlAns(partEval(q, K), can(K)) � aDom(K).
Then either:
– ω ∈ sparqlAns(partEval(q1, K) join partEval(q2, K), can(K)).

Then the proof is identical to the case q = q1 join q2.
– (i) ω ∈ sparqlAns(partEval(q1, K), can(K)), and

(ii) for all ω′ ∈ epCertAns(q2, K), ω �ω′ .
From (i), by IH, ω ∈ epCertAns(q1, K).
So from Definition 12, (iii) for any model I of K,
ω ∈ sparqlAns(partEval(q1, K), I).
So from (ii) and (iii), for any model I of K,
ω ∈ sparqlAns(partEval(q1, K) minus epCertAns(q2, K), I).
Therefore from Definition 12, ω ∈ epCertAns(q, K). �

Appendix E. Proof of Proposition 6

Proposition 6. For any Lcan KB K and SUJ query q,

mCanAns(q,K) = epCertAns(q,K)

Proof. Let q be a SUJ query, and let K be Lcan KB.
From Proposition 4,
epCertAns(q, K) = sparqlAns(partEval(q, K), can(K)) � aDom(K).
So in order to prove the result, it is sufficient to show that
mCanAns(q, K) = sparqlAns(partEval(q, K), can(K)) � aDom(K).
Then from Definition 12, because q is a SUJ query, partEval(q, K) = q.
So it is sufficient to show that
mCanAns(q, K) = sparqlAns(q, can(K)) � aDom(K).
The left direction is immediate from Definition 10, and the fact that for any graph G and SUJO query q, if ω ∈ sparqlAns(q, G), then there
must be a b ∈ branches(q) s.t. ω ∈ sparqlAns(b, G) and dom(ω) ∈ adm(b).
For the right direction, let ω ∈ mCanAns(q, K).
Then from Definition 10, there must be a b ∈ branches(q) s.t.
(i) ω ∈ mCanAns(q, K, b).
So from (i), (ii) dom(ω) ∈ adm(b).
Now from Definition 9, because q is a SUJ query, b must be an SJ query.
So from Definition 4, (iii) adm(b) = {vars(b)}.
So from (ii) and (iii), (iv) dom(ω) = vars(b).
So from (i) and (iv), ω ∈ sparqlAns(q, can(K)) and range(ω) ⊆ aDom(K). �
Appendix F. Complexity of maximal admissible certain answers

Proposition 7. If q is a JO query and X1, X2 ⊆ vars(q), then it can be decided in O (|q|2) whether X1 ∈ max⊆(adm(q) ∩ 2X2)

Proof. Let q be a JO query and X1, X2 ⊆ vars(q).
We reproduce here the inductive definition of base(q), for readability.

Definition 13 (Base of a JO query).

• If q is a triple pattern, then base(q) = {vars(q)}.
• If q = q1 join q2, then base(q) = {B1 ∪ B2 | B1 ∈ min⊆(base(q1)), B2 ∈ base(q2)}∪

{B1 ∪ B2 | B1 ∈ base(q1), B2 ∈ min⊆(base(q2))}.
• If q = q1 opt q2, then base(q) = base(q1) ∪ base(q1 join q2).
21

G. Xiao and J. Corman Big Data Research 23 (2021) 100177
In order to complete the proof sketched in Section 6, it is sufficient to show that:

• For any JO query q, the minimal element of base(q) w.r.t. set-inclusion is guaranteed to be unique. This is shown with Lemma 14
below.

• adm(q) = {⋃B | B ∈ 2base(q)}. This is shown with Lemma 15 below.
• |base(q)| = O (|q|). This is shown with Lemma 16 below. �

Lemma 14. For any JO query q, | min⊆(base(q))| = 1.

Proof. By induction on the structure of q.

• If q is a triple pattern, then |base(q)| = 1, so | min⊆(base(q))| = 1.
• If q = q1 join q2, let B1 = {B1 ∪ B2 | B1 ∈ min⊆(base(q1)), B2 ∈ base(q2)}, and B2 = {B1 ∪ B2 | B1 ∈ base(q1), B2 ∈ min⊆(base(q2))}.

By IH, for i ∈ {1, 2}, | min⊆(base(qi))| = {Mi} for some Mi ⊆ vars(qi).
Then from the definition of B1, M1 ∪ M2 ∈ B1.
And for each B2 ∈ base(q2), M2 ⊆ B2.
So for each M1 ∪ B2 ∈ B1, M1 ∪ M2 ⊆ M1 ∪ B2.
So min⊆(B1) = {M1 ∪ M2}.
And similarly, min⊆(B2) = {M1 ∪ M2}.
Then because base(q) = B1 ∪B2, min⊆(base(q)) = {M1 ∪ M2}.

• If q = q1 opt q2, by IH, min⊆(base(q1)) = {M} for some M ⊆ vars(q1).
So M ⊆ B for each B ∈ base(q1).
And we showed above that M ⊆ B for each B ∈ base(q1 join q2).
Then from Definition 14, base(q) = base(q1) ∪ base(q1 join q2).
So M ∈ base(q1) ⊆ base(q), and M ⊆ B for each B ∈ base(q1) ∪ base(q1 join q2) = base(q).
Therefore min⊆(base(q)) = {M}. �

Lemma 15. For any JO query q, adm(q) = {⋃B | B ∈ 2base(q)}

Proof. By induction on the structure of q.

• If q is a triple pattern, then base(q) = adm(q) = {vars(q)}.
• If q = q1 join q2:

– (⇒).
Let X ∈ adm(q).
From Definition 4, X = X1 ∪ X2 for some (X1, X2) ∈ adm(q1) × adm(q2).
And by IH, for i ∈ {1, 2}, Xi = ⋃

Bi for some Bi ∈ 2base(q1) .
Then from Lemma 14, | min⊆(base(qi))| = {Mi} for some Mi ⊆ vars(qi).
So for each Bi ∈ Bi , Mi ⊆ Bi .
Therefore

⋃
Bi = {Mi} ∪ ⋃

Bi .
And since X = X1 ∪ X2, we have:

X =
⋃

B1 ∪
⋃

B2

X ={M1} ∪
⋃

B1 ∪ {M2} ∪
⋃

B2

X ={M2 ∪ B1 | B1 ∈ B1} ∪ {M1 ∪ B2 | B2 ∈ B2}
Then from Definition 13, for each B1 ∈ B1, M2 ∪ B1 ∈ base(q).
Similarly, for each B2 ∈ B2, M1 ∪ B2 ∈ base(q).
So X = ⋃

B for some B ∈ 2base(q) .
– (⇐).

Let X = ⋃
B for some B ∈ 2base(q) .

From Definition 13, for each B ∈ B, there are (B1, B2) ∈ base(q1) × base(q2) s.t. B = B1 ∪ B2.
For i ∈ {1, 2}, let Bi = {Bi | Bi ∪ B ′ ∈ B, Bi ∈ base(qi)}.
Then for i ∈ {1, 2}, Bi �= ∅.
And B = B1 ∪B2.
So X = ⋃

B = ⋃
B1 ∪ ⋃

B2.
And by IH, for i ∈ {1, 2},

⋃
Bi ∈ adm(qi).

Therefore X = X1 ∪ X2 for some (X1, X2) ∈ adm(q1) × adm(q2).
So From Definition 4, X ∈ adm(q).

• If q = q1 opt q2:
– (⇒).

Let X ∈ adm(q).
From Definition 4, X ∈ adm(q1) or X ∈ adm(q1 join q2) must hold.
If X ∈ adm(q1), then by IH, X = ⋃

B for some B ∈ 2base(q1) .
22

G. Xiao and J. Corman Big Data Research 23 (2021) 100177
And from Definition 13, base(q1) ⊆ base(q).
If X ∈ adm(q1 join q2), then we showed above that X = ⋃

B for some B ∈ 2base(q1 join q2) .
And from Definition 13, base(q1 join q2) ⊆ base(q).
So in both cases, X = ⋃

B for some B ∈ 2base(q) .
– (⇐).

Let X = ⋃
B for some B ∈ 2base(q) .

From Definition 13, for each B ∈ B, B ∈ base(q1) or there are (B1, B2) ∈ base(q1) × base(q2) s.t. B = B1 ∪ B2.
For i ∈ {1, 2}, let Bi = {Bi | Bi ∪ B ′ ∈ B, Bi ∈ base(qi)}.
Then B1 �= ∅.
And B = B1 ∪B2.
If B2 = ∅, then X = ⋃

B = ⋃
B1.

And by IH,
⋃

B1 ∈ adm(q1).
So From Definition 4, X ∈ adm(q).
If B2 �= ∅, then X = ⋃

B = ⋃
B1 ∪ ⋃

B2.
And by IH, for i ∈ {1, 2},

⋃
Bi ∈ adm(qi).

Therefore X = X1 ∪ X2 for some (X1, X2) ∈ adm(q1) × adm(q2).
So From Definition 4, X ∈ adm(q). �

Lemma 16. For any JO query q, |base(q)| = O (|q|)

Proof. By induction on the structure of q.

• If q is a triple pattern, then |base(q)| = 1.
• If q = q1 join q2, then immediately from the definition of base(q),

|base(q)| = O (| min⊆(base(q1))|) · |base(q2)| + | min⊆(base(q2))|) · |base(q1)|).
So from Lemma 14, |base(q)| = O (|base(q2)| + |base(q1)|).
And by IH, |base(qi)| = O (|qi |) for i ∈ {1, 2}.
So |base(q)| = O (|q1|) + O (|q2|) = O (|q|).

• If q = q1 opt q2, the argument is similar to the case q = q1 join q2. �
Appendix G. Complexity of epistemic certain answers

Proposition 8. evalepCertAns is in PSpace for SUJO queries

Proof. Let q0 be a SUJO query, let K be an Lcan KB, and let ω be a solution mapping.
Algorithm 1 below describes a procedure that decides
ω ∈ sparqlAnspartEval(q0,K), can(K).
From Proposition 4, in order to decide ω ∈ epCertAns(q0, K), it is sufficient to call this procedure and decide range(ω) ⊆ aDom(K).

In order to explain the procedure, we recall some well-known properties of canonical models for DL-LiteR KBs. Specifically, can(K)

below refers to the canonical model of a DL-LiteR KB K defined in [5].

(I) Let roles(T) be the set of binary predicates (i.e. elements of NR) that appears in T and their inverse.
Then each element of the domain �can(K) of can(K) can be identified by a word of the form w = aR1..Rn , with n ≥ 0, where
a ∈ aDom(K) and Ri ∈ roles(T) for i ∈ [1..n].
If w is a word over aDom(K) ∪ roles(T), we will use l(w) to denote its length.
Note that w may not identify any element of �can(K) .
If it does, we will use w ∈ �can(K) as a shortcut.

(II) Let w = aR1..Rn be a word over aDom(K) ∪ roles(T).
Then w ∈ �can(K) can be decided as follows:
• if n = 0, then decide a ∈ aDom(K),
• otherwise iterate (at most O (|T |) times) over T to decide T |= ∃R−

n−1 � ∃Rn , then again to decide T |= ∃R−
n−2 � ∃Rn−1, etc., and

finally decide K |= ∃R1(a).
The amount of space required in both cases is polynomial in |K| + l(w).

(III) If A(w) is a triple with A ∈ NC and w = aR1..Rn ∈ �can(K) ,
then A(w) ∈ can(K) can be decided as follows:
• if n = 0, then decide K |= A(a),
• otherwise decide T |= ∃R−

n � A.
Both can be decided by iterating over T and/or A, using space polynomial in |K|.
And similarly for the case R(w1, w2) ∈ can(K), where R ∈ NR (with an additional verification: one of w1, w2 must be an immediate
prefix of the other).

(IV) If q is a boolean CQ, and if m is the number of variables that appear in q, then {} ∈ sparqlAns(q, can(K)) iff there is a match ω for q
in can(K) such that, for each w ∈ range(ω), l(w) ≤ max(|T |, m).

Algorithm 1 simulates a top-down evaluation of an input boolean query q0 over can(K), where q0 contains m variables.
Correctness follows immediately from Definitions 1 and 12, and Point (IV) above.
23

G. Xiao and J. Corman Big Data Research 23 (2021) 100177
Algorithm 1 Decide ω ∈ sparqlAns(partEval(q0, K), can(K)).
Input: boolean SUJO query q0 with m variables, DL-LiteR KB K = 〈T , A〉

1:
2: return isMatch(ω, q0, K)
3:
4: function isMatch(ω, q, K)
5:
6: if q = t
7: return ω(t) ∈ can(K)

8:
9: if q = selectX q′

10: V = vars(q′) \ X
11: for all ω′ : V → {w ∈ �can(K) | l(w) ≤ max(|T |, m)}
12: if isMatch(ω ∪ ω′, q′, K)
13: return true
14: end for
15: return false
16:
17: if q = q1 union q2

18: if isMatch(ω, q1, K)
19: return true
20: return isMatch(ω, q2, K)

21:
22: if q = q1 join q2

23: for all (V 1, V 2) | V 1 ⊆ vars(q1), V 2 ⊆ vars(q2)

24: if isMatch(ω|V 1 , q1, K) and isMatch(ω|V 2 , q2, K)
25: return true
26: end for
27: return false
28:
29: if q = q1 opt q2

30: if isMatch(ω, q1 join q2, K)
31: return true
32: if isMatch(ω, q1, K)
33: for all ω′ : vars(q2) → aDom(K)

34: if ω ∼ ω′ and isMatch(ω′, q, K)
35: return false
36: end for
37: return true
38: return false
39: end function

To see why this procedure can be executed using space polynomial in |K| + |q0|, observe first that each call to the function isMatch

provides a solution mapping ω such that each w ∈ range(ω) verifies w ∈ �can(K) and l(w) ≤ max(|T |, m).
Then:

• In the case q = t (line 7), because range(ω) ⊆ �can(K) , from Point (III) above, ω(t) ∈ can(K) can be decided in polynomial space.
• In the case q = selectX q′ (line 11), all possible mappings from the set V of distinguished variables in q to words in �can(K) with

length ≤ max(|T |, m) are enumerated. This can be achieved by enumerating all words w over aDom(K) ∪ roles(T) of length ≤
max(|T |, m), and, for each of these, decide w ∈ �can(K) using polynomial space, as explained in Point (II) above.

• For the case q = q1 join q2, from Definition 1, ω ∈ sparqlAns(q, can(K)) iff there are two sets V 1, V 2 of variables s.t., for i ∈ {1, 2},
V i ⊆ vars(qi) and ωi |V i ∈ sparqlAns(qi, can(K)).
Moreover, the cartesian product 2vars(q1) × 2vars(q2) can be enumerated (line 23) using space polynomial in |vars(q)|. �

References

[1] S. Ahmetaj, W. Fischl, R. Pichler, M. Šimkus, S. Skritek, Towards reconciling SPARQL and certain answers, in: Proceedings of the 24th International Conference on World
Wide Web, ACM, 2015, pp. 23–33.

[2] M. Arenas, J. Pérez, Querying semantic web data with SPARQL, in: Proceedings of the Thirtieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, ACM, 2011, pp. 305–316.

[3] A. Artale, D. Calvanese, R. Kontchakov, M. Zakharyaschev, The DL-Lite family and relations, J. Artif. Intell. Res. 36 (2009) 1–69.
[4] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-Schneider (Eds.), The Description Logic Handbook: Theory, Implementation, and Applications, Cambridge

University Press, 2003.
[5] M. Bienvenu, M. Ortiz, M. Simkus, G. Xiao, Tractable queries for lightweight description logics, in: IJCAI, 2013.
[6] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk, M. Rodriguez-Muro, G. Xiao, Ontop: answering SPARQL queries over relational databases, Semant.

Web J. 8 (3) (2017) 471–487.
[7] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and efficient query answering in description logics: the DL-Lite family, J. Automat.

Reason. 39 (3) (2007) 385–429.
[8] J. Corman, G. Xiao, Certain answers to a SPARQL query over a knowledge base, in: The 9th Joint International Semantic Technology Conference (JIST), 2019.
[9] S. Costantini, About epistemic negation and world views in epistemic logic programs, Theory Pract. Log. Program. 19 (5–6) (2019) 790–807.

[10] T. Eiter, M. Ortiz, M. Simkus, T.K. Tran, G. Xiao, Query rewriting for Horn-SHIQ plus rules, in: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence
(AAAI 2012), AAAI, Toronto, Ontario, Canada, July 22–26, 2012, AAAI Press, 2012.

[11] M. Gelfond, Strong introspection, in: AAAI, AAAI Press/The MIT Press, 1991, pp. 386–391.
[12] B. Glimm, C. Ogbuji, SPARQL 1.1 entailment regimes, W3C recommendation, W3C, March 2013.
[13] C. Gutierrez, D. Hernández, A. Hogan, A. Polleres, Certain answers for SPARQL?, in: AMW, 2016.
[14] S. Harris, A. Seaborne, E. Prud’hommeaux, SPARQL 1.1 query language, W3C recommendation, W3C, 2013.
24

http://refhub.elsevier.com/S2214-5796(20)30045-9/bib722BE641DA246357CEF821FEF2E8EFB9s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib722BE641DA246357CEF821FEF2E8EFB9s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bibD80517F3F42601CD8B1BD8D6937C7E30s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bibD80517F3F42601CD8B1BD8D6937C7E30s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib607FE3B6B62A23C0E9EA0F37CA96840Bs1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib3759DEC46D3AC1A8BDD269FD71BABF1Cs1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib3759DEC46D3AC1A8BDD269FD71BABF1Cs1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bibF5812EEEF7B9E79D8229A561711C9F71s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib1A25C2528B9CC97A7FD478B1AD454FB1s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib1A25C2528B9CC97A7FD478B1AD454FB1s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib10551F7B96E83F28D363D37FF285175Fs1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib10551F7B96E83F28D363D37FF285175Fs1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib486B38255C2E6ABFE545C4C4D1D0A207s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bibC54D75CCD13F556C68FE0E8137569AAFs1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib1F0247202A58A6BF84EC91D535C18C16s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib1F0247202A58A6BF84EC91D535C18C16s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bibE65F39E23B3991247AD6C4966B30B032s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib5CFD8E5923BB2449303DDF482B1CEE2Cs1

G. Xiao and J. Corman Big Data Research 23 (2021) 100177
[15] D. Hernández, C. Gutierrez, A. Hogan, Certain answers for SPARQL with blank nodes, in: International Semantic Web Conference, Springer, 2018, pp. 337–353.
[16] R. Kontchakov, M. Rezk, M. Rodríguez-Muro, G. Xiao, M. Zakharyaschev, Answering SPARQL queries over databases under OWL 2 QL entailment regime, in: International

Semantic Web Conference, Springer, 2014, pp. 552–567.
[17] E.V. Kostylev, B.C. Grau, On the semantics of SPARQL queries with optional matching under entailment regimes, in: International Semantic Web Conference, Springer,

2014, pp. 374–389.
[18] D. Lanti, G. Xiao, D. Calvanese, VIG: data scaling for OBDA benchmarks, Semant. Web 10 (2) (2019) 413–433.
[19] A. Letelier, J. Pérez, R. Pichler, S. Skritek, Static analysis and optimization of semantic web queries, ACM Trans. Database Syst. 38 (4) (2013) 25.
[20] V. Lifschitz, Nonmonotonic databases and epistemic queries, in: IJCAI, vol. 91, 1991, pp. 381–386.
[21] S. Mengel, S. Skritek, On tractable query evaluation for SPARQL, arXiv preprint arXiv:1712 .08939, 2017.
[22] B. Motik, R. Rosati, Reconciling description logics and rules, J. ACM 57 (5) (2010).
[23] A. Polleres, J.P. Wallner, On the relation between SPARQL 1.1 and answer set programming, J. Appl. Non-Class. Log. 23 (1–2) (2013) 159–212.
[24] J. Pérez, M. Arenas, C. Gutierrez, Semantics and complexity of SPARQL, ACM Trans. Database Syst. 34 (3) (2009) 16.
[25] M. Schmidt, M. Meier, G. Lausen, Foundations of SPARQL query optimization, in: Proceedings of the 13th International Conference on Database Theory, ACM, 2010,

pp. 4–33.
[26] Y. Shen, T. Eiter, Evaluating epistemic negation in answer set programming, Artif. Intell. 237 (2016) 115–135.
[27] X. Wang, S. Wang, Y. Xin, Y. Yang, J. Li, X. Wang, Distributed Pregel-based provenance-aware regular path query processing on RDF knowledge graphs, World Wide Web

23 (3) (2020) 1465–1496.
[28] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati, M. Zakharyaschev, Ontology-based data access: a survey, in: Proceedings of the Twenty-Sixth

International Joint Conference on Artificial Intelligence, IJCAI-18, International Joint Conferences on Artificial Intelligence Organization, 7 2018, pp. 5511–5519.
[29] G. Xiao, L. Ding, B. Cogrel, D. Calvanese, Virtual knowledge graphs: an overview of systems and use cases, Data Intell. 1 (2019) 201–223.
[30] G. Xiao, D. Lanti, R. Kontchakov, S. Komla-Ebri, E. Güzel-Kalayci, L. Ding, J. Corman, B. Cogrel, D. Calvanese, E. Botoeva, The virtual knowledge graph system ontop, in:

ISWC, 2020.
[31] Q. Xu, X. Wang, J. Li, Q. Zhang, L. Chai, Distributed subgraph matching on big knowledge graphs using Pregel, IEEE Access 7 (2019) 116453–116464.
[32] X. Zhang, J.V. den Bussche, F. Picalausa, On the satisfiability problem for SPARQL patterns, J. Artif. Intell. Res. 56 (2016) 403–428.
25

http://refhub.elsevier.com/S2214-5796(20)30045-9/bib89FF6605D1FA85BC9DD215444837AFCDs1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib84A1A059800B161956E8CB7581077723s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib84A1A059800B161956E8CB7581077723s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib5F5B7D2FB706C94F3EF64410B68A8213s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib5F5B7D2FB706C94F3EF64410B68A8213s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bibD429E82EF96DE4AC700E0EA4688F9737s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bibC51861400940962D309158E6740DBD22s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bibFF1296E11AB996D8D0E696903B102921s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib88590FCE4DF951397E041993584592B5s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib1946618FBA542238DDE43FDCBAA1DA51s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib41E36D0EDE64028030F96B7543E4322Bs1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib265C7C74A06BD68D8B386CE4509251E8s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib28EA60085E2633EF6261BE9B0B7BDB59s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib28EA60085E2633EF6261BE9B0B7BDB59s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bibC4662A036BC5FA341F3944FA7265C434s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib6F5A5AB09B1EDC8B14DA932CE64F66CAs1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib6F5A5AB09B1EDC8B14DA932CE64F66CAs1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bibAE8D85BBAF2FEFC56EF9BF106B08CE4Cs1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bibAE8D85BBAF2FEFC56EF9BF106B08CE4Cs1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib12F19294DA958D12587D25C00175EC83s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib9075A06DCE3B22601C1EC21A27B30877s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib9075A06DCE3B22601C1EC21A27B30877s1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib3911093B64583C6A26E5C417D6971AEEs1
http://refhub.elsevier.com/S2214-5796(20)30045-9/bib5D08E629BE5B86F39CF80E5B01399640s1

	Ontology-Mediated SPARQL Query Answering over Knowledge Graphs
	1 Introduction
	2 Preliminaries
	2.1 rdf and sparql
	2.2 Description logic KB, UCQs and certain answers

	3 Querying a DL KB with SPARQL: existing semantics
	4 Requirements
	5 Semantics
	5.1 sparql entailment regimes
	5.2 Canonical answers
	5.3 Maximal admissible canonical answers
	5.4 Epistemic certain answers
	5.5 Comparing maximal canonical answers and epistemic certain answers

	6 Complexity
	6.1 Complexity of maximal admissible canonical answers
	6.2 Complexity of epistemic certain answers

	7 Conclusion and perspectives
	Declaration of competing interest
	Acknowledgements
	Appendix A Proof of Proposition 1
	Appendix B Proof of Proposition 2
	Appendix C Proof of Proposition 3
	Appendix D Proof of Proposition 4
	Appendix E Proof of Proposition 6
	Appendix F Complexity of maximal admissible certain answers
	Appendix G Complexity of epistemic certain answers
	References

