
Web Semantics: Science, Services and Agents on the World Wide Web 58 (2019) 100514

Contents lists available at ScienceDirect

Web Semantics: Science, Services and Agents on theWorld
WideWeb

journal homepage: www.elsevier.com/locate/websem

Ontop-spatial: Ontop of geospatial databases
Konstantina Bereta a, Guohui Xiao b,∗, Manolis Koubarakis a

a Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Panepistimiopolis, Ilissia, Athens 15784, Greece
b KRDB Research Centre, Faculty of Computer Science, Free-University of Bozen-Bolzano, Bolzano, 39100, Italy

a r t i c l e i n f o

Article history:
Received 13 October 2018
Received in revised form 18 May 2019
Accepted 19 June 2019
Available online 1 July 2019

Keywords:
Spatial data
GeoSPARQL
Ontology-based data access
Ontop-spatial

a b s t r a c t

In this paper, we propose an OBDA approach for accessing geospatial data stored in relational databases
using the R2RML mappings and OGC standard GeoSPARQL. On the theoretical side, we provide a
formalization of GeoSPARQL in terms of SPARQL entailment regime. For a practical query answering
algorithm, we introduce an extension to the existing SPARQL-to-SQL translation method to support
GeoSPARQL features. Our approach has been implemented in the system Ontop-spatial, an extension
of the OBDA system Ontop for creating virtual geospatial RDF graphs on top of geospatial relational
databases. We present an experimental evaluation of our system using and extending a state-of-the-
art benchmark. To measure the performance of our system, we compare it to two state-of-the-art
geospatial RDF stores –a free and open-source one, and a commercial one– and confirm its efficiency.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Currently, there is an emerging interest of scientific commu-
nities from various domains that produce and process geospatial
data (e.g., earth scientists) to publish this data as linked data and
combine it with other data sources. Responding to this trend, the
Semantic Web community has been very active in the geospatial
domain, proposing data models, query languages, and systems for
the representation and management of geospatial data. Notably,
this research has led to the development of extensions of RDF
and SPARQL, such as stRDF/stSPARQL [1] and GeoSPARQL [2], that
handle geospatial data. Similarly, research on geospatial relational
databases has been going on for a long time and has resulted in
the implementation of several efficient geospatial DBMS.

Ontology-based data access (OBDA) [3,4] is a popular
paradigm for providing a convenient and user-friendly access
to data repositories. In OBDA, an OWL ontology describes the
domain of interest, which is connected to a data source through
a declarative R2RML mapping specification. Then the underlying
data source is virtualized as an RDF graph using the vocabulary
from the ontology, and the SPARQL queries over the ontologies
are automatically rewritten by an OBDA engine into SQL queries
expressed over the underlying database.

Despite the extensive research performed in the fields of re-
lational databases and the Semantic Web on the development of
solutions for handling geospatial data efficiently, to the best of
our knowledge, there is no OBDA system that enables the creation

∗ Corresponding author.
E-mail addresses: Konstantina.Bereta@di.uoa.gr (K. Bereta),

xiao@inf.unibz.it (G. Xiao), koubarak@di.uoa.gr (M. Koubarakis).

of virtual, geospatial RDF graphs on top of geospatial databases.
This would be very useful for scientists that produce and pro-
cess geospatial data, as they mainly store this data in relational
geospatial databases (e.g., PostGIS) or in other geospatial data
formats that are easily imported into such databases (e.g., shape-
files). With the existing solutions in place, these scientists are
forced to materialize their data as RDF in order to publish it as
linked data and/or use it in combination with other data sources.
However, this is often not practical and discourages users from
using Semantic Web technologies. This issue applies to the OBDA
paradigm in general, but it has more impact in the geospatial
domain due to the reasons we have just described. We address
these issues by extending the OBDA paradigm with geospatial
support.

The contributions of this paper are the following:

• On the theoretical side, we provide a formalization of the
OGC GeoSPARQL standard in terms of SPARQL entailment
regime.
• For a practical query answering algorithm, we introduce an

extension to the existing SPARQL-to-SQL translation method
in order to support GeoSPARQL queries.
• We describe the implementation of our approach in the

system Ontop-spatial, which to the best of our knowledge
is the first OBDA system for GeoSPARQL.
• We present an experimental evaluation of our system by ex-

tending the benchmark Geographica [5], comparing the per-
formance of Ontop-spatial with the state-of-the-art geospa-
tial RDF store Strabon [6] and the free version of a state-
of-the-art commercial triple store with GeoSPARQL support.
Due to license reasons, in the context of this paper we will

https://doi.org/10.1016/j.websem.2019.100514
1570-8268/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.websem.2019.100514
http://www.elsevier.com/locate/websem
http://www.elsevier.com/locate/websem
http://crossmark.crossref.org/dialog/?doi=10.1016/j.websem.2019.100514&domain=pdf
mailto:Konstantina.Bereta@di.uoa.gr
mailto:xiao@inf.unibz.it
mailto:koubarak@di.uoa.gr
https://doi.org/10.1016/j.websem.2019.100514

2 K. Bereta, G. Xiao and M. Koubarakis / Web Semantics: Science, Services and Agents on the World Wide Web 58 (2019) 100514

refer to the commercial system using the alias ‘‘System-O’’.
The results show that, in most cases, Ontop-spatial outper-
forms both of them.

Ontop-spatial is available as free and open source software at
the following link: https://github.com/ConstantB/ontop-spatial.

The organization of the rest of the paper is as follows. In
Section 2 we present background work. In Section 3 we provide a
formalization of the GeoSPARQL standard. In Section 4 we explain
the GeoSPARQL-to-SQL translation. In Section 5 we present the
system Ontop-spatial and mention the real-world use cases in
which it has been used. In Section 6 we present the experimental
evaluation of our system. In Section 7 we survey the related work.
Finally, in Section 8 we conclude the presentation of our approach
discussing its advantages and limitations, as well as its possible
extensions.

Delta from Previous Publications. This submission is a signifi-
cant extension of the previous publication [7]. On the theoretical
side, we have formalized the semantics of GeoSPARQL queries
and the GeoSPARQL-to-SQL translation. On the practical side, we
have studied how to access raster data and provided additional
experiments comparing Ontop-spatial with the free version of a
commercial state-of-the-art triple store with geospatial support.

2. Preliminaries

In this section, we recall the basic notions needed for the rest
of the paper.

2.1. RDF And SPARQL

We consider a vocabulary of three pairwise disjoint and count-
ably infinite sets of symbols: I for IRIs, L for RDF literals, and
V for variables. In line with previous work on ontology-based
data access, we do not consider blank nodes. Intuitively, an IRI
represents an object, and a literal represents a typed value. A
literal ℓ is of the form valueˆˆtype where value is the lexical value
of the ℓ, and type is the type IRI of ℓ. The supported types defined
in the RDF 1.1 Concepts document [8] is largely based on the XML
Schema Definition Language (XSD) [9]. An RDF term is an element
in T = I ∪ L. An (RDF) triple is an element in T× I× T. An (RDF)
graph is a set of triples.

SPARQL [10] is the W3C standard language designed to query
RDF graphs. A triple pattern is an element of (T∪V)×(I∪V)×(T∪V).
A basic graph pattern (BGP) is a finite set of triple patterns. A filter
expression F is a Boolean function, which restricts on solutions
over the whole group where the filter appears. We consider the
fragment of SPARQL queries defined by Q in the following EBNF
grammar1:

P ::= B | Q | P FILTER F | P UNION P |
P JOIN P | P OPT P

Q ::= SELECT { V AS V } WHERE P

where B is a BGP and F is a filter expression (we refer to [10] for
details).

The semantics of SPARQL queries is given in terms of solution
mappings, which are partial maps s:V→ T with (possibly empty)
domain dom(s). Here, following [11,12], we use the set-based
semantics for SPARQL (rather than the bag-based one, as in the
W3C specification). More specifically, for a BGP B, the answer JBKG
to B over a graph G is JBKG = {s: var(B) → T | s(B) ⊆ G},
where var(B) is the set of variables occurring in B and s(B) is
the result of substituting each variable u in B by s(u). Then, the
answer to a SPARQL query Q over a graph G is the set JQ KG of
solution mappings defined by induction using the SPARQL algebra
operators (filter, join, union, optional, and projection) starting
from BGPs; cf. [13]. This semantics is known as simple entailment.

1 Recall that in EBNF ‘‘{ A }’’ means any number of repetitions of A.

2.2. SPARQL entailment regimes

SPARQL entailment regimes allow for querying RDF graphs
with reasoning capabilities [14]. Specifically, an entailment
regime E specifies how to obtain from an RDF graph G an entailed
graph egE(G) [15]. Then, the answer JBKEG to a BGP B under the
entailment regime E is defined as JBK

egE(G)
. Similarly, the answer

JQ KEG to a SPARQL query Q under the entailment regime E is
defined as JQ K

egE(G)
. In this way, entailment regimes only modify

the evaluation of BGPs but not that of other SPARQL operators.
We present now the standard W3C semantics for SPARQL

queries over OWL ontologies. Under the OWL2 direct semantics
entailment regime, one can query an RDF graph G that consists
of two parts: the intensional sub-graph (i.e., TBox or ontology)
T representing the background knowledge in terms of class and
property axioms, and an extensional sub-graph (i.e., ABox) A
representing the data as class and property assertions. We write
such a graph G, which represents a knowledge base, as (T ,A) to
emphasize the partitioning when necessary. Moreover, for conve-
nience, we use the triple notations (s, rdf:type, C) and (s, p, o)
and the ABox assertion notations C(s) and p(s, o) interchangeably.
We are particularly interested in the OWL2QL profile [16] of
OWL2, which induces the OWL2QL entailment regime. For an
OWL2QL knowledge base G we have egQL(G) = {t | G |=DL t},
where |=DL denotes the standard OWL2 entailment, defined in
terms of description logics semantics, cf. [17].

2.3. Geospatial extensions of RDF and SPARQL

There are several research works on the spatial extensions of
the data model RDF and the query language SPARQL. The data
model stRDF and the query language stSPARQL are extensions of
RDF and SPARQL 1.1 respectively, developed for the represen-
tation and querying of spatial [6] and temporal data (i.e., the
valid time of triples [18]). Another framework that has been
developed for the representation and querying of geospatial data
on the Semantic Web is the OGC standard GeoSPARQL [2]. Al-
though GeoSPARQL and stSPARQL were developed independently,
they share a lot of features in common. They both adopt the
OGC standards Well-known Text (WKT) and Geography Markup
Language (GML) for representing geometries. Also both of them
extend SPARQL with the topological functions defined in the
OGC standard ‘‘OpenGIS Simple Feature Access for SQL’’ [19],
and the Egenhofer [20] and the RCC-8 [21] topological relation
families. The main difference between stSPARQL and GeoSPARQL
is that stSPARQL also provides support spatial updates and spatial
aggregates, and offer valid time support.

Since in the rest of the paper we will refer to the notation and
concepts defined or followed by stSPARQL and GeoSPARQL, we
briefly present them below for the convenience of the reader.

Spatial literal. A spatial literal represents the serialization of a
geometry. In stSPARQL, it is a literal of type strdf:geometry
or its subtypes strdf:WKT or strdf:GML, as defined in [6].
Similarly, in GeoSPARQL, it is a literal of type geo:wktLiteral
or geo:gmlLiteral.

Spatial term. A spatial term is either a spatial literal or a
variable that can be bound to a spatial literal.

Spatial filter. A spatial filter is a Boolean binary function
SF (t1, t2), where t1, t2 are spatial terms and SF is one of the
Boolean functions of the Geometry extension of GeoSPARQL, e.g.,
geof:sfEquals.

Spatial selection. A spatial selection in GeoSPARQL/stSPARQL is
a SELECT query with a FILTER which is a Boolean binary function
with arguments a variable and a constant.

Spatial join. A spatial join in these languages is a query with a
FILTER which is a Boolean binary function whose all arguments are

https://github.com/ConstantB/ontop-spatial

K. Bereta, G. Xiao and M. Koubarakis / Web Semantics: Science, Services and Agents on the World Wide Web 58 (2019) 100514 3

variables. The definition of the spatial join in SPARQL corresponds
to the definition of the spatial join in the geospatial extensions of
the relational model. In the rest of this paper, spatial joins will
often be denoted as ⋊⋉sf , where sf is a spatial filter.

2.4. Ontology-based data access

In ontology-based data access (OBDA) [3], we can view exist-
ing relational (geospatial) databases as RDF graphs with the help
of mappings and ontologies. Formally, we start from an OBDA
specification P = (T ,M, S), consisting of a set T of OWL axioms
(called the TBox), a relational database schema S , and a set M of
mapping assertions. An OBDA instance (P,D) is given by an OBDA
specification P and a relational database instance D compliant
with S.

A mapping M is a declarative specification relating symbols
in the ontology (classes and properties) to (SQL) views over the
data. The W3C standard RDB2RDF Mapping Language (R2RML)
was created with the goal of providing a language for such map-
pings. The ontology T , together with the mapping M, exposes a
high-level conceptual view of the underlying data in terms of a
virtual RDF graph, which users can query using the SPARQL query
language. In this paper, we extend R2RML mapping with supports
of datatypes defined in GeoSPARQL standard.

To ease the presentation, instead of the concrete Turtle se-
rialization of an R2RML mapping, in the following we use an
equivalent compact form. A mapping assertion takes the form
m : t ← sql, where the source part sql is a SQL query and the
target part t is an RDF triple template with placeholders inside.

By applying all mapping assertions in M to D, one can derive
a (virtual) RDF graph AM,D [22]. Then, SPARQL query answering
over an OBDA instance (P,D) is defined as query answering over
(T ,AM,D).

The derived RDF graph can be materialized as RDF triples,
or alternatively it can be kept virtual, in which case the user
queries are translated by the OBDA system into queries over
the data sources. In the virtual approach, one avoids the cost of
materialization, and one can rely on the maturity of relational
database systems for efficient query answering, with support
for security, robust transactions, etc. Among the state-of-the-
art systems supporting the virtual OBDA approach we mention
Ontop [23], D2RQ,2 Morph [24], Mastro [25], and Stardog.3

Example 1. Consider the table crc shown in Fig. 1 and the
following mapping assertion.

clc:{gid} rdf:type clc:CorineLandCoverArea;
geo:hasGeometry clc:geometry/{gid} .

clc:geometry/{gid} geo:asWKT {geom}^^geo:wktLiteral.
← SELECT gid, geom FROM clc

The source part of the first mapping assertion is a query over the
table clc. Intuitively, for each row in the table clc, it generates
three triples with the first two sharing the same subject s =
clc : {gid}. The first triple declares that the type of s is an IRI
clc:CorineLandCoverArea and the second triple declares that
the geometry of s is an IRI o = clc : geometry/{gid}. The
third triple declares that the WKT serialization of o is the literal
{geom}^^geo:wktLiteral. Below is the resulting virtual RDF
graph that is populated with information of the first row of table
clc.

clc:20440 rdf:type clc:CorineLandCoverArea .
clc:20440 geo:hasGeometry clc:geometry/20440 .
clc:geometry/20440 geo:asWKT

" POLYGON (...)"^^geo:wktLiteral .

2 http://d2rq.org/.
3 http://stardog.com/.

Consider another mapping assertion:

gag:{gid} rdf:type gag:AdministrativeDivision;
hasGeometry gag:geometry/{gid} .

gag:geometry/{gid} geo:asWKT
{geom_4326}^^geo:wktLiteral.

← SELECT gid,ST_Transform(geom,’4326’) AS geom_4326
FROM gag

The source part is a query over the table gag, which contains
information about administrative divisions. In a similar way to
the above, for each row in the table gag, it firstly generates two
triples sharing the same subject s = gag : {gid}. The first triple
declares that the type of s is an IRI
gag:AdministrativeDivision and the second triple declares
that the geometry of s is an IRI o = gag : geometry/{gid}. The
third triple declares that the WKT serialization of o the literal
{geom}^^geo:wktLiteral. Notably, the source query contains
a row SQL function in the select clause named ST_Transform.
This function is widely used in the area of GIS and it transforms
a geometry from its original Coordinate Reference System (CRS)
to another. The geometries original shapefile which is imported
to our database are expressed using the CRS 2100. Instead of
transforming and materializing the geometries into the WGS84
(the universal CRS), we incorporated this function in the map-
pings to showcase the flexibility of our approach: Users can
incorporate geospatial data manipulation functions in the source
part of the mappings, so that the virtual semantic views that will
be constructed on top of their data is an improved version of the
original data.

3. A formalization of GeoSPARQL

In this section we present in detail the features of GeoSPARQL
and provide a formalization in terms of the SPARQL entailment
regime.

3.1. OGC GeoSPARQL standard

In the context of this paper, we will only consider GeoSPARQL
(and, as a result, the geospatial part of stSPARQL). The main
features of GeoSPARQL are specified in Clauses 6 to 10 of the
standard [2] consisting of one core component and four exten-
sions. Specifically, the core component, the topology vocabulary,
and the geometry extension defines an OWL ontology4 (denoted
by Tgeo); the geometry topology extension defines SPARQL func-
tions for spatial selection and spatial filter; and the query write
extension defines additional rules for computing spatial relations.
In the following, we summarize these features of GeoSPARQL
following the structure of the specification.

3.1.1. Core component [2, Clause 6]
This component defines high-level RDFS/OWL classes for spa-

tial objects. The main GeoSPARQL classes are shown in Fig. 2.
Classes Feature and Geometry are subclasses of the general
class SpatialObject (SubclassOf properties are represented
using dotted arrows). Features have geometries, and this is ex-
pressed using the object property geo:hasGeometry.

3.1.2. Topology vocabulary extension [2, Clause 7]
This component defines RDF properties for asserting and

querying topological relations (i.e., object properties in OWL)
between spatial objects. Specifically, it covers different families
of topological relations including Simple Features Access (e.g.,
geo:sfOverlaps), RCC8 (e.g., geo:rcc8po), and Egenhofer (e.g.,
geo:ehOverlap).

4 http://www.opengis.net/ont/geosparql

http://d2rq.org/
http://stardog.com/
http://www.opengis.net/ont/geosparql

4 K. Bereta, G. Xiao and M. Koubarakis / Web Semantics: Science, Services and Agents on the World Wide Web 58 (2019) 100514

Fig. 1. Table crc that contains CORINE land cover data.

Fig. 2. GeoSPARQL class hierarchy.

3.1.3. Geometry extension [2, Clause 8]
The Geometry extension component defines RDFS data types

for serializing geometry data, geometry-related RDF properties,
and non-topological spatial query functions for geometry ob-
jects. More specifically, this component of GeoSPARQL defines
that serializations of geometries are RDF literals, introducing the
datatypes geo:asWKT and geo:GML that correspond to the re-
spective OGC standards WKT and GML that are used to represent
geometries as text. It also defines a set of properties that as-
sociate features with their geometries, such as the properties
geo:hasGeometry, geo:hasSerialization, geo:isSimple,
etc. The same component also defines a set of functions that
perform non-topological spatial operations, such as the functions
geof:distance and geof:intersection.

3.1.4. Geometry Topology extension [2, Clause 9]
This component defines topological query functions that take

two geometry literal and return a boolean value. Topological
query functions can be used for spatial selections and spatial
joins. The standard defines functions in the families of Sim-
ple Features Access, RCC8, and Egenhofer. These functions be-
long to the namespace geof and have the same names as the
topological predicates of the Topology extension. For example,
geof:sfOverlaps is the topological query function correspond-
ing to the relation geo:sfOverlaps.

3.1.5. Query rewrite extension [2, Clause 10]
This clause defines query a set of transformation rules, de-

noted Rgeo, for computing spatial relations between spatial ob-
jects based on their associated geometries. The rules Rgeo use the
topological extension functions defined in Clause 9 to establish
the existence of topological predicates defined in Clause 7.

For example, the rules Roverlaps in Fig. 3 specifies how to com-
pute geo:sfOverlaps relations of two spatial objects ?f1 and
?f2. The first feature–feature rule deals with the situation where
?f1 and ?f2 are features, and the overlaps relation can be com-
puted by calling the geof:sfOverlaps function over the WKT
serializations ?g1WKT and ?g2WKT of the geometries ?g1 and ?g2
of the objects ?f1 and ?f2. We useRgeo(G) to denote the minimal
model obtained by applying rules Rgeo to a set of facts G.

The rules Rgeo are also used for transforming qualitative spatial
queries into equivalent quantitative queries. When using Rgeo for
query rewriting, it transforms the triple patterns that contain

the topological relation (e.g., ogc:sfOverlaps) into an equiv-
alent (union) query that describes the same relation using the
respective function (e.g., geof:overlaps) in the filter clause of
the query. Given a SPARQL query q, we denote by rewgeo(q) the
SPARQL query rewritten by Rgeo.

Example 2. The following GeoSPARQL query q retrieves all pairs
of Corine Land Cover areas (s1) and the administrative divisions
(s2) such that s1 overlaps with s2.

SELECT ?s1 ?s2 WHERE {
?s1 a clc:CorineLandCoverArea .
?s2 a gag:AdministrativeDivision .
?s1 geo:sfOverlaps ?s2.

}

The topological relation overlaps in q is expressed using the
predicate geo:sfOverlaps. Query q can be transformed to the
following query q′ using the equivalent quantitative function in
the example transformation rules of Roverlaps.

SELECT ?s1 ?s2 WHERE {
?s1 a clc:CorineLandCoverArea .
?s2 a gag:AdministrativeDivision .
{

{ ?s1 geo:sfOverlaps ?s2. }
UNION
feature - feature
{ ?s1 geo:hasDefaultGeometry ?g1 .

?g1 geo:asWKT ?g1WKT .
?s2 geo:hasDefaultGeometry ?g2 .
?g2 geo:asWKT ?g2WKT .
FILTER(goef:sfOverlaps(?g1WKT, ?g2WKT)).

}
UNION
feature - geometry
{ ?s1 geo:hasDefaultGeometry ?g1 .

?g1 geo:asWKT ?g1WKT .
?s2 geo:asWKT ?g2WKT .
FILTER(goef:sfOverlaps(?g1WKT, ?g2WKT)).

}
geometry - feature
UNION
{ ?s1 geo:asWKT ?g1WKT .

?s2 geo:hasDefaultGeometry ?g2 .
?g2 geo:asWKT ?g2WKT .
FILTER(goef:sfOverlaps(?g1WKT, ?g2WKT)).

}
UNION
geometry - geometry
{ ?s1 geo:asWKT ?g1WKT. ?s2 geo:asWKT ?g2WKT.

FILTER(goef:sfOverlaps(?g1WKT, ?g2WKT)).
}

}
}

3.2. GeoSPARQL entailment regime

Now we develop a formal framework capturing the seman-
tics of the family of GeoSPARQL query languages in terms of
SPARQL entailment regime [12,15,26]. Here we introduce a more
general version of the formal semantics of GeoSPARQL. Given an
entailment regime E, we can augment it with the GeoSPARQL ca-
pabilities, to derive a new entailment regime (geo-E). Intuitively,
the geo-E-entailment regime captures the core component, the

K. Bereta, G. Xiao and M. Koubarakis / Web Semantics: Science, Services and Agents on the World Wide Web 58 (2019) 100514 5

Fig. 3. The Rules Roverlaps for computing overlaps relations.

topology vocabulary and the geometry extension by the built-in
ontology Tgeo, the geometry topology extension by corresponding
SPARQL functions, and the query rewrite extent by the rules Rgeo.

Definition 1. Let Tgeo be the GeoSPARQL ontology, (T ,A) a DL
ontology, E an entailment regime, then the geo-E entailment is
defined as

eggeo-E(T ,A) = Rgeo(egE(T ∪ Tgeo,A)).

It is not difficult to show that the ‘‘query write extension’’ can
be indeed realized by query rewriting.

Proposition 1. Let Tgeo be the GeoSPARQL ontology, (T ,A) a DL
ontology, q a BGP, then

[[q]]geo-ET , A = [[rewgeo(q)]]ET ∪Tgeo, A .

We note that OGC GeoSPARQL standard does not explicitly
specify which level of reasoning is required. The reasoning capa-
bilities listed in the requirements essentially only require RDFS.
Therefore, GeoSPARQL roughly corresponds the geo-RDFS entail-
ment regime. However, the Tgeo ontology is actually classified as
SHIF , which is much more expressive than RDFS.

Proposition 1 can be readily applied to the OBDA setting.
Given an OBDA instance (P,D) where P = (T ,M, S), the
answers of a SPARQL query q under the geo-E-entailment regime
is [[q]]geo-ET ,AM,D

and consequently [[rewgeo(q)]]ET ∪Tgeo, A. When E
is first-order rewritable (e.g. OWL 2 QL), the geo-E entailment
regime can be implemented in an OBDA system by modifying
the query translation workflow. Details of such techniques are
discussed in the next section.

4. GeoSPARQL-to-SQL

In this section, we present the techniques of answering
GeoSPARQL queries in OBDA by translating to SQL queries, which
is based on the SPARQL-to-SQL algorithm used in Ontop [12,23].
The pseudo code of algorithm is outlined in Fig. 4. As in the
classical case, the algorithm takes as inputs a (Geo)SPARQL query,
an ontology T , and a mapping M, and returns a SQL query.
The algorithm consists of (1) an offline step, which is query-
independent and preprocesses the mapping and ontology and
generates the so-called saturated mapping or T-mapping, and (2)
an online step, which translates the input SPARQL query into an
SQL query. We refer the readers to [23] for more details of the
workflow. In the following, we discuss the GeoSPARQL specific
steps, which are underlined in the pseudo code.

Fig. 4. Algorithm of GeoSPARQL-to-SQL translation.

Table 1
GeoSPARQL simple feature functions to SQL functions.
GeoSPARQL function OGC SFS SQL function

geof:sfEquals ST_Equals
geof:sfDisjoint ST_Disjoint
geof:stIntersects ST_Intersects
geof:sfTouches ST_Touches
geof:sfCrosses ST_Crosses
geof:sfWithin ST_Within
geof:sfContains ST_Contains
geof:sfOverlaps ST_Overlaps

6 K. Bereta, G. Xiao and M. Koubarakis / Web Semantics: Science, Services and Agents on the World Wide Web 58 (2019) 100514

Ontology classification. At line 2, the algorithm classifies the input
ontology T union with the GeoSPARQL ontology Tgeo, and con-
struct an explicit hierarchy of classes and properties. By assuming
the built-in ontology Tgeo, the algorithm is able to support the
Clauses 6–8 of the GeoSPARQL standard.

Geosparql query-rewrite. At line 5, the algorithm expands the
input GeoSPARQL query q using the rules Rgeo as in Example 2.
We note that the resulting query is of polynomial size of the input
query.

Spatial filter expressions. At line 19, the algorithm transforms the
SPARQL filters to its SQL equivalences. Now it also translates
GeoSPARQL functions to the corresponding functions in the spa-
tial extension of SQL. In Table 1, we provide a list of SPARQL
Simple Feature functions defined in GeoSPARQL and their equiv-
alences in SQL functions defined in OpenGIS SQL standard [27].

5. The ontop-spatial system

We implemented the GeoSPARQL-to-SQL translation frame-
work discussed in Section 4 as an extension of the system Ontop
with geospatial features focusing on spatial selections and spatial
joins. We chose to extend Ontop instead of systems offering
similar functionality because (i) it is open source, robust and
extensible, (ii) it offers a wide range of functionalities that are
useful for geospatial applications (reasoning, multiple APIs), and
(iii) it implements significant SPARQL-to-SQL optimizations, pro-
ducing queries that can be executed efficiently by the underlying
DBMS as reported in [28]. Ontop-spatial is available as free and
open source software at the following link: https://github.com/
ConstantB/ontop-spatial.

5.1. System overview

An abstract overview of the system as well as a high-level
architecture diagram can be seen in Figs. 5(a) and 5(b) respec-
tively. In the following, we highlight the components of Ontop
that we have extended as they are placed in the query processing
workflow:

• The virtual Ontop repository takes as input an ontology and
a mapping file. Mappings can be either R2RML or the Ontop
native OBDA mapping language.
• Once Ontop-spatial receives a GeoSPARQL query, the query

gets parsed. We modified the Sesame (now known as rdf4j)
parser used by Ontop (and the javacc parser that the re-
spective Sesame library uses), in order to extend its syn-
tax to support geospatial operations in the filter clause
of the query. Additionally, qualitative geospatial queries,
(i.e., queries containing geospatial triple patterns such as
ex:feauture1 geo:overlaps ex:feature2) are also
supported as standard SPARQL triple patterns, and get trans-
formed into their quantitative equivalents (i.e., queries with
spatial filters) in the following step.
• Conventionally, the next step in Ontop is to translate the

SPARQL query and the R2RML mappings into a Datalog
program so that the query can be represented formally
and optimized following a series of optimization steps de-
scribed in detail in [28]. Ontop-spatial inherits these opti-
mizations and extends the SPARQL-to-Datalog translation
module. As explained in the previous section, the geospa-
tial filters are transformed into Datalog using distinguished
geospatial predicates. The same distinguished geospatial
predicates are used in the case of the qualitative geospa-
tial queries as well using the Query Rewrite extension of
GeoSPARQL. As a result, both quantitative and qualitative
representations of a GeoSPARQL query are transformed into
the same SQL query in the following step.

• The optimized version of the Datalog query, as derived from
the previous step, gets translated into SQL. Every geospatial
Datalog predicate is mapped to the respective geospatial SQL
operator, following the syntax of the underlying DBMS. The
DBMS adapter has been extended in order to be able to
identify geospatial columns in the database of the user. The
PostgreSQL adapter of Ontop has been modified to support
the PostGIS extension and an adapter of the open source
DBMS Spatialite has been added.
• The SQL query gets eventually executed in the underlying

DBMS. Currently, the spatially-enabled databases that ontop
supports are the geospatial extensions of PostgreSQL and
Sqlite, namely PostGIS,5 Spatialite,6 and Oracle Spatial7 re-
spectively. More geospatial databases will be supported in
the future.
• After the evaluation of the spatial SQL query in the DBMS,

Ontop-spatial gets the results and sends them to the user.
If geometries need to be projected, the SQL query that is
produced returns the result as WKT. This enables Ontop-
spatial to be used as a GeoSPARQL endpoint, that could serve
as input endpoint for applications like linked geospatial data
visualizers [29] to display the geometries that are returned
as a result of a GeoSPARQL query.

Like the default version of Ontop, Ontop-spatial can be used as
a web application (using Sesame workbench), as a Sesame library,
as a Protege plugin, or it can be executed from the command
line. The virtual geospatial graphs created by Ontop can also
be materialized, creating an RDF dump, so that it can then be
imported in a geospatial RDF store.

5.2. Compliance with GeoSPARQL

In the following, we explain the parts of GeoSPARQL that are
supported in Ontop-spatial.

Core component. Ontop-spatial supports SPARQL and the RDFS
classes of the GeoSPARQL ontology.

Topology vocabulary extension. Ontop-spatial supports the prop-
erties geo:sfEquals, geo:sfDisjoint, geo:sfIntersects,
geo:sfTouches, geo:sfCrosses, geo:sfWithin,
geo:sfContains, geo:sfOverlaps and the respective Egen-
hofer and RCC relations to be used in SPARQL graph patterns.

Geometry extension. Ontop-spatial supports the Geometry classes
and properties defined in the Geometry topology component of
the GeoSPARQL specification. It also supports the serializations
of geometries as literals of the datatypes geo:wktLiteral and
geo:gmlLiteral respectively, as well as the serialization prop-
erties geo:asWKT and geo:asGML. Furthermore, Ontop-spatial
supports the non-topological query functions geof:distance,
geof:buffer, geof:convexHull, geof:intersection,
geof:union, geof:difference, geof:symDifference,
geof:envelope and geof:boundary as SPARQL extension
functions.

Geometry topology extension. Ontop-spatial supports all of the
topological relation functions defined in the Geometry topology
extension.

Query rewrite extension. To the best of our knowledge, Ontop-
spatial is the first GeoSPARQL implementation that supports this
extension of GeoSPARQL.

5 http://www.postgis.net
6 http://www.gaia-gis.it/gaia-sins/
7 https://www.oracle.com/database/spatial/index.html

https://github.com/ConstantB/ontop-spatial
https://github.com/ConstantB/ontop-spatial
https://github.com/ConstantB/ontop-spatial
http://www.postgis.net
http://www.gaia-gis.it/gaia-sins/
https://www.oracle.com/database/spatial/index.html

K. Bereta, G. Xiao and M. Koubarakis / Web Semantics: Science, Services and Agents on the World Wide Web 58 (2019) 100514 7

Fig. 5. Ontop-spatial.

5.3. Beyond GeoSPARQL: raster data support

In the raster data model, the geospatial data are represented
in a different way than in the vector data model. Essentially, they
are represented as pixels, with each pixel containing a set of
values. This data format is more compact and it is very common
in scientific data. For example, a value of a raster cell could
indicate a measurement value, such as temperature, moisture
level, etc. Due to the popularity of this data model, the geospatial
databases incorporated the implementation of adapters for Raster
data, introducing specialized data types for representing raster
data formats and a set of extension functions for their processing
and manipulation, handling them in a similar way to how they
handle vector data.

However, none of the geospatial extensions of the framework
of RDF and SPARQL, such as stRDF and stSPARQL and GeoSPARQL
have considered support for raster data. The main challenge that
lies behind this is twofold: First, a raster file is associated with a
geometry only as a whole. It is not straight-forward to associate
separate raster cells to a geometry, they have to be vectorized
first (i.e., translated into polygons). Second, every raster cell is
associated with one or more values. In order to convert all infor-
mation contained in a raster file into RDF, each raster cell should
be described by multiple triples, and thus the conversion pro-
duces a large amount of triples for the whole raster file. However,

not all of this information is needed. In most of the use cases,
only the information that derives from a raster file and satisfies
certain criteria (e.g., value constraints) is all that is needed to be
converted into RDF. This means that the raster file needs to be
processed and then the results of this processing are useful as
RDF, while any other information is redundant. These challenges
have discouraged the scientific community from converting and
materializing raster data to RDF. Recently, OGC and W3C have
established a working group on Spatial Data on the Web.8 One
of the working notes published by the working group recently is
called ‘‘Coverages in linked data’’ and, among other, this discusses
these challenges of raster data.

In this paper, we address these challenges by following the
OBDA paradigm:

• Ontop-spatial can connect to a geospatial relational database
with a raster adapter.
• The raster datatype is internally handled in the same way as

its vector counterpart (e.g., the Geometry datatype).
• The following GeoSPARQL operators are overloaded for sup-

porting the respective operations having raster data as argu-
ments in addition to vector data: ST_Contains,
ST_Covers, ST_Within, ST_Overlaps, ST_Intersects,
ST_Touches.
• PostGIS operators can be added in the mappings in order

to process the raster data and create virtual geospatial RDF
views above them. For example, certain operators can be
used in the SQL query of a mapping in order to refine the
results, refining the information from the original raster file
that will be virtually translated into RDF. An example is
given below.

Example 3. In this example, we combine both vector and raster
sources. First, we import a shapefile containing USA second-
level administrative divisions to a PostGIS database. The table
that contains this information is named USA_ADM2 and it has
the following columns: the gid column that stores the id of
the respective entries of the shapefile, the id_0 column that
stores an identifier of the administrative division, and the geom
column that stores the boundaries of the administrative divisions
as vector geometries in Well-Known-Binary format (WKB). Then,
we import a raster file that is a GeoTIFF image of Chicago. With
the raster extension of PostGIS enabled in the database, the raster
file is imported into a table named CHICAGO, in which the column
rid is the identifier and the column rast of the raster datatype
contains the raster cells of the GeoTIFF image. To summarize, the
schema of these two tables are: USA_ADM2(gid, id_0, geom)
and CHICAGO(rid, rast).

The mapping below encodes how data stored in these two
tables can be mapped into (virtual) RDF triples.

:r/{rid} rdf:type :RasterCell ;
geo:asWKT {geom}^^geo:WKTLiteral.

← SELECT rid, ST_DumpAsPolygons(rast).geom AS geom
FROM CHICAGO

:adm/{id_0} rdf:type :AdministrativeDivision ;
:adm/{id_0} geo:hasGeometry :geom/{gid} .
:geom/{gid} geo:asWKT {geom}^^geo:WKTLiteral .
← SELECT gid, id_0, geom FROM USA_ADM2

The first mapping assertion shows how the geometries (that
are of the raster datatype in the database) are mapped to the WKT
format, after they are vectorized, using the PostGIS
ST_DumpAsPolygons function in the source part. This procedure
allows domain experts to use all geometries that they may have
in a database uniformly, and execute spatial operations involving

8 https://www.w3.org/2015/spatial/wiki/Main_Page.

https://www.w3.org/2015/spatial/wiki/Main_Page

8 K. Bereta, G. Xiao and M. Koubarakis / Web Semantics: Science, Services and Agents on the World Wide Web 58 (2019) 100514

vector and raster geometries, for example. Domain experts usu-
ally perform this vectorization step as part of pre-processing. The
mapping assertion described above shows how this can be done
on-the-fly using Ontop-spatial.

The following GeoSPARQL query involves the combination of
vector and raster data sources. Specifically, it retrieves admin-
istrative divisions that intersect with raster cells of the GeoTIFF
image of Chicago:

SELECT ?adm WHERE {
?r rdf:type :RasterCell .
?r geo:hasGeometry ?rast .
?adm rdf:type :AdministrativeDivision .
?adm geo:hasGeometry ?g .
?g geo:asWKT ?geom .
FILTER(geof:sfIntersects(?geom,?rast))

}

In this query, we retrieve the geometries that correspond to
the boundaries of second level administrative divisions whose se-
rializations get bound to the variable ?geom. We also retrieve the
geometries of raster cells that get bound to the variable ?rast.
In Ontop-spatial, the GeoSPARQL function geof:sfIntersects
is overloaded so that it can evaluate the condition that checks
the spatial intersection of vector and raster geometries. As a
result, we retrieve the administrative divisions whose boundaries
intersect with the GeoTIFF image.

In this way, a user can handle geospatial data sources re-
gardless of their original formats. The query described above
is identical to a query that we would pose if only vector data
sources were involved. Notably, there is no other system that
is able to perform spatial joins between vector and raster ge-
ometries in such transparent way, even in the case of specific
software solutions that specialize in raster data management like
Rasdaman.9

5.4. Ontop-spatial in use

The motivation behind the development of Ontop-spatial was
the Statoil use case of the project Optique, in order to address
the issue of creating virtual RDF graphs on top of large databases
that contain geometries and get frequently updated [30]. Ontop-
spatial has been used in the urban development, land manage-
ment and crisis mapping services of the EU FP7 project
MELODIES.10 [31] Finally, Ontop-spatial has recently be used in
the Maritime security domain, in collaboration with Airbus [32].

6. Evaluation

We conduct an empirical evaluation of Ontop-spatial based
on the philosophy of Geographica,11 a benchmark for testing the
performance of geospatial RDF stores [5]. Geographica consists of
a micro benchmark and a macro benchmark. The micro benchmark
is designed for testing basic geospatial operators, such as spatial
selections and spatial joins. The macro benchmark tests the per-
formance of the evaluated systems using queries that correspond
to real application scenarios. As our aim is not to test geospatial
RDF stores as done in [5], we use a modified benchmark based
on the micro benchmark of Geographica as we explain later in
this section. The work described in [33] describes an experimental
evaluation of triple stores with geospatial functionality for smart
cities use cases. Although this benchmark covers a wide variety
of smart cities scenarios and queries, only a small subset of
spatial operators are used but in a large number of scenarios

9 http://www.rasdaman.com/.
10 http://www.melodiesproject.eu/software-tools.
11 http://geographica.di.uoa.gr/.

(e.g., intersection, distance). This could be due to the fact that one
of the systems in comparison (Virtuoso) does not provide rich
geospatial functionalities yet. The queries are also not designed
to stress the geospatial capabilities of the systems in comparison
(indexes, spatial optimizations), as the focus of the work is more
general, i.e., to perform evaluation of systems in specific use cases.
Moreover, [33] does not include the evaluation of Strabon, which,
as reported in [5], is the most efficient geospatial RDF store.
Hence, we have chosen to use Geographica as the basis of our
evaluation.

Since there was no alternative OBDA system that allow for
posing GeoSPARQL queries over geospatial relational databases,
we decided to evaluate Ontop-spatial in comparison with geospa-
tial RDF stores. We consider that the RDF store Strabon [6] is a
good representative of the family of the geospatial RDF stores
to compare with as (i) it is a state-of-the-art geospatial RDF
store both in terms of functionality and performance [5,6], (ii) it
supports a big subset of GeoSPARQL (apart from stSPARQL), and
(iii) it uses a spatially-enabled DBMS as back-end, performing a
SPARQL-to-SQL translation following a specific storage scheme as
explained in [6]. This enables us to use the same DBMS (PostGIS
with the same configuration and tuning) and perform a compre-
hensive comparison. We also consider the commercial system
System-X (the free version) which is one of the most efficient
triple stores and recently added support for GeoSPARQL. Since
System-X is more recent than the study described in [5], we
included it in our experimental evaluation to find out how it
compares to both Strabon and Ontop-spatial.

6.1. Datasets

Geospatial data come, in most cases, in native geospatial data
formats. In a real-world scenario, a user that works with geospa-
tial data obtains it as files in a geospatial data format (e.g., a
shapefile) and stores it either in a GIS or a spatially-enabled
relational database. Later on, he may convert the data into RDF
and store it in a geospatial RDF store in order to combine it with
other linked data.

The benchmark Geographica is based on such real-world
geospatial application scenarios and for the experimental evalu-
ation of Ontop-spatial we will also follow this approach: We will
import real geospatial datasets in a spatially-enabled relational
database and use it as the back-end of Ontop-spatial.

We chose to use the datasets of Geographica that are available
in their original format (shapefiles). These datasets are the Corine
Land Cover dataset of Greece, which is provided by the European
Environment Agency (EEA), the Greek Administrative Geometry
(GAG), and the Hotspots dataset provided by the National Ob-
servatory of Athens. We complemented these data sources with
the original raw files of OpenStreetMap data about Greece which
are available as shapefiles.12 Geographica uses the RDF versions
of the same subset of the OSM datasets created by the project
LinkedGeoData.13 For the rest of this paper, we will refer to
this dataset using the acronym LGD of the resulting RDF version.
We added more OSM categories to our workload (e.g., buldings,
waterways, etc.), as we will exploit the fact that each one is
contained in a different shapefile (so it will be imported into a
different table), to stress our system as we explain later on in this
section.

For the evaluation of Ontop-spatial, we imported the shape-
files in a PostGIS database using the shp2pgsql command as de-
scribed here: https://github.com/ConstantB/Ontop-spatial/wiki/
Shapefiles. In this way, each shapefile is loaded into a separate

12 http://download.geofabrik.de/europe/greece.html.
13 http://linkedgeodata.org/.

http://www.rasdaman.com/
http://www.melodiesproject.eu/software-tools
http://geographica.di.uoa.gr/
https://github.com/ConstantB/Ontop-spatial/wiki/Shapefiles
https://github.com/ConstantB/Ontop-spatial/wiki/Shapefiles
https://github.com/ConstantB/Ontop-spatial/wiki/Shapefiles
http://download.geofabrik.de/europe/greece.html
http://linkedgeodata.org/

K. Bereta, G. Xiao and M. Koubarakis / Web Semantics: Science, Services and Agents on the World Wide Web 58 (2019) 100514 9

table in the database. Each one of these tables contains a column
where geometries are stored in binary format (WKB) and an index
has been built on that column. Then, we created the minimum set
of mappings in order to pose the queries of the benchmark. We
used PostgreSQL version 9.1.13 and PostGIS 2.0.3, performing the
fine tuning configurations suggested here: http://geographica.di.
uoa.gr.

Table 4 shows information about the datasets described above,
such as the disk size that each of these tables occupy, the number
of tuples and the average number of points per geometry. Notice
that the LGD dataset consists of 7 shapefiles/tables which is
important in the OBDA setting as we will explain later on. Also,
LGD-Places and LGD-Points contain only point geometries.

In order to compare the performance of Ontop-spatial with
Strabon and System-X, we materialized the geospatial RDF graph
produced by Ontop-spatial and stored it in Strabon and System-
X, so that both the virtual RDF graph produced by Ontop-spatial
and the graphs stored in other systems contain exactly the same
information. The produced RDF dump consists of 5,620,482 triples
and contains 855,502 geometries. The total PostGIS database size
(in terms of disk usage) of Ontop-spatial is 700 MB. The respective
size of the PostGIS database that was produced after loading the
RDF dump to Strabon is 1665 MB, which is more than twice
the disk space compared to the original database produced by
importing the shapefiles directly. The reason is that in the first
case the database stores the data, while in the second case the
database stores the equivalent set of triples. This kind of overhead
is common in RDF stores that use a relational database as back-
end. Also, Strabon inherits the per_predicate storage scheme of the
Sesame RDBMS package, so every predicate is stored in a differ-
ent table and additional tables are used for dictionary encoding.
According to this storage scheme, all geometries are stored in a
table called geo_values in WKB format and the respective column
is indexed using an R-tree-over-GiST index, as described in [6].

6.2. Queries

The GeoSPARQL queries that we used for the experimental
evaluation of our system are a set of spatial selections and a set of
spatial joins. We used some of the queries of Geographica, and
some queries that are appropriate in the OBDA setting as we
will explain in the rest of this section. The queries used in our
evaluation are presented in Tables 2 and 3. Each query has a
numeric identifier, a mnemonic label, a number that shows how
many BGPs it consists of and a number that shows how many
results it returns.

Both spatial selection and spatial join queries contain a spatial
filter that checks if a spatial relation holds between two geome-
tries that are given as arguments to the respective GeoSPARQL
function. In the case of spatial selections, one of the arguments
is a variable and the other one is a constant, which can be
either a line (queries suffixed with ‘‘L’’ in the query label) or a
polygon (using ‘‘P’’ suffix). In spatial join queries, both arguments
of the respective spatial binary operator are variables. The first set
of queries that we consider contains simple geospatial queries,
i.e., queries consisting of a single triple pattern to retrieve the
geometries of a dataset and a spatial filter (spatial selections 00-
14 and spatial joins 00-03). Note that spatial joins require at
least two triple patterns to retrieve the geometries that will be
bound to the variables that are involved in the spatial filter. This
kind of queries test the response time of the compared systems
to perform ‘‘pure’’ geospatial queries (i.e., with the minimum
amount of non-spatial triple patterns involved, focusing as much
as possible on the evaluation of the spatial condition).

The next set of queries that we consider tackles an important
issue that is crucial in OBDA systems: the generation of UNION

Fig. 6. Examples of geospatial mappings for two LGD tables.

Fig. 7. Template for spatial selection queries.

operators, deriving from the ontology and the schema of the
database in the SPARQL-to-SQL translation phase. For example,
the LGD dataset consists of 7 shapefiles, each one containing
a column where geometries are stored. In contrast, according
to the ontology, the data property lgd:asWKT that connects a
spatial object with its geometry is universal for all spatial ob-
jects in the dataset. We present the mapping for two of these
tables/shapefiles in Fig. 6.

Listing 1: Spatial selection query 19
SELECT distinct ?s1 WHERE {

?s1 lgd:asWKT ?o1 .
{ {?s1 rdf:type lgd:Road} UNION

{?s1 rdf:type lgd:Waterway} }
FILTER(geof:sfIntersects(GEOMETRY ,?o1))

}

Listing 2: Spatial join query 6
SELECT ?s1 ?s2 WHERE {

?s1 lgd:asWKT ?o1 .
?s2 lgd:asWKT ?o2 .
FILTER(geof:sfIntersects(?o1,?o2))

}

Let us now consider the template for spatial selection queries
in Fig. 7. The translated SQL query corresponding to a GeoSPARQL
query following this template would create unions in order to
fetch results deriving from all the tables it has been mapped to,
that is, all seven LGD tables, and then apply the spatial selection
to this union. This is the case for spatial selection queries 15–19.
In order to test how our system responds by increasing/decreas-
ing the number of unions produced in the translated query, we
add an additional, thematic filter that selects a different number
of LGD categories each time, thus affecting a different number of
tables, and producing different number of unions, respectively.
For example, consider query 19 shown in Listing 1, which con-
tains a union to retrieve both waterways and roads (coming from
different shapefiles, thus different tables in the database).

The queries 15, 16, 17, and 18 produce 6, 4, 3, and 4 unions
respectively. The presence of unions has a negative impact on
the query response time, but things get even worse when unions
appear in spatial joins (e.g., spatial join query 6). Since variables
appear in the spatial filters that serve as the conditions of the
spatial joins, all combinations of the respective tables that are in-
volved in the corresponding mappings should be spatially joined
pairwise.

For example, consider the spatial join query 6 which is given
in Listing 2. This query performs a spatial join with the condition
intersects in all LGD tables that are involved in the mappings
containing the predicate lgd:asWKT. This join is translated into the
corresponding relational algebra expression as follows:

(Lbuildings ∪ Lluse ∪ · · · ∪ Lwaterways)
⋊⋉sf (Lbuildings ∪ Lluse ∪ · · · ∪ Lwaterways)

http://geographica.di.uoa.gr
http://geographica.di.uoa.gr
http://geographica.di.uoa.gr

10 K. Bereta, G. Xiao and M. Koubarakis / Web Semantics: Science, Services and Agents on the World Wide Web 58 (2019) 100514

Table 2
Spatial selections description.
No Query #BGPs Results

00 Equals_GADM_P 1 0
01 Contains_GADM_P 1 9
02 Contains_GADM_P 1 0
03 Equals_GADM_L 1 1
04 Overlaps_GADM_L 1 0
05 Contains_GADM_L 1 0
06 Intersects_CLC_L 1 5
07 Contains_CLC_L 1 0
08 Equals_CLC_L 1 5
09 Overlaps_CLC_L 1 0
10 Overlaps_CLC_P 1 132
11 Intersects_CLC_P 1 533
12 Contains_CLC_P 1 401
13 Equals_CLC_P 1 0
14 Intersects_LGD_P 2 2749
15 Intersects_LGD_B 2 2749
16 Intersects_LGD_PL 2 2626
17 Intersects_LGD_P 2 2522
18 Intersects_LGD_LU 2 2722
19 Intersects_LGD_ROA 2 2387
20 Intersects_LGD_bigP 1 729189
21 Intersects_LGD_P2 3 5

Table 3
Spatial joins description.
No Query #BGPs Results

00 Within_CLC_GADM 2 34114
01 Intersects_GADM_GADM 2 1556
02 Overlaps_GADM_CLC 2 17035
03 Intersects_LGD_GADM 3 154725
04 Intersects_LGD_LGD_Mus 4 2
05 Intersects_LGD_GADM 2 819319
06 Intersects_LGD_LGD 1 3686229
07 Crosses_LGD_LGD_Roads 4 178602

Table 4
Workload characteristics.

Dataset Size Tuples Avg #points
geometry

CLC 283MB 44834 187.84
Hotspots 35 MB 37048 5
GAG 24 MB 326 3020.14
LGD-Buildings 42 MB 155474 6.5
LGD-Landuse 20 MB 40220 19.4
LGD-Places 2.4 MB 13043 1
LGD-Points 12 MB 61664 1
LGD-Railways 2 MB 4996 13.3
LGD-Roads 250 MB 514403 19
LGD-Waterways 16 MB 20565 39.84

where Lbuildings, Lluse, . . . , Lwaterways, etc. are LGD tables and sf is
spatial operator corresponding to geof:sfIntersects from the
query. The query engine evaluates this relational algebra expres-
sion as unions of joins and all involved tables get spatially joined
pairwise.

Last, in order to measure how the selectivity of the queries
affect the performance of the systems, we included the spatial
selection queries 20 and 21 involve the computation of the in-
tersection of all kinds of LGD areas with a specific polygon. This
polygon is large in the case of spatial selection query 20 so
that many geometries will be returned, while in spatial selection
query 21 this polygon is small enough so that very few LGD areas
intersect with it.

6.3. Results

Experimental set up. The experiments were carried out on
a server with the following specifications: Intel(R) Xeon(R) CPU
E5620 @ 2.40 GHz, 12MB L3, RAID 5, 32GB RAM and OS: Ubuntu
12.04. All experiments were carried out with both cold and warm
cache. Queries are first executed in cold cache and then in warm
cache. The queries for which the system under test times out (
the time out threshold is set to 40 min) are not executed in warm
cache. All queries and code we used to execute the experiments
in both systems, can be found in the ‘‘experiments’’ branch of
the github repository of Ontop-spatial (folder ‘‘benchmark’’) at
https://github.com/ConstantB/Ontop-spatial.

Query response time. The results of our experimental evalu-
ation can be seen in Figs. 8 and 9. Response time is measured
in milliseconds and presented in logarithmic scale. A general
observation is that the query response time of Ontop-spatial is
better than the one of Strabon and System-X, especially when big
datasets are involved, both for spatial selections and spatial joins.
Strabon times out after 40 min in spatial join queries 6 and 7.
System-X times out after 40 min in spatial join queries 0, 1, 2, 3,
6 and 7. In spatial selection queries 2–5, although Ontop-spatial
achieves better response time than Strabon in cold cache, it gets
outperformed in warm cache, as intermediate results (which are
not many as the dataset involved in this query is relatively small),
are more likely to be found in the cache, increasing the hit rate of
the cache and decreasing I/O requests. However, such differences
between executions in warm and cold cache are eliminated in
larger datasets. System-X performs worse than Ontop-spatial and
Strabon in both cases.

In what follows we explain the reason why Ontop-spatial
outperforms Strabon in most cases, as well as why it does not
in other cases.

Listing 3: Spatial join query 2
SELECT ?s1 ?s2 WHERE {

?s1 clc:asWKT ?o1 .
?s2 gag:asWKT ?o2 .
FILTER(geof:sfWithin(?o1, ?o2))

}

Listing 4: Spatial join query 4
SELECT ?s1 ?s2 WHERE {

?s1 lgd:asWKT ?o1 .
?s1 rdf:type lgd:Building .
?s1 lgd:type " Museum " .
?s2 lgd:asWKT ?o2 .
?s2 rdf:type lgd:Landuse .
FILTER(geof:sfIntersects(?o1,?o2))

}

Listing 5: Ontop-spatial SQL query
SELECT
1 AS " s1QuestType " , NULL AS " s1Lang " ,
(’http://geo.linkedopendata.gr/clc/’

|| clc.gid || ’/’) AS " s1 " ,
1 AS " s2QuestType " , NULL AS " s2Lang " ,
(’http://geo.linkedopendata.gr/gag/ont/’

|| gag.gid || ’/’) AS " s2 "
FROM

clc QVIEW1, gag QVIEW2
WHERE

QVIEW1 ." gid " IS NOT NULL AND
QVIEW1 ." geom " IS NOT NULL AND
QVIEW2 ." gid " IS NOT NULL AND
QVIEW2 ." geometry " IS NOT NULL AND
ST_Within(QVIEW1 ." geom " ,QVIEW2 ." geometry ")

https://github.com/ConstantB/Ontop-spatial

K. Bereta, G. Xiao and M. Koubarakis / Web Semantics: Science, Services and Agents on the World Wide Web 58 (2019) 100514 11

Fig. 8. Spatial Selections experiment (cold and warm cache).

Listing 6: Strabon SQL query
SELECT a0.subj, u_s2.value, a2.subj, u_s1.value
FROM aswkt_855211 a0

INNER JOIN geo_values l_o2 ON (l_o2.id = a0.obj)
INNER JOIN geo_values l_o1

ON ST_Within(l_o1.strdfgeo , l_o2.strdfgeo)
INNER JOIN aswkt_135992 a2 ON (a2.obj = l_o1.id)
LEFT JOIN uri_values u_s2 ON (u_s2.id = a0.subj)
LEFT JOIN uri_values u_s1 ON (u_s1.id = a2.subj)

The queries provided in Listings 5 and 6 are the SQL transla-
tions of the GeoSPARQL spatial join query 2, which is provided
in Listing 3. One can observe that Ontop-spatial produces the
same query as one would have written by hand in a geospa-
tial relational database. Strabon produces some extra joins, as
a result of the star schema that it follows in the database (and
has been inherited from the Sesame RDBMS that Strabon is built
on), i.e., each predicate is stored in a different table and there
are some additional tables used for dictionary encoding (tables
storing URIs, one table for each different datatype, etc.). This
has a negative impact on performance when many intermedi-
ate results are produced. In Strabon, geometries are stored in
a single table, named geo_values, and are indexed on the ge-
ometry column using an R-tree-over-GiST index. On the other
hand, Ontop-spatial stores each shapefile in a different table, and
geometries are stored in a separate column for each table, and a
separate R-tree-over-GiST index is constructed for the geometries
of each shapefile/table. As Table 4 shows, there are cases where
geometries of a shapefile/table are of the same type (e.g., all con-
tain points/linestrings/polygons), allowing Ontop-spatial to build
smaller and more efficient indices.

Nevertheless, in spatial join query 4, Strabon outperforms
Ontop-spatial. The query is provided in Listing 4. Using this query,
we want to retrieve the land use of areas that intersect with
Museums. This is a very selective query with respect to the the-
matic condition, so the PostgreSQL optimizer correctly chooses to
perform the thematic conditions first so that only the geometries
of Museums will be checked in the spatial condition that follows,

Fig. 9. Spatial Joins experiment (cold and warm cache).

and the R-tree index will be used. Both systems execute the
query very fast, with Strabon achieving nearly 4 times better
performance than Ontop-spatial, as the overhead of the extra
joins it performs, as described above, is reduced because very
few intermediate results are produced. Also, dictionary decoding
helps Strabon to perform string comparison (for value ‘‘Museum’’)
only once, in order to retrieve the id of that value and then
perform thematic joins efficiently using the id (numeric) value.

Queries 15–19 have filters that select different kinds of LGD
categories. Query response time increases every time many LGD
categories are involved (Query 15 asks for all categories), produc-
ing the respective number of unions in the case of Ontop-spatial
and more intermediate results for Strabon, forcing more geome-
tries to be checked in the spatial filter. On the contrary, query
response time decreases when less LGD categories need to be
selected.

The results of union-queries are more interesting in the case
of spatial joins, shown in Fig. 9. One would expect that unions
with spatial joins, as in the case of the spatial join query 6,
would dramatically decrease the performance of Ontop-spatial.
Indeed, query response time increases in the case of queries like
query 6, but Ontop-spatial still performs better than Strabon. The
explanation for this lies in the fact that each time a spatial join
is performed between two different LGD tables, the optimizer
chooses the one having the smaller index (and usually smaller
geometries, in this case) to be nested inside the inner branch
of the nested loop, where it performs an index scan. This has
greater impact on the execution time of geospatial queries, as the
evaluation of spatial joins is more expensive due to the cost of the
evaluation of the spatial conditions.

In spatial selection query 20, the performance of the two
systems is very close, while in the more selective version of the
same query, i.e., spatial selection query 21, the gap in the exe-
cution times between Ontop-spatial and Strabon increases again.
This happens because nearly every geometry in the workload is
included in the results, so spatial indices are not useful in this
case.

12 K. Bereta, G. Xiao and M. Koubarakis / Web Semantics: Science, Services and Agents on the World Wide Web 58 (2019) 100514

System-X performs worse than the other two systems in all
cases mainly because of the fact that its geospatial index relies
on Apache Lucene,14 that does not support R-trees but simpler
forms of spatial indices, such as quad-trees. The spatially-enabled
RDBMS (i.e., PostgreSQL with PostGIS extension enabled) that
serves as the back-end for Ontop-spatial and Strabon, on the
other hand, incorporates more advanced and mature techniques
for efficient geospatial query processing which are considered
standard for the relational database community, such as support
for R-tree indices and spatially-enabled optimizer.

Overall, we observe that importing the shapefiles to a database
and then using an OBDA approach is very efficient, as in most
cases, the information that is contained in a shapefile is com-
pact and homogeneous, as we often have one shapefile per data
source. So, the SQL queries that are produced based on such a
schema contain reduced amount of joins and can be executed
efficiently. It is also evident from the experiments that forwarding
geospatial query processing to a spatially-enabled DBMS as back-
end can improve performance significantly, as they incorporate
well-established optimization techniques in the area of geospatial
query processing that have not yet been incorporated in native
geospatial triple stores up to date.

7. Related work

The work on extending RDF and SPARQL with geospatial func-
tionality also gave rise to the implementation of geospatial RDF
stores such as Parliament, uSeekM and Virtuoso, that imple-
ment a subset of GeoSPARQL, and Strabon [6] that implements
both GeoSPARQL and stSPARQL. Meanwhile, the work of Ontop-
temporal [34,35] extends the OBDA framework with temporal
reasoning.

There have also been systems that enable the translation of
geospatial data from their native formats to RDF. GeoTriples [36]
is a tool for the conversion of geospatial data from a variety of
source formats (shapefiles, relational databases, XML files, etc.)
to RDF using GeoSPARQL and stSPARQL vocabularies and R2RML
mappings.

Another category of systems that are related to our work
is SPARQL-to-SQL systems such as Ontop [28], Ultrawrap [37],
D2RQ15 and Morph [24]. These systems offer no geospatial func-
tionality.

In the area of description logics, the work described in [38]
extends DL-Lite with spatial primitives and presents a rewriting
mechanism to standard DL-Lite, preserving FOL-rewritability. The
work described in [39] examines the FOL rewritability of spatial
calculi (e.g., RCC8, RCC2) combined with DL-Lite. PelletSpatial [40]
is a qualitative spatial reasoner implemented on top of Pellet.

8. Discussion and conclusions

In this paper, we describe how we extended the techniques
of [28] to develop the first geospatially-enabled OBDA system,
named Ontop-spatial. By extending the OBDA system Ontop,
Ontop-spatial inherits the advantages of using RDB2RDF systems
in real use cases: (i) RDB-to-RDF workflow becomes less compli-
cated, without having to use different tools for converting data
into RDF and then storing it in RDF stores, (ii) no data needs to be
transferred, as existing databases are used as input to the system,
and (iii) mappings provide a layer of abstraction between the data
manipulation/database experts and the end users.

These advantages have even greater impact when dealing
with geospatial data. The domains where geospatial data are

14 https://lucene.apache.org/core/.
15 http://d2rq.org/.

produced and used are dominated by geospatial databases and
other tabular file formats that could easily be imported to a
database (e.g., shapefiles). GIS practitioners use geospatial re-
lational databases in their day-to-day tasks, either directly or
as the back-end of applications to store and manipulate data
(e.g., GIS have connectors for geospatial relational databases).
Ontop-spatial provides a solution for combining the advantages
of geospatial relational databases, for example, the wide variety
of geospatial data operators and the performance achieved by the
use of spatial indices, with the data modeling advantages of the
RDF data model. Moreover, Ontop-spatial allows for encapsulat-
ing geospatial data manipulation functions offered by geospatial
extensions to SQL (e.g., functions for transforming geometries to
a different coordinate reference system) in the mappings.

On the other hand, Ontop-spatial inherits the disadvantages
of the OBDA systems as well. First, in order to combine informa-
tion coming from different geospatial sources, the data should
be imported in databases. Second, as the database is given as
input to the system, it is read-only and Ontop-spatial does not
support SPARQL store or update operations; all updates should
be done directly on the database level. Third, the performance of
the system is heavily dependent on the ontology, the schema of
the database, and the mapping, as we explained in the previous
sections, which applies for OBDA approaches in general. However,
our experiments showed that in many cases, our geospatially en-
hanced OBDA approach achieves significantly better performance
than the state-of-the-art geospatial RDF store Strabon. The main
reasons for this are summarized as follows:

• The database schema that is produced simply by importing
the shapefiles to the database is in most cases suitable
for OBDA approaches, as shapefiles contain compact and
homogeneous information per dataset.
• The database produced by storing the materialized RDF

dump that Ontop exports in Strabon is bigger than the
database that results from importing the shapefiles, even
though only the RDF triples that were involved in the OBDA
mapping (i.e., the virtual RDF triples) were exported. This
happens because of (i) the normalization imposed by the
RDF data model itself (i.e., triples) and (ii) the additional
tables used for dictionary encoding.
• The additional joins that are created in the translated SQL

queries of Strabon and the fact that geometries are stored
in a single table where geospatial operators are performed
increase even by more than an order of magnitude in very
large workloads with many and complicated geometries,
when many intermediate results are produced in queries.

In future work, we plan to continue the development of
Ontop-spatial in the directions of (i) fully supporting GeoSPARQL
and stSPARQL (i.e., adding also valid time support), and (ii) im-
proving the performance by using cost-based query planner [41]
or by creating a distributed version of our extension exploit-
ing the fact that the union-all spatial queries are parallelizable,
and (iii) carrying out more scalability evaluation with a data
scaler [42].

Acknowledgments

This work is partially supported by the EU projects Optique
(318338), MELODIES (603525) and Copernicus App Lab (730124),
unibz projects OBATS and QUADRO. We thank the Ontop devel-
opment team for their support.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

https://lucene.apache.org/core/
http://d2rq.org/

K. Bereta, G. Xiao and M. Koubarakis / Web Semantics: Science, Services and Agents on the World Wide Web 58 (2019) 100514 13

References

[1] M. Koubarakis, K. Kyzirakos, Modeling and querying metadata in the
semantic sensor web: the model strdf and the query language stSPARQL,
in: L. Aroyo, et al. (Eds.), ESWC, in: LNCS, vol. 6088, Springer, 2010, pp.
425–439.

[2] Open Geospatial Consortium. GeoSPARQL - A geographic query language
for RDF data, OGC Candidate Implementation Standard, 2012.

[3] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati, M. Za-
kharyaschev, Ontology-based data access: A survey, in: IJCAI-ECAI-18–July
13–19 2018, Stockholm, Sweden, 2018.

[4] G. Xiao, L. Ding, B. Cogrel, D. Calvanese, Virtual knowledge graphs: an
overview of systems and use cases, Data Intelligence 1 (2019) 201–223.

[5] G. Garbis, K. Kyzirakos, M. Koubarakis, Geographica: a benchmark for
geospatial RDF stores (long version), in: H. Alani, L. Kagal, A. Fokoue, P.
Groth, C. Biemann, J. Parreira, L. Aroyo, N. Noy, C. Welty, K. Janowicz (Eds.),
ISWC, in: Lecture Notes in Computer Science, vol. 8219, Springer, 2013, pp.
343–359.

[6] K. Kyzirakos, M. Karpathiotakis, M. Koubarakis, Strabon: a semantic
geospatial DBMS, in: ISWC, in: LNCS, vol. 7649, Springer, 2012, pp.
295–311.

[7] K. Bereta, M. Koubarakis, Ontop of geospatial databases, in: P. Groth,
E. Simperl, A. Gray, M. Sabou, M. Krötzsch, F. Lecue, F. Flöck, Y. Gil
(Eds.), The Semantic Web – ISWC 2016: 15th International Semantic Web
Conference, Kobe, Japan, October 17–21, 2016, Proceedings, Part I, Springer
International Publishing, Cham, 2016, pp. 37–52.

[8] R. Cyganiak, D. Wood, M. Lanthaler, RDF 1.1 concepts and abstract syntax,
in: W3C Recommendation, W3C, 2014. Available at https://www.w3.org/
TR/rdf11-concepts/.

[9] D. Peterson, S.S. Gao, A. Malhotra, C.M. Sperberg-McQueen, H.S. Thomp-
son, W3C XML schema definition language (XSD) 1.1 part 2: datatypes,
W3C Recommendation, W3C, 2012. Available at https://www.w3.org/TR/
xmlschema11-2/.

[10] S. Harris, A. Seaborne, SPARQL 1.1 query language, W3C recommendation,
W3C, 2013. Available at http://www.w3.org/TR/sparql11-query.

[11] J. Pérez, M. Arenas, C. Gutierrez, Semantics and complexity of SPARQL,
ACM Trans. Database Syst. 34 (3) (2009) 16:1–16:45, http://dx.doi.org/10.
1145/1567274.1567278.

[12] R. Kontchakov, M. Rezk, M. Rodriguez-Muro, G. Xiao, M. Zakharyaschev,
Answering SPARQL queries over databases under OWL 2 QL entailment
regime, in: Proc. of International Semantic Web Conference (ISWC 2014),
in: LNCS, vol. 8796, Springer, 2014, pp. 552–567, http://dx.doi.org/10.1007/
978-3-319-11964-9_35.

[13] M. Kaminski, E.V. Kostylev, B. Cuenca Grau, Query nesting, assignment,
and aggregation in SPARQL 1.1, ACM Trans. Database Syst. 42 (3) (2017)
17:1–17:46.

[14] B. Glimm, C. Ogbuji, SPARQL 1.1 entailment regimes, W3c recom-
mendation, W3C, 2013. Available at http://www.w3.org/TR/sparql11-
entailment/.

[15] G. Xiao, D. Hovland, D. Bilidas, M. Rezk, M. Giese, D. Calvanese, Efficient
ontology-based data integration with canonical IRIs, in: ESWC, in: Lecture
Notes in Computer Science, vol. 10843, Springer, 2018, pp. 697–713.

[16] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, C. Lutz, OWL 2
web ontology language profiles, in: W3C Recommendation, W3C, Second
ed., 2012.

[17] W3C OWL Working Group, OWL 2 Web Ontology Language document
overview, second ed., W3C Recommendation, W3C, 2012.

[18] K. Bereta, P. Smeros, M. Koubarakis, Representation and querying of valid
time of triples in linked geospatial data, in: Extended Semantic Web
Conference 2013, vol. 7882, Springer Berlin Heidelberg, 2013, pp. 259–274.

[19] Open Geospatial Consortium. OpenGIS Simple Features Specification For
SQL, OGC Implementation Standard, 1999.

[20] M. Egenhofer, A formal definition of binary topological relationships, in:
Foundations of Data Organization and Algorithms, in: Lecture Notes in
Computer Science, vol. 367, Springer Berlin Heidelberg, 1989, pp. 457–472.

[21] D.A. Randell, Z. Cui, A.G. Cohn, A spatial logic based on regions and connec-
tion, in: Proceedings of the 3rd International Conference on Principles of
Knowledge Representation and Reasoning (KR’92). Cambridge, MA, October
25–29, 1992, pp. 165–176.

[22] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati,
Linking data to ontologies, J. Data Semantics 10 (2008) 133–173.

[23] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk, M.
Rodriguez-Muro, G. Xiao, Ontop: answering SPARQL queries over relational
databases, Semantic Web J. 8 (3) (2017) 471–487.

[24] F. Priyatna, O. Corcho, J. Sequeda, Formalisation and experiences of R2RML-
based SPARQL to SQL query translation using morph, in: Proc. of the 23rd
International Conference on World Wide Web, ACM, NY, USA, 2014, pp.
479–490.

[25] D. Calvanese, G.D. Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-
Muro, R. Rosati, M. Ruzzi, D.F. Savo, The mastro system for ontology-based
data access, Semantic Web 2 (1) (2011) 43–53.

[26] B. Glimm, C. Ogbuji, SPARQL 1.1 entailment regimes, W3C recommenda-
tion, W3C, 2013.

[27] J.R. Herring, OpenGIS implementation specification for geographic informa-
tion - simple feature access - Part 2: SQL option, OpenGIS Implementation
Standard 06-104r4, Open Geospatial Consortium Inc., 2010.

[28] M. Rodriguez-Muro, M. Rezk, Efficient SPARQL-to-SQL with R2RML
mappings, J. Web Semant. 33 (1) (2015).

[29] C. Nikolaou, K. Dogani, K. Bereta, G. Garbis, M. Karpathiotakis, K. Kyzirakos,
M. Koubarakis, Sextant: visualizing time-evolving linked geospatial data, J.
Web Sem. 35 (2015) 35–52.

[30] E. Kharlamov, D. Hovland, M.G. Skjæveland, D. Bilidas, E. Jiménez-Ruiz,
G. Xiao, A. Soylu, D. Lanti, M. Rezk, D. Zheleznyakov, M. Giese, H. Lie, Y.
Ioannidis, Y. Kotidis, M. Koubarakis, A. Waaler, Ontology based data access
in statoil, J. Web Semant. 44 (2017) 3–36.

[31] K. Bereta, G. Xiao, M. Koubarakis, M. Hodrius, C. Bielski, G. Zeug,
Ontop-spatial: geospatial data integration using GeoSPARQL-to-SQL trans-
lation, in: Proceedings of the ISWC 2016 Posters & Demonstrations
Track. Co-located with the 15th International Semantic Web Conference
(ISWC 2016), CEUR Electronic Workshop Proceedings, vol. 1690, 2016.

[32] S. Bruggemann, K. Bereta, G. Xiao, M. Koubarakis, Ontology-based data
access for maritime security, in: The Semantic Web. Latest Advances and
New Domains: 13th Extended Semantic Web Conference, ESWC 2016,
Heraklion, Crete, Greece, May 29–June 2, 2016, Proceedings, Springer
International Publishing, 2016, pp. 741–757.

[33] P. Bellini, P. Nesi, Performance assessment of RDF graph databases for
smart city services, J. Vis. Lang. Comput. 45 (2018).

[34] S. Brandt, E. Güzel Kalaycı, V. Ryzhikov, G. Xiao, M. Zakharyaschev,
Querying log data with metric temporal logic, J. Artificial Intelligence Res.
62 (2018) 829–877.

[35] E.G. Kalayci, G. Xiao, V. Ryzhikov, T.E. Kalayci, D. Calvanese, Ontop-
temporal: a tool for ontology-based query answering over temporal data,
in: CIKM, ACM, 2018, pp. 1927–1930.

[36] K. Kyzirakos, I. Vlachopoulos, D. Savva, S. Manegold, M. Koubarakis,
GeoTriples: a tool for publishing geospatial data as RDF graphs us-
ing R2RML mappings, in: Proceedings of the ISWC 2014 Posters &
Demonstrations Track, Riva del Garda, Italy, October 21, 2014, pp. 393–396.

[37] J. Sequeda, D. P.M.iranker, Ultrawrap: SPARQL execution on relational data,
J. Web Semant. 22 (2013).

[38] T. Eiter, T. Krennwallner, P. Schneider, Lightweight spatial conjunctive
query answering using keywords, in: The Semantic Web: Semantics and
Big Data, 10th International Conference, ESWC 2013, Montpellier, France,
May 26–30, 2013. Proceedings, 2013, pp. 243–258.

[39] Ö.L. Özçep, R. Möller, Scalable geo-thematic query answering. in: The
Semantic Web - ISWC 2012 - 11th International Semantic Web Conference,
Boston, MA, USA, November 11–15, 2012, Proceedings, Part I, 2012, pp.
658–673.

[40] M. Stocker, E. Sirin, PelletSpatial: A hybrid RCC-8 and RDF/OWL reasoning
and query engine, in: Proceedings of the 5th International Workshop on
OWL: Experiences and Directions (OWLED 2009), Chantilly, VA, United
States, October 23–24, 2009.

[41] D. Lanti, G. Xiao, D. Calvanese, Cost-driven ontology-based data access, in:
International Semantic Web Conference (1), in: LNCS, vol. 10587, Springer,
2017, pp. 452–470.

[42] D. Lanti, G. Xiao, D. Calvanese, VIG: data scaling for OBDA benchmarks,
Semantic Web 10 (2) (2019) 413–433.

http://refhub.elsevier.com/S1570-8268(19)30044-7/sb1
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb1
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb1
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb1
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb1
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb1
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb1
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb4
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb4
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb4
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb5
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb5
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb5
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb5
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb5
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb5
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb5
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb5
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb5
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb6
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb6
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb6
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb6
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb6
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb7
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb7
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb7
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb7
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb7
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb7
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb7
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb7
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb7
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema11-2/
http://www.w3.org/TR/sparql11-query
http://dx.doi.org/10.1145/1567274.1567278
http://dx.doi.org/10.1145/1567274.1567278
http://dx.doi.org/10.1145/1567274.1567278
http://dx.doi.org/10.1007/978-3-319-11964-9_35
http://dx.doi.org/10.1007/978-3-319-11964-9_35
http://dx.doi.org/10.1007/978-3-319-11964-9_35
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb13
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb13
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb13
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb13
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb13
http://www.w3.org/TR/sparql11-entailment/
http://www.w3.org/TR/sparql11-entailment/
http://www.w3.org/TR/sparql11-entailment/
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb15
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb15
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb15
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb15
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb15
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb18
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb18
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb18
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb18
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb18
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb20
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb20
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb20
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb20
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb20
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb22
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb22
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb22
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb23
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb23
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb23
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb23
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb23
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb24
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb24
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb24
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb24
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb24
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb24
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb24
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb25
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb25
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb25
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb25
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb25
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb27
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb27
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb27
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb27
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb27
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb28
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb28
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb28
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb29
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb29
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb29
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb29
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb29
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb30
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb30
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb30
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb30
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb30
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb30
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb30
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb32
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb32
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb32
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb32
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb32
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb32
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb32
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb32
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb32
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb33
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb33
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb33
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb34
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb34
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb34
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb34
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb34
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb35
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb35
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb35
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb35
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb35
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb37
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb37
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb37
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb41
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb41
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb41
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb41
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb41
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb42
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb42
http://refhub.elsevier.com/S1570-8268(19)30044-7/sb42

	Ontop-spatial: Ontop of geospatial databases
	Introduction
	Preliminaries
	RDF And SPARQL
	SPARQL entailment regimes
	Geospatial extensions of RDF and SPARQL
	Ontology-based data access

	A formalization of GeoSPARQL
	OGC GeoSPARQL standard
	Core component [Clause 6]ogc-geosparql
	Topology vocabulary extension [Clause 7]ogc-geosparql
	Geometry extension [Clause 8]ogc-geosparql
	Geometry Topology extension [Clause 9]ogc-geosparql
	Query rewrite extension [Clause 10]ogc-geosparql

	GeoSPARQL entailment regime

	GeoSPARQL-to-SQL
	The ontop-spatial system
	System overview
	Compliance with GeoSPARQL
	Beyond GeoSPARQL: raster data support
	Ontop-spatial in use

	Evaluation
	Datasets
	Queries
	Results

	Related work
	Discussion and conclusions
	Acknowledgments
	Declaration of competing interest
	References

