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ABSTRACT

In this paper, we present the virtual knowledge graph (VKG) paradigm for data integration and access, also 
known in the literature as Ontology-based Data Access. Instead of structuring the integration layer as a 
collection of relational tables, the VKG paradigm replaces the rigid structure of tables with the flexibility of 
graphs that are kept virtual and embed domain knowledge. We explain the main notions of this paradigm, 
its tooling ecosystem and significant use cases in a wide range of applications. Finally, we discuss future 
research directions.

1.  INTRODUCTION

Most medium-sized and large organizations face the problem of having to deal with large and complex 
collections of data. Often such organizations are divided in separate units (e.g., resulting from acquisitions), 
and naturally produce data silos, which are not interconnected, but contain semantically related data, 
possibly with redundant and inconsistent information. To be able to effectively use the data, it needs to be 
integrated, which requires us to clean, de-duplicate and homogenize the data coming from different silos.

Integrating data and providing a convenient access to them are work-intensive, expensive but essential 
activities, as it is critical for organizations to be data-driven to stay competitive. From a technological point 
of view, the main vendors of data integration tools [1] are integrating data using the standard relational 
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model, which brings about a lack of flexibility. Moreover, only a few, such as Denodo, Dremio and 
Teiid, are capable of performing data virtualization, which means integrating data without moving and 
transforming them. As a consequence, the solutions provided by the main vendors suffer from inherent 
scalability issues, which result in low efficiency and high costs. Only a small proportion of valuable 
enterprise data is properly integrated due to the limits of current mainstream technologies. Hence, many 
business analysts are still regularly required to integrate some data in an (inefficient) ad-hoc manner, and 
have reported to spend between 80% and 95% of their time preparing the data. Also, ad-hoc integration 
introduces serious data quality issues, making results difficult to reproduce, and negatively affecting data 
analytics and in the end decision making.

We present here a paradigm for data integration that inherently exploits data virtualization, and that in 
addition overcomes the difficulties of traditional approaches based on the relational model. Instead of 
structuring the integration layer as a collection of relational tables, we structure it as a Virtual Knowledge 
Graph (VKG), which replaces the rigid structure of tables with the flexibility of graphs that are kept virtual 
and embed business knowledge. The VKG approach combines three ideas, which are reflected in its name:

•  data virtualization (V) [2, 3, 4], which is achieved by avoiding exposing end-users to the actual data 
sources, and presenting them instead a conceptual representation of the domain of interest, typically 
called a global schema. Such high-level representation is formulated in a vocabulary that end-users 
are familiar with, and the information content of its concepts is defined by means of suitable views 
over the sources. These integration views are typically not materialized, but are kept virtual, and this 
makes it possible to query the data without paying a price in terms of storage and time for the data 
to be made accessible. Also design and maintenance are greatly simplified since these views can be 
instantaneously tested and modified.

•  The data are structured in the form of a graph (G), where domain objects and data values are 
represented as nodes, and properties of objects are encoded as edges [5]. In addition, we have nodes 
that represent classes, and objects are connected to such nodes by means of instance-of edges. This 
provides more flexibility than traditional relational tables, which is especially important in an 
integration context. Indeed, two (or more) graphs can be easily integrated by simply taking their union 
and merging identical nodes, which gives as result still a graph. One can also deal with the case 
where nodes in the graphs that represent the same real-world entity have different identifiers and 
hence cannot be merged. One can deal with this case either by directly using owl:sameAs assertions 
[6], or by means of a canonical representation of the identifiers of such nodes [7]. In contrast, the 
integration of relational tables might be complex, since it requires a specific, ad-hoc choice for how 
to represent the integrated information (e.g., as a single “merged” table, or keeping multiple tables), 
and moreover one needs to preserve identity of the objects represented in the various tables.

 https://denodo.com
 https://www.dremio.com
 http://teiid.jboss.org
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•  The graph representing the data is enriched by domain knowledge (K), capturing, e.g., concept and 
property hierarchies, domain and range of properties, and mandatory properties [8, 9]. Such knowledge 
allows one to perform inference over the data and knowledge, and thus derive new implicit knowledge 
from the explicitly asserted one. Derived knowledge can be used on the one hand to assess the quality 
of the data, e.g., discover inconsistencies or redundancies, and on the other hand to enrich the 
answers to queries.

In the literature, the VKG approach has been extensively analyzed and discussed in the formal setting of 
ontologies, where it is known as ontology-based data access (OBDA) [10]. Specifically, in OBDA domain 
knowledge is represented in the form of an ontology, typically expressed in some fragment of the Web 
Ontology Language (OWL2) [11], standardized by the World Wide Web Consortium (W3C). The formal 
foundations for OWL2 are provided by description logics (DLs) [12], which are logics specifically designed 
for the representation of structured knowledge. Such logics can be considered to be computationally well-
behaved fragments of first-order logic. The sub-language of OWL2 that is of importance in the context of 
OBDA (or VKGs) is OWL2QL [13], whose formal counterpart is a description logic of the DL-Lite family 
[14]. The logics of this family are lightweight, in the sense that they combine a restricted (but carefully 
tuned) expressive power with good computational properties. Specifically, they have been designed so that 
inference (and query answering) taking into account the domain knowledge is especially efficient with 
respect to large amounts of data [14, 15], which is a crucial property in any data integration scenario.

In OBDA, virtualization is achieved by declaring a mapping between the domain ontology and the data 
sources [16]. The mapping consists of a set of assertions, each associated with a concept or property of the 
domain ontology a SQL query over the sources. Intuitively, such SQL query, when executed over the 
sources, would provide the data to populate the concept/property with which it is associated, thus obtaining 
a knowledge graph encoded in the Resource Description Framework (RDF) language [17]. However, the 
queries in the mapping are not executed to actually construct the RDF knowledge graph, since such graph 
is kept virtual. Instead, they are used to suitably rewrite user queries posed over the ontology in terms of 
queries over the sources, which then can be directly executed by the source query engine (typically a 
relational database management system (DBMS)). In addition, the mapping assertions embed the information 
of how the data values retrieved from the sources should be used to construct the identifiers (IRIs) of the 
objects that populate the ontology, or, more precisely, the objects that are returned in the answers to the 
user queries.

The rest of the paper is structured as follows: In Section 2, we introduce the framework underlying 
the VKG approach, and we describe the query answering technique based on query reformulation. In 
Section 3, we survey the VKG tooling ecosystem, including query answering systems for answering SPARQL 
queries, mapping engineering tools, federators for evaluating federated queries and query formulation tools. 
In Section 4, we report significant use cases of VKG technologies in a wide range of application domains. 
In Section 5, we conclude this paper by discussing future research directions.
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2. THE VIRTUAL KNOWLEDGE GRAPH FRAMEWORK

In this section, we explain the main notions of the VKG framework (also known as OBDA framework) 
[10]. A VKG specification is a tuple P = (O, M, S), where O is an ontology, S a data source schema and M 
a mapping from S to O. The role of the ontology O is to provide the users with a high-level conceptual 
view of the data and a convenient vocabulary for their queries; it can also enrich incomplete data with 
background knowledge, expressed as a set of logical axioms. The standard language for expressing an 
ontology is the W3C Web Ontology Language (OWL2) [11], which allows one, e.g., to model a hierarchy 
of classes, and domain and range of properties. The mapping M in P specifies how the classes and properties 
of the ontology are populated by data from the source database, and consists of a set of mapping assertions. 
Each such assertion is of the form w(x)⤳ y(x), where w(x) is a SQL query over the data source schema S, 
and, y(x) is an RDF triple template [18] expressing how to use RDF terms constructed from database values 
to instantiate classes and properties. Specifically, such a template states either that an RDF term (representing 
an object) is an instance of a class, or that such a term is connected via a property to another term 
(representing an object or a value). The standard language for representing the mapping M is defined by 
the W3C R2RML specification [19]. The schema S is normally relational, and consists of definitions of tables 
and their columns, and integrity constraints (e.g., primary and foreign keys) over the data.

A VKG specification P is instantiated by a database D compliant with S. We call the pair (P,D) a VKG 
instance. Given M and D, the set of triples generated by applying M over D is an RDF graph, denoted 
M(D). Then, the semantics of a VKG instance (P,D) is given by the exposed (virtual) RDF graph GP,D, which 
consists of the triples that are derived from the triples in M(D) using the axioms in O.

The main reasoning task in the VKG approach is query answering. As query language, the VKG approach 
adopts SPARQL, which is a W3C standard [20]. The answer of a SPARQL query q over the VKG instance 
(P,D) is simply the answer of q over the RDF graph GP,D following the standard SPARQL semantics. The 
key technology for query answering in the VKG approach is query reformulation, which avoids physically 
materializing from D the knowledge graph GP,D. In this approach, the data sources to be integrated do not 
need to be modified, and the knowledge graph is a virtual view over such sources. At query time, a SPARQL 
query q expressed over the virtual view is translated into a SQL query Q that can be directly executed 
on D.

The conceptual workflow of query reformulation is shown in Figure 1, where a SPARQL query q is 
processed through a sequence of phases, starting from rewriting with respect to the ontology and unfolding 
with respect to the mapping. The generated query Q expressed in SQL is ready to be evaluated over D, 
possibly exploiting a data federation layer. Taking again into account mappings, values in the SQL answers 
are used to build RDF terms. We note that a direct implementation of this conceptual workflow is normally 
highly inefficient. To make the approach viable in practice, a significant number of optimizations have been 
developed that improve the performance, by e.g., compiling the ontology into the mapping in an offline 
phase [21, 22], exploiting the constraints over the data to strongly simplify the queries after the unfolding 
phase [23, 24, 25], and planning query execution using a cost-based model [26].
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Figure 1. Query answering by reformulation (conceptual workfl ow).

3. THE VKG TOOLING ECOSYSTEM

Multiple systems have been implemented to support the full life-cycle of the VKG approach. We classify 
these systems into four categories: (i) systems for answering SPARQL queries over VKGs by query 
reformulation, (ii) mapping engineering tools for assisting mapping design, (iii) federators for evaluating 
federated queries over multiple data sources, and (iv) query formulation tools that allow one to interact 
with VKGs.

In the following, we provide an overview of these systems.

3.1 Query Answering Systems

More than a dozen VKG query answering systems have been developed in academia and in industry. In 
the following, we report the most important ones, listing them in alphabetical order. We highlight their 
critical differences in terms of compliance with industrial standards and in terms of query optimization, 
which is essential for providing a good performance.

D2RQ [27] is developed at the Free University of Berlin and at the former Digital Enterprise Research 
Institute (DERI), now the Insight Centre for Data Analytics, at the National University of Ireland Galway. It 
is available under the Apache 2 open-source license. As one of the pioneer VKG systems, D2RQ showed 
the feasibility of answering SPARQL queries by SPARQL-to-SQL translation. The query reformulation system 

 http://d2rq.org
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implements only some basic query optimizations, and these have often been reported as insufficient: for 
instance, the generated SQL queries can contain an excessive number of joins [28]. D2RQ provides its own 
mapping language and supports only a fragment of R2RML. No inference mechanism is included. D2RQ 
is not actively developed anymore, and the last release was in 2012. We still mention it here for its historical 
importance.

Mastro [29] has been developed at the Sapienza University of Rome and is now commercialized by 
the company OBDA Systems. Mastro supports reasoning over OWL2QL ontologies, but unlike other VKG 
systems, it supports only a restricted fragment of SPARQL that corresponds to unions of conjunctive queries 
(i.e., union-select-project-join queries) over ontologies. It implements query optimization techniques 
exploiting constraints over mapping views and the possibility to declare that data retrieved through a 
mapping assertion is complete [24].

Morph [28], which is developed at the Technical University of Madrid, is available under the Apache 
2 License. Morph supports the R2RML and Direct Mapping standards. This system implements a number 
of query optimizations such as self-join elimination. It has no ontology inference capability.

Ontop [30] has been developed at the Free University of Bozen-Bolzano and is also commercially 
supported by the company Ontopic. It is available under the Apache 2 License. It supports R2RML, Direct 
Mapping and its own mapping language, which is more compact. The system supports SPARQL 1.0 and 
implements a large number of optimizations, not only for the JOIN and UNION operators but also for the 
OPTIONAL operator [25]. Ontop implements reasoning over OWL2QL ontologies, and a prototype has 
been developed for more expressive ontologies that relies on mapping rewriting and approximation [31]. 
Moreover, in order to handle diverse types of data sources, there are prototype extensions of Ontop dealing 
with spatial data [32], temporal data [33] and MongoDB databases (which allow one to store and query 
JSON documents) [34].

Oracle Spatial and Graph supports RDF views over Oracle databases, and therefore can also be 
considered to be a VKG system. It implements the R2RML mapping language and Direct Mapping, and can 
answer SPARQL queries. As of version 18c, it has no ontology reasoning capabilities.

Stardog is a commercial knowledge graph system developed by Stardog Union. It supports SPARQL 1.1 
(including aggregation) and was initially developed as a triplestore, but since 2015 it also supports virtual 
graphs over relational databases, using both R2RML and its own mapping language, and therefore can be 
viewed as a VKG system. Stardog supports the three main OWL2 profiles (QL, EL and RL) and performs 
reasoning mainly by query rewriting, both when the data are stored in the triplestore and when they are 

 http://www.obdasystems.com/it/mastro
  https://github.com/oeg-upm/morph-rdb
 http://ontop.inf.unibz.it
 https://www.oracle.com/technetwork/database/options/spatialandgraph
 http://www.stardog.com
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provided as a virtual graph. This is a distinguishing feature with respect to the other VKG systems, as it can 
go beyond the OWL2QL profile by exploiting some advanced post-processing capabilities. In terms of query 
optimization, self-join elimination and basic optimizations for the OPTIONAL operator have been reported. 
Recently, support for MongoDB data sources has been added.

Ultrawrap11 [35] is a system whose development started at the University of Texas at Austin and which 
is now commercialized by Capsenta. It supports the R2RML and Direct Mapping standards, and also 
inference over an extension of RDFS with inverse and transitive properties [22]. It only provides a limited 
number of query optimizations, and relies instead on the optimizations provided by the underlying database 
engine. Due to this dependency, Ultrawrap is designed to work mainly with commercial databases with 
advanced query planning capabilities.

3.2 Mapping Engineering

Ontologies and mappings are complex artifacts that are central components of a VKG system. While 
ontology engineering is well-established and has been studied extensively [36], mapping engineering is an 
emerging topic that deserves attention. Indeed, mapping engineering is a challenging and time-consuming 
task, which requires detailed knowledge not only about the domain of interest but also about how data 
are organized in the data sources (i.e., the designer needs deep knowledge about the database schemas). 
In the last decade, several contributions have been made to support this activity: a pay-as-you-go methodology 
[37] has been proposed, and several tools have been developed. We classify them into two categories: 
mapping bootstrappers and editors, and present the most relevant tools below.

3.2.1 Mapping Bootstrappers

The task of a mapping bootstrapper is to generate automatically or semi-automatically a mapping for a 
(relational) data source. Such tools are usually based on the W3C direct mapping (DM) specification [38]. 
Given a relational database, DM specifies how to generate the corresponding RDF graph following a fixed 
set of rules, which map a table to a novel class, a column to a novel data property and a foreign key to a 
novel object property. However, these generated mappings are usually not immediately usable, as they use 
their own large and flat vocabularies containing a large number of unorganized properties and classes. 
Also, the generated vocabulary is data source-specific, while a properly designed ontology aims at 
being used across multiple independent data sources. To improve the quality of mapping generation, 
bootstrappers often take into account additional information (e.g., the distribution of the data or a given 
domain ontology), or allow for user interactions. Among existing mapping bootstrappers, we mention 
BootOX [39], MIRROR [40], COMA [41] and Karma [42]. Finally, the RODI benchmark [43] has been 
designed to compare them.

 https://www.stardog.com/blog/virtual-graphs-in-stardog-5
11 https://capsenta.com/ultrawrap
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3.2.2 Mapping Editors

Based on how mappings are represented, mapping editors can be classified as text and graphical editors.

Text editors. In text editors, users are dealing with textual representations of mappings, directly based on 
R2RML or on an alternative syntax. These editors are either standalone, like the IDE Stardog Studio12, or are 
integrated into an ontology editor like Protégé13. Examples of the latter are the mapping editor plugins of 
the Ontop [44] and Mastro14 frameworks. Currently, text editors provide basic editing features, such as 
syntax highlighting and limited forms of autocompletion, but fail to provide more advanced functionalities, 
e.g., giving an overview of the structure of the mapping assertions. They also have the significant drawback 
of requiring detailed knowledge about the underlying mapping language.

Graphical editors. In current graphical editors, users specify mappings by drawing connections between 
the properties and classes of the ontology vocabulary and the columns of the database schemas. Editors in 
this category include Map-On [45], MapVOWL and RMLEditor [46] and SQuaRE [47]. However, designing 
a user-friendly graphical interface that does not overload designers with information is a critical challenge, 
in particular when dealing with large ontologies and complex schemas.

3.3 Data Source Federation

When multiple data sources need to be integrated, VKG query answering systems are often used together 
with data federation tools. Federation can be done at two different levels: at the data source level (SQL 
federation) or at the SPARQL endpoint level (SPARQL federation).

SQL federation. SQL federators provide a unified relational layer over multiple data sources and evaluate 
SQL queries over the unified layer. These systems often support also non-relational data source, e.g., XML 
files, JSON files, MongoDB, or Web APIs, by providing a relational view over their content. Then, with the 
help of a SQL federator, VKG systems can access the content of multiple data sources without having to 
perform complex post-processing, such as joining the data coming from different data sources. Popular SQL 
federators that have been used in the VKG setting include Exareme15, Denodo16, Dremio17 and Teiid18. The 
use of SQL federators has been shown to be effective since the standard query optimizations mentioned 
before can still be applied [7].

12 https://www.stardog.com/studio
13 https://protege.stanford.edu
14 http://obdasystems.com/mastro-protege-plugin
15 http://www.exareme.org
16 https://www.denodo.com
17 https://www.dremio.com
18 http://teiid.io
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SPARQL federation. An alternative solution for federating multiple data sources consists of building a 
separate VKG for each of them, deploying them as SPARQL endpoints, and then federating them with a 
SPARQL federator. This approach can also be used for federating VKGs with triplestores. An important 
distinction between different SPARQL federators is their capability or incapability to let users formulate their 
queries without having to specify which endpoint to consider for answering a specific triple pattern of the 
query. Indeed, most of the SPARQL federators, such as Jena19, RDF4J20, Blazegraph21 and Stardog, require 
users to use the SERVICE constructed from the W3C SPARQL federated query recommendation [48] to 
access content from remote SPARQL endpoints. On the other end, few SPARQL federators, such as 
SemaGrow22 [49] do not have this restriction, and automatically generate a query plan for retrieving all the 
relevant content from the SPARQL endpoints. However, such query plans tend to be large and expensive 
to execute because current SPARQL endpoints rarely share schema information about their data, which 
would be highly valuable for optimizing the query plans.

3.4 Query Formulation

Manually writing a SPARQL query requires some knowledge about the syntax and semantics of this query 
language and is known to be error-prone and sometimes tedious, which makes this practice reserved 
to advanced users. Several query formulations tools have been developed for assisting regular users in 
formulating their information needs. For example, OptiqueVQS [50] is a visual SPARQL query interface 
that exploits the ontology and samples the data to allow users to build SPARQL queries in a graphical way. 
The Sparklis query builder [51] combines the techniques of faceted search, interactive query builders and 
natural language interfaces. Finally, the Metaphactory Knowledge Graph platform developed by Metaphacts23 
provides several modalities for interacting with a SPARQL endpoint: a customizable user interface using 
templates and custom components, a keyword search query engine with GraphScope, and a voice interface 
using Amazon Alexa.

4. SELECTED USE CASES

The VKG technology has been adopted in many academic and industrial settings across different domains. 
In this section, we report some significant use cases, which we categorize according to their features. 
Specifically, all of these use cases are based on the VKG technology for data access and integration, but 
additionally they may pay attention to the temporal or spatial dimensions, or to the visualization of query 
results within some graphical user interfaces. The use cases are summarized in Table 1 with their main 
features.

19 https://jena.apache.org
20 http://rdf4j.org
21 https://www.blazegraph.com
22 https://github.com/semagrow/semagrow
23 https://metaphacts.com/product
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Table 1. Summary of use cases.

Domain User Data sources Systems Temp.Spat.Vis.

Oil & Gas Equinor [52] exploration geological data Optique, BootOX, 
Exerame, Ontop, 
OptiqueVQS

X X

Machine Diagnoses Siemens [53] Sensor and event data from 
appliances, analytical data, 
miscellaneous data

Optique, BootOX, 
Exerame, Ontop, 
OptiqueVQS

X X

Government and 
Public Administration

Italian Public Dept 
Directorate [54]

Public debt data Mastro Studio

Government and 
Public Administration 
(Education & 
Research)

SIRIS Academic & 
Tuscany [55]

Education & research open data Tuscany’s 
Observatory of 
R&I portal, Ontop

X

Government and 
Public Administration

Capsenta 
(Constitute Project)

Constitution databases Ultrawrap

Culture heritage EPNet project [56] the EPNet relational repository; 
Epigraphic database heidelberg; 
Pleiades (open-access digital 
gazetteer for ancient history)

Ontop

Maritime Security EMSec project [57] Static vessel metadata; 
GeoNames and OpenStreetMap 
data, radar and satellite image, 
real-time vessel data

Ontop-spatial, 
Sextant

X X

Manufacturing A global 
manufacturing 
company [58]

Sensor Data; Bill of Materials 
(BOM); data from the 
Manufacturing Execution System

Ontop

Healthcare Clinical data access 
[59]

Clinical data in HL7 RIM morph-RDB

Healthcare E-health data access 
[60]

Electronic Health Records 
(EHRs)

Ontop

Healthcare Capsenta Healthcare data Ultrawrap
Healthcare MIMIC-III data 

access [33]
MIMIC-III critical care unit data 
set

Ontop-temporal X

Smart city IBM Ireland [61] Open and Enterprise data Ontop
Process Mining EBITmax [62] Legacy relational data sources Ontop, OnProm X X

4.1 Data Access and Integration

Oil and Gas. Equinor24 (formerly Statoil ASA) is a Norwegian multinational oil and gas company. One of 
the common tasks for geologists at Equinor is to find new exploitable accumulations of oil or gas in given 
areas by analyzing data about these areas in a timely manner. However, gathering the required data is not 
a trivial task since it is stored in multiple complex and large data sources, including EPDS, Recall, CoreDB, 
GeoChemDB, OpenWorks, Compass and NPD FactPages. Construction of the right queries is not possible 

24 https://www.equinor.com
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for the Equinor geologists, so they have to communicate their information needs to IT specialists who then 
turn them into SQL queries. This drastically affects the efficiency of finding the right data to back decision 
making. The work of [52] describes how the data access and integration challenges in Equinor have been 
addressed by adopting the VKG-based system Optique [63], which relies on the following tools: (1) the 
bootstrapper BootOX to create ontologies and mappings from relational databases in a semi-automatic 
fashion; (2) the VKG system Ontop to perform query reformulation; (3) the federator Exareme to evaluate 
the reformulated queries over the federated DBs; and (4) the query formulation module OptiqueVQS to 
support query construction for engineers with a limited IT background.

Machine Diagnoses. Siemens Energy runs several service centers that remotely monitor and perform 
diagnostics for several thousand appliances, such as gas and steam turbines, generators and compressors 
installed in power plants. For performing reactive and predictive diagnostics at Siemens, data access and 
integration of both static data (e.g., configuration and structure of turbines) and dynamic data (e.g., sensor 
data) are particularly important but very challenging. The work of [53] addressed these data access 
requirements by using the Optique platform as a VKG solution, similar to the Equinor use-case.

Government and Public Administration. The Italian Public Debt Directorate is responsible for various 
matters, such as issuance and management of the public debt, and analysis of the problems inherent to its 
management. The Directorate is organized into offices that deal with specific aspects, and each sub-unit 
has an understanding of a particular portion of the public debt domain. However, a shared and formalized 
description of the relevant concepts and relations in the whole domain was missing, since data were 
managed by different systems in different offices, and their structure had been heavily modified and updated 
to serve specific application needs. There was a clear need to coordinate and integrate the data of the 
various sub-units. The work of [54] presented a project for addressing this issue. They developed the Public 
Debt Ontology to formalize the whole domain of the Italian public debt. The VKG system Mastro Studio 
has been used to provide a comprehensive software environment. Users can take advantage of the wiki-like 
documentation of the ontology to access both its graphical representation and its OWL2 specification.

To promote more transparent and inclusive governance in the Tuscany region, SIRIS Academic25, a small 
Spanish company specialized in providing data management solutions, has developed Tuscany’s Observatory 
of Research and Innovation portal [55]. They integrate Open Data on the Higher Education & Research 
field, including official Italian student and researcher data coming from the Ministero dell’Istruzione, 
dell’Università e della Ricerca (MIUR), and European data on FP7 and H2020 research projects. They follow 
the VKG approach and use the platform University Analytics (UNiCS) developed by SIRIS Academic. The 
platform uses Ontop to integrate open data repositories and to make them available via a dedicated SPARQL 
endpoint. Then the platform shows the data as an interactive dashboard hosting data visualisations, which 
are fed by the underlying UNiCS SPARQL endpoint.

25 http://www.sirisacademic.com
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Over the last 200 years, countries have replaced their constitutions on average every 19 years, and some 
have amended them almost yearly. A basic problem in the drafting of these documents is the search and 
analysis of model text deployed in other jurisdictions. In the Constitute Project26, Ultrawrap was used to 
integrate the world’s constitutions into a single unified semantic endpoint for contextual searching27. The 
project was launched at the General Assembly of the United Nations in 2013 and continues to integrate 
over 196 current databases of all of the world’s constitutions on the Web. Countries throughout the world 
can take advantage of this free service to modify and develop their constitutions. 

Cultural heritage. Historians, especially in Digital Humanities, are starting to use new data sets to 
aggregate information about history. These are collections of data, information and knowledge that are 
devoted to the preservation of the legacy of tangible and intangible culture inherited from previous 
generations. In the project Production and distribution of food during the Roman Empire: Economics and 
Political Dynamics (EPNet), the work of [56] presents a framework that eases the access of scholars to 
historical and cultural data about food production and commercial trade system during the Roman Empire, 
distributed across different data sources. The proposed approach relies on the VKG paradigm to integrate 
the following data sets: (1) the EPNet relational repository, (2) the Heidelberg Epigraphic database, and (3) 
Pleiades, an open-access digital gazetteer for ancient history. An ontology provides to the historians a clear 
point of access and a unified and unambiguous conceptual view over these data sets.

Maritime security. The maritime security domain presents a need for efficient combining and processing 
of dynamic (real-time) and static vessel data that come from heterogeneous sources. The project Real-time 
Services for the Maritime Security (EMSec) needed to integrate static, real-time and geospatial data, including 
(1) static vessel metadata, (2) open data like GeoNames and OpenStreetMap, (3) large radar and satellite 
images, and (4) real-time vessel data (approximately 1,000 vessel positions are acquired per second). To 
address this objective, the system Real-time Maritime Situation Awareness System (RMSAS), which relies 
on the VKG technology, has been developed [57]. RMSAS uses Ontop (with the Ontop-spatial extension) 
to expose the data mentioned above as SPARQL endpoints. The Web-based tool Sextant28 is then used to 
visualize the results on temporally-enabled maps combining geospatial and temporal results from different 
(Geo)SPARQL endpoints. 

Manufacturing. Digitalization in the manufacturing domain requires information models describing 
assets and information sources of companies to enable the semantic integration and interoperable exchange 
of data. The work of [58] reports on a case study where, for a global manufacturing company, an information 
model using semantic technologies is proposed. Three types of data were of particular interest in the project: 
(1) sensor data, (2) the Bill of Materials and (3) data from the Manufacturing Execution System. The 
information model is centered around machine data and describes all relevant assets, key terms and 
relations in a structured way, making use of existing as well as newly developed RDF vocabularies. In 

26 https://www.constituteproject.org
27 https://capsenta.com/government_constitution
28 http://sextant.di.uoa.gr
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addition, it comprises numerous RML mappings that link different data sources required for integrated data 
access and querying via SPARQL. The technical infrastructure and methodology used to develop and 
maintain the information model is based on a Git repository and utilizes the development environment 
VoCol as well as Ontop.

Healthcare. Semantic interoperability is essential when carrying out post-genomic clinical trials where 
several institutions collaborate, since researchers and developers need to have an integrated view and 
access to heterogeneous data sources. The work of [59] presents how to query clinical data in HL7 RIM 
based relational model using the Morph system. It presents a solution that uses an ontology based on the 
HL7v3 Reference Information Model and a set of R2RML mappings that relate this ontology to an underlying 
relational database implementation, and where morph-RDB is used to expose a SPARQL endpoint.

Improving healthcare for people with chronic conditions requires clinical information systems that 
support integrated care and information exchange. The adoption of an approach based on semantic 
information simplifies the use of multiple and diversified Electronic Health Records (EHRs). Within the work 
described in [60], a Diabetes Mellitus Ontology (DMO) has been developed, and has been used to diagnose 
patients with diabetes, and automatically identify them by analyzing EHRs. Specifically, by using Ontop, 
the EHR data from a general practice (with almost 1,000 active patients) could be queried via SPARQL. The 
accuracy of the algorithm for automatic identification of patients with diabetes was validated by performing 
a manual audit of the EHRs, and considered good enough for the purpose. Not surprisingly, the accuracy 
of the automatic method was influenced by data quality, such as incorrect data due to mistaken units of 
measurement, unavailable data due to lack of or wrong documentation and data management errors.

Also, Capsenta has reported that VKG technology has been deployed in the healthcare sector to help 
clinical investigators to increase procedure volume, to improve patient identification and to reduce IT 
resources29.

Smart cities. Smart City applications rely on large amounts of data retrieved from sensors, social networks 
or government authorities. Open data and data from existing enterprise systems are two valuable resources. 
However, open data are often published in a tabular form with little or incomplete schema information, 
while enterprise applications typically rely on complex relational schemas. There is a clear need to make 
city-specific information easy to consume and combine at low cost, but this proves to be a difficult task. 
The work of [61] presents the system DALI, which exploits linked data to provide federated entity search 
and spatial exploration across hundreds of information sources containing open and enterprise data 
pertaining to cities. Ontop is used as the VKG solution, and mappings are created using a rule and pattern-
based entity extraction mechanism to detect different kinds of entities. The DALI system has been evaluated 
in two scenarios: (1) data-engineers bring together public and enterprise data sets about public safety; (2) 
knowledge-engineers and domain-experts build a view of health and social care providers for vulnerable 
populations.

29 https://capsenta.com/healthcare
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Log extraction in process mining. Process mining techniques are able to extract knowledge from event 
log data, which is often available in today’s information systems [64]. Process mining tools normally assume 
that the data to be analyzed are already organized in some specific textual (XML based) format, notably 
IEEE standard for eXtensible Event Stream (XES) for achieving interoperability in event logs and event streams 
[65]. However, in practice, many companies have already had their own IT infrastructure that maintains 
the data relevant for process logs, e.g., in standard relational databases, and hence in a form that is not 
compliant with the XES standard. To cope with this kind of problem, the approach proposed in [66] exploits 
a VKG based framework and associated methodology for the extraction of XES event logs from relational 
data sources. This approach is implemented in OnProm, which provides a complete tool-chain that (i) 
allows for describing event logs by means of suitable annotations of a conceptual model of the available 
data, (ii) exploits the Ontop system for the actual log extraction, and (iii) is fully integrated with the well-
known ProM process mining framework. It has been tested in EBITmax30, an Italian company that provides 
consultancy services in program management and business process management for small and large 
enterprises, and that has incorporated process mining to complement its standard consultancy services [62]. 
The experimentation has shown the added value and flexibility of an approach based on semantics for the 
semi-automatic generation of process logs from legacy data.

4.2 Geo-spatial Extensions

Some use cases require paying special attention to the spatial dimension of the data. The work of [67] 
presents Ontop-spatial, a geospatial extension of the OBDA system Ontop. It leverages the technologies of 
geospatial databases and enables GeoSPARQL-to-SQL translation. Ontop-spatial was initially motivated by 
the Statoil use case in the context of the EU FP7 project Optique31, in order to address the issue of creating 
virtual RDF graphs on top of large relational databases that contain geometries and get frequently updated. 
It has been used in the urban accountant, land management and crisis mapping services of the EU FP7 
project Melodies32. In the maritime security use case described above [57], by using Ontop-spatial, the 
RMSAS system is able to process several types of data, including static data, streaming data and geospatial 
open data.

4.3 Temporal Extensions

In many real-world settings one needs to pay special attention to the temporal dimension of the data. In 
the Siemens Energy use case described above [53], the real-time analysis of data streams received from 
appliances requires the platform to support the access and integration of streaming data with a temporal 
dimension. Actually, both static and streaming data need to be considered, including (1) sensor and event 
data from appliances, (2) analytical data obtained as the result of monitoring tasks conducted by service 
centers for the last several years, and (3) miscellaneous data, typically stored in XML, containing technical 

30 http://www.ebitmax.it
31 http://optique-project.eu
32 http://www.melodiesproject.eu/software-tools
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description of appliances, types of configurations for appliances, indications about the database in which 
information from sensors is stored, history of weather forecasts, etc. To handle these different kinds of data, 
the Optique platform has been extended to deal specifically with temporal and real-time streaming data. 
The query language STARQL has been employed to allow for uniform querying of both streaming and static 
data, and an extension of the Exareme backend, called ExaStream, for processing streaming data has been 
developed [53].

Ontop-temporal, an extension of the Ontop system for query answering with temporal data and ontologies, 
is presented in [33]. In this study, Ontop-temporal is used to facilitate the access to the MIMIC-III critical 
care unit data set containing log data on hospital admissions, procedures and diagnoses. The ICD9CM 
diagnosis ontology and temporal rules are used to formalize the selection of patients for clinical trials 
taken from the ClinicalTrials.gov database. It demonstrates how high-level queries can be answered by 
Ontop-temporal to identify patients eligible for the trials.

4.4 Visualization

Visualization techniques can help users better interact with a VKG system and understand the retrieved 
information. In the Statoil use case described above [52], the component OptiqueVQS of the Optique 
platform allows domain experts to express their information needs by visually formulating queries via 
multiple widgets. Moreover, the Optique platform is integrated with GIS client tools (e.g., ArcGIS) at Statoil 
to show query results computed by Optique on geological maps. In the Siemens Energy use case [53], the 
OptiqueVQS system has been extended to support STARQL, and allows for the formulation of streaming 
queries. Widgets allow users (i) to configure parameters for temporal queries whenever the query involves 
dynamic attributes, (ii) to select a template for the temporal query, and (iii) to register the user query for 
execution. We have already mentioned that in the maritime security use case [57], the Web-based tool 
Sextant has been used to visualize geospatial data (e.g., vessel data) by creating composite maps, instead 
of storing all data natively in a geospatial relational database and visualizing them using GIS tools. We 
recall also Tuscany’s Observatory of Research and Innovation portal described above [55], which deploys 
an interactive dashboard that hosts data visualizations fed by the underlying UNiCS SPARQL endpoint.

5. PERSPECTIVES

In this paper, we have shown that virtual knowledge graphs are a booming research area and we have 
provided an overview of its tooling ecosystem and of its main use cases. To conclude the paper, we discuss 
several important research directions for the further development of the VKG approach.

Query answering. In VKG, this has always been the main research focus. Full support of the features of 
all relevant standards in VKG, namely OWL2, R2RML, SPARQL and SQL, is an important objective to 
achieve. At the same time, optimizations need to be developed for improving the performance. A promising 
direction is the adoption of an elastic approach that is able to adjust the performance to different application 
loads.
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Deeper integration with data federation tools. Currently, most VKG systems rely on external federation 
tools to perform query evaluation over multiple data sources. We envision that with a deeper integration 
of the data federator inside the architecture of the VKG engine, we can achieve better performance and 
ease the deployment of VKG solutions.

Data quality. This is a crucial aspect when integrating multiple data sources. VKG technology can help 
deal with data quality issues; on the one hand by providing an integrated view of multiple data sources, 
and on the other hand performing data cleaning operations within the mappings. In addition, supporting 
RDF Shapes [68] in VKG can help to validate the structure of the integrated data.

Beyond relational data. Currently, integrating non-relational data (e.g., JSON and XML) in VKG is often 
through a SQL wrapper, but this requires additional tools in the stack and the performance is often sub-
optimal. We regard the native support of different types of data sources, including MongoDB, as important. 
Initial experiments show the potential of such approaches [34].

Mapping and ontology engineering. It is useful to move from a manual approach to a semiautomatic 
approach for the development of mappings and ontologies, involving close interaction with designers, 
domain experts and business users. Corresponding tools should provide recommendations to users about 
possible mappings (or mapping components) and possible extension of the ontology, based on the content 
of data sources (schema and data), and the structure of the ontology.

Query formulation. In order to interact with VKG systems more smoothly, more user-friendly tools need 
to be designed with a graphical interface or natural language interaction modalities (resembling what done 
in question answering). Moreover, such tools should be supported by the structure of the data, and not only 
by the schema-level information.

Full management of data sources. Instead of just querying VKG systems, a desirable feature is the support 
for update operations of the underlying data through VKG systems. This will allow also data and content 
producers to decouple from the low-level details of the storage structure and organization. A technical 
challenge for updates in VKGs is the need to address the notoriously difficult view-update problem [69], 
which could be overcome by relying on business knowledge and constraints over the data.

Privacy and security. The VKG approach lends itself well to deal with privacy and security aspects when 
accessing the data, since privacy and security policies can be declared at the ontology level or embedded 
in the specification of mappings. Further investigations in this direction are required.

User studies. Besides investigating the theoretical foundations for these lines of work and carrying out 
experimentations to assess the performance of the developed systems, it will be also important to carry out 
user studies to assess usability of the VKG approach in general, and compare it to alternative methods for 
data integration and access.
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