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Abstract
Integrating heterogeneous geospatial data sources is important in various domains like smart
cities, urban planning and governance, but remains a challenging research problem. In par-
ticular, the production of high-quality integrated data from multiple sources requires an
understanding of their respective characteristics and a systematic assessment of the consis-
tency within and between the data sources. In order to perform the assessment, the data has
to be placed on a common ground. However, in practice, heterogeneous geodata are often
provided in diverse formats and organized in significantly different structures. In this work,
we propose a framework that uses an ontology-based approach to overcome the heterogene-
ity by means of a domain ontology, so that consistency rules can be evaluated at the unified
ontological representation of the data sources. In our case study, we use open governmental
data from Open Data Portals (ODPs) and volunteered geographic information from Open-
StreetMap (OSM) as two test data sources in the area of the province of South Tyrol, Italy.
Our preliminary experiment shows that the approach is effective in detecting inconsisten-
cies within and between ODP and OSM data. These findings provide valuable insights for
a better combined usage of these datasets.

Keywords Open geodata integration · Data quality · Data consistency · Ontology ·
Semantic technologies

1 Introduction

The increasing public availability of big geospatial datasets and the synthesis of such infor-
mation provide great opportunities for discovering useful knowledge and supporting the
decision-making in various domains like smart cities, urban planning and governance [1, 2].
For instance, spatial data infrastructures can fuse different types of open geodata sources,
e.g., Open Government Data (OGD) and Volunteered Geographic Information (VGI), to
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enable cross-data analysis [3]. A prerequisite for making sense of these multiple open
geodata sources is to perform geodata integration under a clear semantics. However, geo-
data integration of multiple data sources is in general not an easy task because of their
heterogeneity concerning their types, structures, and qualities [4].

Given a set of heterogeneous geodata sources, the starting point of the integration task is
usually to understand their respective characteristics and qualities. For instance, OGD are
mainly produced by public sectors at different administrative levels and are thus normally
confined to certain administrative boundaries. They are mostly published at Open Data Por-
tals (ODPs) and are expected to be authoritative and of high quality [5]. It is common that
OGD data contain significant amount of geospatial information (e.g., addresses). In con-
trast, VGI, e.g., OpenStreetMap (OSM), is crowdsourced geospatial data resulting from the
wide engagement of large numbers of public citizens [6]. Due to the bottom-up manner of
data collection, the quality of VGI vary strongly. The geographic coverage of VGI can range
from a local event spot to a global coverage. When integrating such heterogeneous geodata
sources, a key challenge is a lack of a proper understanding of the value and contributions
provided by each single source, and of the relationships between the datasets. In particular,
it is crucial to inspect the data quality of each single source and how the mutual consis-
tency of the data sources affects the overall quality of the integrated data. Hence, there is a
necessity to assess systematically the consistency within and between the data sources.

In recent years, the Semantic Web and Linked Data communities have been working
on adding the semantics to the data and organize them in a simple yet powerful graph-
based RDF model [7]. In the GIScience domain, geospatial datasets have been increasingly
published as linked data, in which ontologies are used as a means to improve access to and
sharing of geographical information [8] and applied in studies like urban development [9].
Popular linked geodata projects include European Open Data Portal and LinkedGeoData.
These linked geodata sources provide a vast of advantages to address the challenges for
geodata integration, reuse, semantic interoperation, and knowledge formalization. However,
best practices of publishing (geo)-data are still missing, which leads to various errors and
data quality issues in the released data sets [10]. Hence, consistency assessment of linked
datasets remains a critical prerequisite.

From the perspective of database integration, the issue of identifying inconsistencies
between datasets can be largely identified at the schema level and at the instance level [11].
Schema-level inconsistency, also called heterogeneity, refers to different ways of organizing
the same kind of data. It includes e.g., diverse file formats, different data types, and attribute
names. For instance, popular geodata formats include (Geo)JSON, Excel, CSV, Shapefiles,
and RDF triples. The locations of geofeature can be provided as geometries in certain geo-
graphic coordinate system, but can also be referenced by addresses in natural languages.
Even worse, in multilingual areas, these addresses are recorded in different languages fol-
lowing different naming conventions. Another common phenomenon is that data sources
are not sufficiently self-described. In particular, one needs to invest major efforts in under-
standing the possibly confusing and even misleading attribute names. Consequently, the
information about the inter-relationship across multiple datasets are largely missing. These
problems are also strongly related to the systematic errors in publishing geodata sources
as linked data [10]. Without a good understanding of the underlying sources and an agile
workflow, such systematic errors can be easily introduced, which are difficult to be detected
and fixed later.

Instance-level inconsistency means that data contain logical contradictions [12, 13].
Geodata inconsistencies at the instance level are normally regarded as violating specific
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geographic or cartographic constraints or rules. For instance, the topological and the the-
matic relation of two geofeatures can be contradictory: according to one source, an address
is registered in a city; while according to other sources, the geometry of the address is out-
side the city. Such situation suggests that at least one data source contains some errors and
one should be careful when integrating such sources.

The goal of this paper is to develop a framework of data inconsistency assessment for
geodata integration. In order to assess the consistency of multiple data sources, we need
to place the data on a common ground, for which we resort to ontology-based approaches.
An ontology conceptualizes a domain of interest and provides a coherent view of underly-
ing data and thus greatly simplifies the process of consistency assessment. Among the first
works, Frank [14] considered consistency constraints on spatial databases from an onto-
logical perspective. Ontologies can also help to improve the accuracy of integration by
making the semantic differences of geospatial data explicit. Aracri et al. [15] experimented
with the ontology-based data management paradigm for data quality assessment, including
consistency, accuracy, and completeness, in the context of the Italian Integrated System of
Statistical Registers. Despite the existing extensive theoretical works on geo-ontologies and
data quality (see also Section 2), there seems still to be a gap on how to apply these results
to the practice of quality assessment for geodata integration apart from some initial works.

The main contribution of this work is an ontology-based data quality assessment frame-
work for geodata integration. The framework leverages the ontology-based data access
(OBDA) paradigm, which provides a virtual unified ontological RDF graph view over the
data sources to be integrated. This virtual view is defined by declarative mapping assertions
from the data sources to the concepts in the ontology. The mapping and ontology are defined
at the schema-level, i.e., data instance independent. During the construction of the ontology
and mapping, the schema-level inconsistencies are assessed and possibly fixed. Users can
then formulate consistency checking rules over the ontological view as queries to assess data
inconsistencies at the instance level, and visually check the results on maps. Query answer-
ing over the ontological view is handled by the query-rewriting technique, i.e., ontological
queries are translated automatically by an OBDA engine to queries over the data sources.
In contrast to the classical costly materialization-based method, our virtualization-based
approach avoids explicitly generating RDF triples, and thus allows for a quick iteration of
data integration, and enables quality assessment on the fly.

The second contribution is an experiment of evaluating our proposed framework on ODP
and OSM datasets, which leads to several insights into data inconsistency issues classified
in different categories. The evaluation is illustrated by real-world data in the province of
South Tyrol, Italy. We believe that these findings reveal general issues in many geodata
integration scenarios.

The following of the paper is structured as follows: Section 2 introduces the related work
on (linked) open geodata, the consistency assessment of geodata and OBDA techniques for
geospatial data. Section 3 presents a framework for assessing data inconsistency. Test data
are described in Section 4. The preliminary experiment is conducted and the results are
analyzed in Section 5. We conclude this paper in Section 6.

2 Related work

In this section, we survey related work on (linked) open geodata, the consistency assessment
of geodata, and ontology-based data access for geodata.
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2.1 (Linked) open geodata

The open data movement and the booming citizen science have been making large amount
of geodata publicly available. On the one hand, governmental or public agencies are collect-
ing and publishing more and more Open Government Data (OGD), which are significant
resources for increased public transparency [16]. Numerous Open Data Portals (ODP)
have been built worldwide, allowing anyone to easily search, download and reuse the data
for commercial or non-commercial purposes. ODP data are normally confined to certain
administrative boundaries, e.g., at provincial, national, or continental levels, and contain sig-
nificant amount of geospatial information in domains like transportation and environment.
ODP data are expected to be authoritative, of high quality, complete, and timely published
on the Web [17]. Releasing ODP data without proper quality control may negatively affect
dataset reuse and civic participation [5]. However, to prepare high quality ODP data, enor-
mous money and time efforts need to be invested to employ and train employees, understand
new legislation, adjust data to new standards. One of the key issues with ODP data qual-
ity is the lack of missing standards that provide a common understanding of the datasets.
Ontology-based approaches are becoming increasingly popular for addressing this issue.
For instance, Austrilian1 and Italian2 governments have designed ontologies to describe the
characteristics of their published datasets.

On the other hand, large numbers of citizens are engaged to contribute crowdsourced
data, especially Volunteered Geographic Information (VGI) [6]. VGI has been widely
applied in various application domains e.g., crisis response and disaster management [18–
20]. OpenStreetMap (OSM) is one of the most popular VGI projects. Compared with ODPs,
OSM has a global coverage with all data georeferenced and is updated in a more timely
manner. Given the project’s volunteering nature, one of the most significant issues is data
quality, which has been extensively studied, for example by comparing OSM data with ref-
erence datasets [21–23] or by using OSM historical datasets [24]. OSM data have been also
modeled by ontologies, e.g., OSMonto [25] and OSM Semantic Network [26].

With the development of Semantic Web technologies geospatial data from OGD and
VGI have been considerably released as Linked Data in the last decade [7]. For instance,
the European Open Data Portal3 can be searched via an interactive search engine and
through SPARQL queries, and the LinkedGeoData project [27] uses comprehensive geospa-
tial data sources, including OSM, to create a large RDF dataset. The linked data paradigm
allows easier data discovery, integration with other data sources, and the development of
applications [28].

2.2 Consistency assessment of geodata

Consistency is one of the most important geospatial data quality issues along with spatial,
thematic, temporal accuracy and resolution, completeness [29]. According to Share-PSI
2.0 [13], data consistency means that data do not contain contradictions. In GIS domain,
Egenhofer et al. [12] defined consistency as the lack of any logical contradictions within

1https://data.gov.au/dataset/data-gov-au-dataset-ontology
2https://github.com/italia/daf-ontologie-vocabolari-controllati
3http://data.europa.eu/euodp/en/linked-data
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a model of reality. For the evaluation of inconsistency among multiple representations in
spatial databases reported by Sheeren et al. [11], two representations of a given geographic
phenomenon are inconsistent if and only if the differences between these representations
cannot be explained by their respective database specifications; otherwise, the represen-
tations are consistent. Brisaboa et al. [30] defined spatial inconsistency by referring to a
contradiction between stored data and spatial integrity constraints. Senaratne et al. [31]
regarded VGI data consistency as the coherence in the data structures of the digitized spatial
data, including conceptual, domain, format, and topological consistency. Other definitions
of consistency are related to certain types of datasets and specific applications, e.g., land
cover data [32].

The consistency of spatial information needs to consider a variety of issues ranging from
the ontological level concerning physical reality, to appropriate conceptual frameworks for
analyzing spatial consistency (e.g., models for consistency at multiple representational lev-
els or granularities), and to the specification language of integrity constraints and the design
of computational-geometry algorithms to implement consistency checkers [33]. From the
perspective of database integration, the issue of identifying inconsistencies between datasets
can be largely identified at the schema level and at the data level [11].

At the schema level, different approaches have been developed related to geospatial data
consistency assessment. The first approach aims to generate a single unified schema of the
originally independent schemata and resolve conflicts between semantic concepts [34]. This
centralized approach does not require any mediators. Balley et al. [35] built a global schema
and used consistency rules to handle inter-database consistency under a priori considera-
tion that each source database to be consistent with regard to its specifications. The second
approach relies on solutions based on mediation or the use of ontologies by taking advan-
tage of their semantic information. Individual schemas can be matched to one ontology [36],
or each individual schema is firstly matched to a local ontology whose concepts correspond
to database tables and concept properties and relations to class attributes and associations,
and then ontology alignment is applied to align these ontologies [37]. For instance, Comber
et al. [32] used expert opinions to overcome ontological incompatabilities between time
series land-cover datasets and identified land-cover changes from the inconsistency. Yu
et al. [38] used Semantic Web technologies to automate the geospatial data conflation using
three sets of Points of Interest (POI) data. The third approach uses data-mining methods to
infer the schema-level structure necessary for information fusion from instance-level infor-
mation [39]. For instance, viewing the inconsistency detection as a knowledge-acquisition
problem, Sheeren et al. [11] proposed a data-mining approach to partially automate the
acquisition of the consistency rules, which were then used in a knowledge-based system for
evaluating consistency.

At the instance level, most of the efforts have been devoted to developing geometric
feature matching algorithms, which establish explicit links between objects in different rep-
resentations and resolve geometrical inconsistencies. Among them, road network matching
and integration are mostly studied for producing digital navigation map and providing fur-
ther location-based services [40]. Advanced road-network matching algorithms have been
proposed for conflating commercial and administrative digital road network data [41, 42]
and more recently for matching crowdsourced spatial trajectories with OSM road net-
work [43]. These works also exploited the topological structures of road intersections and
semantic attributes of road segments. Beside geometric matching, topological inconsistency
among multiple representations have been extensively studied by imposing topological
relation constrains [12, 44].
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2.3 OBDA for geospatial data

Ontology-Based Data Access (OBDA) is a popular paradigm that enables end users to
access data sources through an ontology [45]. The architecture of OBDA has the following
components: an ontology, a set of data sources, and the mapping between the two. The ontol-
ogy provides a high-level description of the domain of interest and is semantically linked to
the data sources by means of a mapping consisting of a set of mapping assertions [46]. The
standard mapping language is R2RML [47]. The ontology and mapping together, called an
OBDA specification, exposes the underlying data sources as a virtual RDF graph, in which
the nodes are IRIs (Internationalized Resource Identifiers) and literals representing objects
and values respectively. The (virtual) RDF graphs [48] are accessible at query time using the
W3C standard SPARQL language [49]. Such SPARQL queries are translated by an OBDA
system, e.g., Ontop [50], into queries that are directly evaluated by the underlying database
engine, without converting and materializing original data as RDF and then storing them in
a triple store. The OBDA paradigm has been implemented in several systems, and adopted
in many academic and industrial projects [51].

In GIScience domain, OWL and RDF have been successfully applied to model geospatial
information. The GeoSPARQL language [52], standard by Open Geospatial Consortium
(OGC), is specially designed as a geographic query language by extending SPARQL.

More recently, the Spatial Data on the Web Interest Group, comprised of both W3C and
OGC, is working specifically on sharing of spatial data on the Web using Semantic Web
technologies. OBDA has been investigated to support geospatial relational databases [53],
performing on-the-fly GeoSPARQL-to-SQL translation. It has been used in several use
cases, e.g., urban accountant, land management, and crisis mapping [54] and maritime
security [55].

3 A framework for inconsistency assessment

In this work, we propose an OBDA-based framework to assess the inconsistency of open
geodata sources at both schema and instance levels. Our framework, illustrated in Fig. 1,
consists of four layers: (1) data collection and preprocessing, (2) ontology-based data
access, (3) query-based consistency assessment, and (4) visualization. The first two lay-
ers are responsible for preparing the data, setting up the OBDA scenario, and assessing the
schema-level inconsistencies; the last two layers assess the instance-level inconsistencies
using the query-based or visualization-based approaches. In what follows, we first intro-
duce different types of inconsistencies considered in our framework, and then explain the
framework in detail.

3.1 Schema- and instance-level inconsistencies

Schema-level inconsistencies In our framework, we are dealing with the following kinds
of schema-level inconsistencies:

– Formats of the data sources. Open data are often distributed in diverse formats, among
which, Excel, CSV, (Geo)JSON XML, Shapefiles, and RDF triples are popular ones.
They correspond to different models, like relational (Excel, CSV), documents (JSON),
trees (XML), and graphs (RDF). Dealing with such sources often requires dedicated
software tools and customized scripts, especially when sources with different formats
need to be accessed in a combined way.
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Fig. 1 An OBDA-based framework for assessing the consistency of OGD and OSM

– Data structure of entities. Even when using the same model, entities (and their
attributes) can be structured in significantly different ways. For instance, in the rela-
tional model, an object and its related data might be put into one table, or organized in
several tables. In particular, data in CSV files are often de-normalized, which means,
e.g., that a single row corresponds to several objects, or that the same data about a sin-
gle object is repeated in several rows. For JSON files, such redundant information often
results from structuring data using nesting. Understanding how such data is organized
needs expert knowledge on specific sources and on the domain itself.

– Schema element names. Different table or attribute names are often used to represent
the same kind of information. For example, organizations may name the same infor-
mation according to internal conventions or regulations; inside the same organization
different table or attribute names can be used when serving specific purposes. A par-
ticular case is that of multilingual areas, where schema element names are recorded in
different languages according to naming conventions.

– Data types. Some piece of information can also be recorded using different data types.
For instance, an identifier might be stored as a string or as a number. A geometry object
might be represented as a polygon or as a point, depending on the level of detail; it
might also be specified using different coordinate systems, which should be treated
analogous to different data types.

Instance-level inconsistencies Geodata inconsistencies at the instance level are regarded
as violating specific geographic or cartographic constraints. A geospatial object may have
thematic (or non-spatial) attributes and geometric (or spatial) attributes; two geospatial
objects may be in a topological relation with each other. In this paper we consider geodata
inconsistency at the instance level according to their thematic, geometric, and topological
aspects.

– Thematic attributes. Thematic attributes describe the non-spatial information of a
geospatial object. For example, a hospital should have a unique legal address. If two
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different data sources provide two different legal addresses for the same hospital, an
inconsistency occurs.

– Geometric attributes. Geometric attributes like location and extent are metric properties
of a geospatial object under a spatial reference system. For instance, considering two
data sources listing schools, if they cover a common area, and the first source contains
a school in that area, then also the second source should contain that school at the same
location. If the locations differ, we have a geometric inconsistency.

– Topological properties. Topological properties are expressed by relations between geo-
graphic objects, e.g., “overlaps” or “within”. Geospatial data conforms to certain
topological rules. For example, for two adjacent counties, the polygons representing
them should share a common boundary, with no gaps and no overlaps.

– Inconsistencies may also involve multiple types of properties. For example, an address
registered in a municipality (thematic information) should be within the municipality
(topological property).

3.2 The framework

We now describe in detail, layer by layer, the framework shown in Fig. 1. Each of the four
layers, corresponds to a specific step in the data processing workflow.

Data collection and preprocessing This layer collects and preprocesses the relevant
geospatial data by relying on a unique data format. After collecting the relevant datasets,
users need to pre-process them, since the data are often provided in different formats, possi-
bly with errors. Typical steps of preprocessing involve necessary conversion of data formats,
and data cleaning to remove errors. The datasets are then imported to a specific database
(e.g., PostgreSQL with PostGIS extension) to be further processed and queried. During this
step, the schema-level inconsistencies due to different data source formats are assessed and
resolved.

Ontology-based data access The OBDA layer is responsible for providing an ontolog-
ical view of the underlying heterogeneous datasets to be analyzed. The major challenge
here is to overcome the structural heterogeneity of the multiple data sources. The main task
in this layer is to build the ontology and the mappings in order to identify the semantics
of geodata items across different datasets, and provide consistent ontological vocabular-
ies capturing the contents of underlying datasets. During the construction of ontology and
mapping, metadata containing the description of each dataset are often helpful.

The ontology should capture the geographic phenomena to be analyzed. The construction
of the ontology can benefit from the classical literature on spatial-temporal ontologies [56]
and the identified core concepts in GIScience [57]. Reusing standardized ontologies is also
a good practice. For example, the OGC GeoSPARQL ontology [52] is designed for features
and geometries; the W3C Semantic Sensor Network (SSN) Ontology [58] is used for sensors
and observations. Existing domain ontologies can also be employed when they are available.

The mappings from geodata items to the ontology have been intensively researched.
Mappings can be constructed semi-automatically with systems, e.g., Ultrawrap-
mapper [59], BootOX [60] and Map-on [61]. Sequeda and Miranker [62] proposed a
“pay-as-you-go” methodology for ontology and mapping engineering. However, since the
understanding of the semantics of geodata demands the domain knowledge, the process
of building OBDA specification with high-quality ontology and mapping cannot be fully
automatized and normally takes some manual efforts.
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During this step, the schema-level inconsistencies due to different data structures of enti-
ties, attribute names, and data types are assessed and resolved by mapping such elements to
the proper ontological terms.

Query-based consistency assessment The OBDA layer exposes the underlying heteroge-
neous geodata sources as one integrated (virtual) RDF graph. In this graph, heterogeneous
data are described with the same vocabulary (i.e., classes and properties). Thus, queries
can be posed over the RDF graph, without knowing how the underlying data is structured.
This abstraction allows the analysts to express their information needs through SPARQL
query language using high-level concepts that they are interested in. An OBDA engine, e.g.
Ontop, is taking care of the SPARQL-to-SQL translation, and the retrieval of the relevant
information (e.g., provenance, thematic information, and geometries) from multiple data
sources.

Consistency assessment is done by declarative rules over the graph. Those consistency
rules can be basic cartographic principles of geodata consistency constraints or a set of pre-
defined criteria, e.g., using geometric measures. The knowledge acquisition of consistency
rules can be also an iterative process and collected empirically. Simple rules can be imple-
mented as one SPARQL query. Some consistency conditions maybe complex and require
several steps of computations, thus they cannot be directly encoded into one query. Post-
processing of the query results is often required, which may involve comparison, matching,
and further analysis.

Most instance-level inconsistencies are assessed in this step.

Visualization Visualization provides an intuitive and effective way for the understanding
of geodata distribution and facilitates the discovery of potential patterns. For the task of
consistency assessment, the visualization layer supports the interpretation of the ontology,
the queries and the retrieved geodata.

In this framework, multiple visualization technologies can be adopted to represent these
information items in this framework. For instance, network visualization techniques are
well-suited to represent the involved geospatial concepts in a query, their relations and the
related consistency constraints. Cartographic representations, e.g., maps, can not only show
the distribution of the retrieved geo-features with their spatial context, but also may imme-
diately reveal the geometrical consistency problems by the mashup representation of data
from different sources. For instance, after mapping and visually comparing the surface and
point representations of water features in two databases, Sheeren et al. [11] were stimu-
lated to extract rules for assessing the consistency of homologous objects. There have been
extensive work on the visualization techniques for representing ontology (see [63] for a sur-
vey). Several systems have been developed for visualizing SPARQL queries and results over
spatial data, including OptiqueVQS [64], GeoYASGUI [65], and Sextant [66].

This step is often effective in stimulating users to visually discover and assess potential
data consistency problems.

3.3 Discussion on the framework

We now discuss several aspects of the framework.

Target user The target of our framework are the users who need to integrate multiple data
sources, but don’t have a proper understanding of the consistency of the data. With the
framework we propose, the users can assess the data quality in a declarative and agile way. In
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particular, it is more effective when dealing with inconsistency involving multiple sources,
which cannot be easily observed by simply opening files, e.g., in Excel.

Workflow We note that the way we use OBDA/I in this paper is different from the classical
usage where the aim is to provide a single access point for the integrated data. Rather, our
framework focuses on the initial phase of an integration workflow, where the data quality
of the datasets needs to be understood. Once the inconsistencies are assessed and fixed,
the resulting OBDA specification can be used to publish the integrated data sources as a
SPARQL endpoint.

Advantage of the virtual approach Our framework relies on the virtual OBDA approach,
since materialization is, in general, a costly operation. In particular, when the amount of
data is large and/or the data are updated frequently, materialization is not efficient. For
inconsistency assessment, the users of our framework might need to revise the mapping
and/or the data several times. The virtual approach allows them to experiment with such
revisions on the fly, thus improving the efficiency significantly.

Tooling The adoption of the proposed framework requires expert knowledge on OBDA
technologies, and would strongly benefit from the availability of tools that support the
underlying workflow. Although we have a proof-of-concept implementation that shows the
feasibility of our proposal, the whole workflow still cannot be fully automated. As future
work, we plan to implement the whole framework through proper software components that
will make the workflow semi-automatic.

Correction of inconsistencies Schema-level inconsistencies are assessed and corrected in
the framework. However, correction of instance-level inconsistencies requires an extension
of the framework. It also often requires the involvement of data providers to check and
correct instance-level inconsistencies.

Fig. 2 The province of South Tyrol, Italy
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Table 1 ODP datasets from open data portal of South Tyrol

Dataset Description Format # Entries

Municipality polygons of municipalities .shp 116

Street street network .shp 4324

Address addresses with street names and house numbers .shp 131633

Pharmacy pharmacies with names, addresses, contact info, etc .csv 120

Organization organizations, (e.g., schools, museums, and offices),

with names, addresses, and contact .csv 1675 (school:1053)

Healthcare contact of sanitary offices .csv 980

Filling station filling stations .shp 163

4 Test data

We use the province of South Tyrol (German: Südtirol; Italian: Alto Adige) in Italy as our
test area. It is an autonomous province in northern Italy and has two official languages
German and Italian. Figure 2 shows the geographic location of South Tyrol.

In this study, we collect data from two data sources: (1) the open data portal (ODP) of
South Tyrol,4 and (2) OpenStreetMap.5

Open data portal of South Tyrol The portal contains datasets collected from local author-
ities, companies and relevant stakeholders. At time of writing the agency of the portal
has successfully published 463 datasets covering 17 categories on climate, urban plan-
ning, health, environment, etc. Users can download datasets in JSON, XML, CSV, or PDF
formats. Metadata are available on the web pages as pdf files. The portal also has a Geo-
catalog platform6 providing extensive geodatasets like administrative boundaries, satellite
images, transportation networks. Vector data with their exact geolocations can be accessed
in formats like ESRI Shapefiles, AutoCAD, Google KML, GPX or GeoJSON files. In this
study, we use seven datasets including municipality, street, address, pharmacy, organization,
healthcare, and filling stations. Table 1 describes these datasets in detail.

OpenStreetMap OSM data can be obtained through its official website or from other web-
sites like Geofabrik7 that provide already processed and structured OSM data in hierarchical
regions. The OSM data model represents point, linear and polygonal features by nodes,
ways and closed ways. Features can be semantically specified by key-value pairs, so-called
tags (e.g., amenity = restaurant). There are no restrictions on the usage of tags. However,
the OSM community agrees to certain key-value combinations for commonly used features
and divides features into 23 primary categories (e.g., amenity, building, highway). Each key
can take many different values to further specify the sub-type of the mapped feature. In this
work, we export OSM data from its official website into an XML file, and then extract the
points and polygons located inside South Tyrol. To compare with ODP data in the following
experiment, we further extract four types of POI data (i.e., pharmacy, school, healthcare,

4http://daten.buergernetz.bz.it/de/
5http://www.openstreetmap.org
6http://geokatalog.buergernetz.bz.it/geokatalog
7https://www.geofabrik.de/
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Table 2 Four types of POI data extracted from OSM

Dataset Amenity Format Number of entries

Pharmacy ‘pharmacy’ .shp 128 (point: 119, polygon: 9)

School ‘school’/‘kindergarten’ .shp 547 (point: 239, polygon: 308)

Healthcare ‘clinic’/‘dentist’/‘doctors’/‘hospital’ .shp 90 (point:71, polygon: 19)

Filling station ‘fuel’ .shp 165 (point: 111, polygon: 54)

filling station) from point and polygon datasets by using the attribute of “amenity”. Table 2
shows the description of the POIs.

5 Experiment and analysis

We apply the proposed framework to assess schema- and instance-level consistency in a
single data source and across ODP and OSM. We start by describing our experimental
setup, then deal with schema-level and instance-level inconsistencies, and finally discuss
our results.

5.1 Experimental setup

We use a PostgreSQL database to store all the datasets. For building the ontology and the
mapping, we apply the Protégé ontology editor [67] and the Ontop Protégé plugin [50].
The Javascript libraries Openlayers8 and vis.js9 are used to implement the web-based
visualization system.

Ontology The ontology used in this experiment is based on the Territorial Ontology pro-
vided by the Italian National Institute of Statistics (Istat)10 [68] and the GeoSPARQL
ontology. The Territorial Ontology uses the vocabulary from GeoNames11 and W3C
provenance ontology12 to describe the administrative organizations, e.g., region, province,
municipality and geographical-statistical organizations. We do not use the OSMonto ontol-
ogy or OSM Semantic Network, because OSMonto is designed specifically for OSM and
constructed following the key-value model of OSM, and OSM Semantic Network does not
follow OWL standard and seems not maintained. Hence they are not suitable for the purpose
of data integration.

Figure 3 shows a diagram of the ontology. The nodes represent classes and the arrows
represent the “is-a” relations between two classes. The classes prefixed with “geosparql:”
and “ter:” are from the GeoSPARQL and the Territory Ontology respectively, and those
prefixed with “:” are created by us. All geodata are regarded as geospatial features with
geometries and thematic properties. For instance, the class “AdminUnit” has sub-classes like

8https://openlayers.org/
9http://visjs.org
10http://datiopen.istat.it/ontologie.php?language=eng
11http://www.geonames.org/ontology/documentation.html
12https://www.w3.org/TR/prov-primer/
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Fig. 3 A fragment of the ontology

“Province” and “Municipality”; the class “POI” has four sub-classes of “School”, “Phar-
macy”, “Filling Station” and “Healthcare”. The underlying geodata from both data sources
will be accordingly mapped to the vocabularies in this Ontology.

Mapping The mapping from the data sets, stored in a PostgreSQL database, to the ontol-
ogy is correspondingly constructed. In total we have constructed 53 mapping assertions.
In Fig. 4, we list five mapping assertion examples related to “Pharmacy” written in the
Ontop mapping syntax. A mapping assertion takes the form id: target ← source,
where id is an identifier, source is an SQL query, and target is a triple pattern

Fig. 4 Example mapping assertions
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Fig. 5 Example triples generated by mapping assertion M pharmacy OD 1

with placeholders like {column} such that column is an output column in source. For
instance, the tuple (55, “Maria delle Grazie”, “Zur Mariahilf”) is an answer to the SQL
query in M pharmacy OD 1, and it generates five RDF triples as shown in Fig. 5. Note
that we use the property “:provenance” to describe whether the data is from ODP or OSM.
We use langStrings (i.e., strings with language tag) "Maria delle Grazie"@it and
"Zur Mariahilf"@de to distinguish strings in different languages. Finally, a phar-
macy has a geometry object, but its WKT has to be retrieved by joining with the table
“Address” in another mapping assertion M pharmacy OD 2. The other three mapping
assertion examples are for OSM. Assertion M pharmacy OSM selects all pharmacies from
the osm points table. The last two assertions M point OSM 1 and M point OSM 2
are generic and are used to construct geometries of all OSM points, including pharmacy
geometries.

We stress again that the triples derived from the mapping are not needed to be physi-
cally generated but they are accessible via SPARQL query using SPARQL-to-SQL rewriting
techniques. By avoiding materializing the triples, adding new sources and modifying the
OBDA specification becomes rather easy. The virtual approach allows a large flexibility for
the experiment. In fact, during our experiment, we often adjust the mapping when we have
a better understanding of the data.

Visual interface We have developed a web-based interactive visualization system. Figure 6
shows a screenshot of the visual interface. It consists of three views: (1) a task view (on the
upper left), showing the queries and allowing users to execute specific queries; (2) a graph
view (on the bottom left), providing a network representation of the executed query with the

Fig. 6 The visual interface
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objects (represented by nodes) and their relations (represented by edges). (3) a map view
(on the right), visualizing the query results on a map. In Fig. 6, the first query on finding the
addresses registered in Bolzano is executed. The red dots are the queried geo-features.

5.2 Schema-level inconsistency

This section introduces the assessment of the schema-level inconsistencies in a single data
source and across ODP and OSM.

5.2.1 Inconsistency in a single data source

Schema-level inconsistencies exist within a single source, in particular in the ODP data.
Since ODP data are originated from various institutions, the naming of the attributes in
the original datasets is rarely kept consistent. Table 3 shows a sample of attributes of
three datasets, i.e., “Municipality”, “Street”, and “Address”. For example, the attributes
“istat code”, “comistat”, and “istat” in these tables (colored in red) are named differently,
but they have identical meanings and refer to the unique codes that Istat assigns to each
municipality. After finding the correspondences among them, we can use such codes to gen-
erate the IRIs of municipalities through mapping. Similarly, “street code” and “ascot wege”
(in blue), “strt it” and “desc i” (in cyan), and “gem it” and “name i” (in magenta) refer to
the same objects respectively.

We observe that in the OSM datasets the attribute names are consistent across different
tables. The main schema-level inconsistency which we have identified has to do with the
flexibility of modeling features as points or polygons.

5.2.2 Inconsistency across ODP and OSM

The ODP and OSM data have significantly heterogeneous structures. The ODP data are
normally classified according to topics and distributed separately in diverse formats (e.g.,
pdf, csv, xml, and RDF). In contrast,the OSM data are organized as a large collection of
features, each with its geometry and a set of flexible taggings for different information
(e.g. addresses and names in possibly multiple languages). When importing OSM data into
PostGIS, users even have to specify explicitly which attributes they are interested in.

In our experiment, for instance, health-related data in ODP are already organized in one
file including different types of health-related organizations like clinics, dentists, hospitals.
This file contains additional information like address, name, telephone, doctor, and opening
time. While in OSM, the health-related data are stored as points or polygons, and they can
be obtained by filtering the amenity attribute with values “clinic”, “dentist”, “doctors”, or
“hospital” (see Table 2).

5.3 Instance-level inconsistency

We assess the instance-level inconsistency in a single data source and across ODP and
OSM according to the thematic, geometric, and topological constraints of the geo-features.
To do so, we have created a suitable set of inconsistency rules, which are formulated over
the ontological view as SPARQL queries. For the creation of the rules, we have relied on
our expertise in GIS/Cartography and OBDA and on the experience we have obtained by
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Table 4 Inconsistent attribute values in multiple ODP tables

(a) address (b) pharmacy

addr id label it geom phar id phar address i

79543612 Via Valle Aurina 34 01040C.. 35 Via Valle Aurina 34 - S. Giorgio

investigating the data sets described in Section 4. To gain additional insights, we have con-
sulted the data providers and stakeholders familiar with the local territory. The detected
inconsistencies are illustrated below using specific examples and visualizations.

5.3.1 Data inconsistency in a single data source

We analyze now the inconsistency of ODP and of OSM data separately.

Inconsistent thematic attribute values Inconsistent attribute values can exist across mul-
tiple datasets, especially when they are from different providers. Such inconsistency
introduces problems when these datasets need to be linked through these attribute values.
For instance, Table 4 shows that the addresses in dataset “Address” are standard address
names, while in “Pharmacy” they combine standard address names and pharmacy names.
The “Address” dataset is associated with geolocations while “Pharmacy” not. For georef-
erencing pharmacies, it is necessary to match the addresses in “Pharmacy” to those in
“Address” dataset. This problem can be reflected at the virtual RDF level. Specifically,
using mapping assertion M OD pharmacy 1, the row in the pharmacy table generates a
triple (:pharmacy/35 a :Pharmacy). However, due to the mismatch of addresses,
mapping M OD pharmacy 2 cannot be triggered and therefore :pharmacy/35 does not
have a geometry in the RDF graph.

The above discussion leads to the following consistency rule: every pharmacy should
connect to an address that in turn connects to a geometry; otherwise, the data is
inconsistent. This can be formulated as the SPARQL query:

When the query result is not empty, we can conclude that the data violate the above
consistency rule. With this query, we find 32 unmatched addresses out of 120 pharmacies.

Inconsistent thematic and topological relations ODP data can contain inconsistent the-
matic and geometric values. Being collected by different institutions, the thematic values
and topological relations of the data are not always consistent. Taking the “Address” dataset
in ODP as an example, the feature in the data should satisfy a consistency rule: if a feature
is located within a municipality, its address should be registered in the municipality, which
can be formalized into the SPARQL query in Fig. 7. However, when we query the addresses
officially registered in the municipality of Bolzano, we find on the map that some of the
queried addresses are located outside of Bolzano (shown in Fig. 8). After checking these
addresses, we find that most of them have identical street names of “Via Della Comunale”,
which refer to the addresses registered for homeless people. In total, there are 289 such
addresses.
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Fig. 7 The SPARQL query for “addresses registered in Bolzano but located outside” and its network
representation

5.3.2 Data inconsistency across ODP and OSM data

We investigate the data inconsistency of the thematic and geometric properties of POIs in
ODP and OSM. Four types of POIs (see Tables 1 and 2) including pharmacy, school, health-
care, and filling station are prepared for the comparison. For each type of POIs, we compare
the thematic consistency of address-matched features, and the geometric consistency.

Thematic inconsistency For the assessment of the thematic inconsistency, we use thematic
attribute “address”based on address matching method. Taking the POI type of “School” as
an example, the consistency rule is that: if there is one school in ODP, then there must be
another school in OSM with a matched address; and vice versa. To evaluate this rule, we
first use the following SPARQL query to retrieve all schools in ODP and OSM data.

Fig. 8 Addresses registered in Bolzano but located outside
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Fig. 9 The spatial distribution of a all schools from OGD (in green) and OSM (in orange) in the test area,
and b the schools enlarged in a selected area

Each query result includes the IRI of the school (?school), the WKT of its geome-
try (?wkt), its provenance (?prov=‘OSM’ or ?prov=‘OD’), and optionally its address
(?addressName). The query results are further processed for address comparison. Here,
the address matching method is a simple string comparison.

Geometric inconsistency For the assessment of the geometric inconsistency, we use the
feature of “geometry” based on geometrical matching method. We continue using the POI
type of “School” as an example. The consistency rule is that: if there is one school in ODP,
then there must be another school in OSM with a distance less than a predefined threshold;
and vice versa. To evaluate this rule, in addition to the previous SPARQL query, we use the
following SPARQL to retrieve all pairs of neighboring schools from both data sources. Here
we choose the threshold of 50m based on empirical knowledge.

Figure 9a maps the spatial distribution of all schools from ODP (in green) and from
OSM (in orange). Figure 9b shows schools in an enlarged subarea. From Fig. 9b, we can see
that schools from ODP are only points while schools from OSM can be points or polygons.
We notice that some schools from ODP do not have corresponding features from OSM
(interpreted on the map as: on a specific location there is only a green point but no orange
symbol), and vice versa. This kind of geometric inconsistency can be assessed using the
previous rule.

Figure 10 summarizes the evaluation results of the thematic and geometric consistency
rules of the four types of POIs. Obviously, the thematic inconsistency of the attribute of
address is more significant than the geometric inconsistency. One possible reason is that
all the OSM data are with geometry information, but only a small portion of them contains
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Fig. 10 The evaluation results of thematic and geometrical consistency rules

address information. Another reason is due to the inconsistent address values in ODP and
OSM data.

5.4 Discussion

In this experiment, we have assessed the data inconsistency in and across ODP and OSM
data at both the schema and individual levels, and have visualzied the results using maps,
node-link graphs, and bar charts. We have identified different types of data inconsistency,
and summarized them in Table 5. For each type of detected inconsistency, we have used
specific examples to illustrate the working principle of our framework. These examples also
reflect general geodata inconsistency issues existing in heteregeous open datasets.

Schema-level inconsistency Schema-level inconsistencies within and across ODP and
OSM can be identified using our framework, more specifically during the construction of
the OBDA specification, and can be resolved using suitable mappings. In other words, the
expert knowledge about these schema-level inconsistencies is encoded into the mappings
so that heterogeneity is hidden at the ontology level. For instance, the inconsistency among
different attribute names can be resolved by choosing in the ontology a unique term for
each conceptual entity (i.e., concept or property), and by relating such term to the proper
attribute(s) in the tables through mappings. Moreover, the heterogeneity of different geom-
etry representations of features can also be abstracted at the ontological level. E.g., both
points and polygons of schools in OSM are used to populate the School concept at the
ontological level.

Instance-level inconsistency The ontological representation allows us to express the
instance-level consistency rules at the integrated RDF graph. More specifically, we can for-
malize consistency rules as SPARQL queries, which is then translated by our framework
into queries over the data sources to be assessed. Normally, each query result corresponds
to one violation of a rule. The results can be later summarized and used to address the iden-
tified issues. In this experiment, we have assessed the inconsistency of 1) thematic attribute
values in a single data source, 2) semantic and topological relations in a single data source,
and 3) the thematic and geomteric properties across the two different data sources. These
examples show a spectrum of common issues happening in practice and also demonstrate
how we can identify them with our framework.
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6 Conclusion

In this paper, we investigate the consistency assessment issues of multiple geodata sources
in the context of data integration. Two levels of data inconsistency at schema and instance
levels are identified. We propose a general framework using the ontology-based approach,
which provides a coherent view of the underlying data sources, and hence enables a
lightweight approach to the assessment using high-level queries and visualization. In this
framework, the schema-level inconsistencies are mainly assessed by the two bottom layers
of data preprocessing and the OBDA layer. The instance-level inconsistencies are mainly
assessed by the two top layers of query-based consistency assessment and visualization.
Preliminary experiments have been conducted using ODP and OSM data collected in the
province of South Tyrol, Italy. We conduct the analysis of consistency assessment at both
schema and instance levels. The analysis results show that the approach is feasible to reveal
inconsistencies within and across both data sources.

This work forms a basis to solve the identified inconsistencies and to improve the quality
of datasets using our framework. In the future, we plan to expand our experiments to more
data sources, e.g. GeoNames and LinkedGeoData. We also plan to investigate other data
quality issues, e.g., completeness, based on our approach.
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