
Querying Log Data with Metric Temporal Logic

Sebastian Brandt SEBASTIAN-PHILIPP.BRANDT@SIEMENS.COM
Siemens CT, München, Germany

Elem Güzel Kalaycı KALAYCI@INF.UNIBZ.IT
KRDB Research Centre, Faculty of Computer Science, Free University of Bozen-Bolzano, Italy

Vladislav Ryzhikov VLAD@DCS.BBK.AC.UK
Department of Computer Science and Information Systems, Birkbeck, University of London, U.K.

Guohui Xiao∗ XIAO@INF.UNIBZ.IT
KRDB Research Centre, Faculty of Computer Science, Free University of Bozen-Bolzano, Italy

Michael Zakharyaschev MICHAEL@DCS.BBK.AC.UK

Department of Computer Science and Information Systems, Birkbeck, University of London, U.K.

Abstract
We propose a novel framework for ontology-based access to temporal log data using a dat-

alog extension datalogMTL of the Horn fragment of the metric temporal logic MTL. We show
that datalogMTL is EXPSPACE-complete even with punctual intervals, in which case full MTL is
known to be undecidable. We also prove that nonrecursive datalogMTL is PSPACE-complete for
combined complexity and in AC0 for data complexity. We demonstrate by two real-world use cases
that nonrecursive datalogMTL programs can express complex temporal concepts from typical user
queries and thereby facilitate access to temporal log data. Our experiments with Siemens turbine
data and MesoWest weather data show that datalogMTL ontology-mediated queries are efficient
and scale on large datasets.

1. Introduction

In this paper, we present a new ontology-based framework for querying temporal log data. We begin
by outlining this framework in the context of data gathering and analysis at Siemens, a leading
manufacturer and supplier of systems for power generation, power transmission, medical diagnosis,
and industry automation.

Data gathering at Siemens. For the Siemens equipment, analytics services are usually delivered by
remote diagnostic centres that store data from the relevant industrial sites or individual equipment
around the globe. The analytics provided at these centres falls into three categories: descriptive,
predictive, and prescriptive. Descriptive analytics describes or quantifies in detail what has hap-
pened after an event. Predictive analytics aims to anticipate events before they occur and provide
a window of opportunity for countermeasures. Prescriptive analytics aims to automate the process
of suggesting underlying reasons for the predicted events and carrying out appropriate countermea-
sures. All these types of analytics heavily rely on the ability to recognise interesting events using
sensor measurements or other machine data such as the power output of a gas turbine, its maximum
rotor speed, average exhaust temperature, etc. For example, a service engineer at a Siemens remote
diagnostic centre could be interested in active power trips of the turbine, that is, events when

*. Corresponding author.

1

(ActivePowerTrip) the active power was above 1.5MW for a period of at least 10 seconds, maxi-
mum 3 seconds after which there was a period of at least one minute where the active power
was below 0.15MW.

Under the standard workflow, when facing the task of finding the active power trips of the turbine,
the engineer would call an IT expert who would then produce a specific script (in a proprietary
signal processing language developed by Siemens) such as

message(“active power trip”) =

$t1 : eval(>,#activePower, 1.5) :

for(>= 10s)

&&

eval(<,#activePower, 0.15) :

start(after[0s, 3s]$t1 : end) :

for(>= 1m);

for the turbine aggregated data stored in a table TB_Sensor, which looks as follows:

turbineId dateTime activePower rotorSpeed mainFlame . . .
. . .

tb0 2015-04-04 12:20:48 2 1550 0
tb0 2015-04-04 12:20:49 1.8 1400 null
tb0 2015-04-04 12:20:52 1.7 1350 1

. . .

The result of running the script is a log with records such as

“2015-04-04 12:22:17 active power trip tb0”

where information about all the events is accumulated.
When facing the same task but for a different turbine, the engineer may have to call the IT

expert once again because different models of turbines and sensors may have different log/database
formats. Moreover, the storage platform for the sensor data often changes (thus, currently Siemens
are pondering over migrating certain data to a cloud-based storage). Maintaining a set of scripts,
one for each data source, does not provide an efficient solution since a query such as ‘find all the
turbines that had an active power trip in May 2017’ would require an intermediate database with
integrated data of active power trips. Another difficulty is that the definitions of events the engineer
is interested in can also change. Some changes are minor, say the pressure threshold or the number
of seconds in the active power trip definition, but some could be more substantial, such as ‘find the
active power trips that were followed by a high pressure within 3 minutes that lasted for 30 seconds’.
This modification would require rewriting the script above into a much longer one rather than using
it as a module in the new definition.

The permanent involvement of an IT expert familiar with database technology incurs high costs
for Siemens, and data gathering accounts for a major part of the time the service engineers spend at
Siemens remote diagnostic centres, most of which due to the indirect access to data.
Ontology-based data access (OBDA) offers a different workflow that excludes the IT middle-
man from data gathering (Poggi, Lembo, Calvanese, De Giacomo, Lenzerini, & Rosati, 2008);

2

consult also (Xiao, Calvanese, Kontchakov, Lembo, Poggi, Rosati, & Zakharyaschev, 2018) for
a recent survey. In a nutshell, the OBDA workflow in the Siemens context looks as follows. Do-
main experts develop and maintain an ontology that contains terms for the events the engineers
may be interested in. IT experts develop and maintain mappings that relate these terms to the
database schemas. The engineer can now use familiar terms from the ontology and a graphical
tool such as OptiqueVQS (Soylu, Giese, Jiménez-Ruiz, Vega-Gorgojo, & Horrocks, 2016) to con-
struct and run queries such as ActivePowerTrip(tb0)@x. The task of the OBDA system such as
Ontop (Rodriguez-Muro, Kontchakov, & Zakharyaschev, 2013; Calvanese, Cogrel, Komla-Ebri,
Kontchakov, Lanti, Rezk, Rodriguez-Muro, & Xiao, 2017) will be, using the mappings, to rewrite
the engineer’s ontology-mediated query into an SQL query over the database and then execute it
returning the time intervals x where the turbine with the ID tb0 had active power trips.

Unfortunately, the ontology and query languages designed for OBDA and standardised by the
W3C—the OWL 2 QL profile of OWL 2 and SPARQL—are not suitable for the Siemens case be-
cause they were not meant to deal with essentially temporal data, concepts and properties. There
have been several attempts to develop temporal OBDA.

One approach is to use the same OWL 2 QL as an ontology language, assuming that ontology
axioms hold at all times, and extend the query language with various temporal operators (Gutiérrez-
Basulto & Klarman, 2012; Baader, Borgwardt, & Lippmann, 2013; Borgwardt, Lippmann, & Thost,
2013; Özçep, Möller, Neuenstadt, Zheleznyakov, & Kharlamov, 2013; Klarman & Meyer, 2014;
Özçep & Möller, 2014; Kharlamov, Brandt, Jiménez-Ruiz, Kotidis, Lamparter, Mailis, Neuen-
stadt, Özçep, Pinkel, Svingos, Zheleznyakov, Horrocks, Ioannidis, & Möller, 2016). Unfortunately,
OWL 2 QL is not able to define the temporal feature of ‘active power trip’, and so the engineer
would have to capture it in a complex temporal query (or call an expert in temporal logic). Another
known approach is to allow the temporal operators of the linear-time temporal logic LTL in both
queries and ontologies (Artale, Kontchakov, Wolter, & Zakharyaschev, 2013; Artale, Kontchakov,
Kovtunova, Ryzhikov, Wolter, & Zakharyaschev, 2015; Gutiérrez-Basulto, Jung, & Kontchakov,
2016a). For more details and further references, consult the recent survey (Artale, Kontchakov,
Kovtunova, Ryzhikov, Wolter, & Zakharyaschev, 2017)1.

However, standard LTL over a discrete timeline such as (N,≤) or (Z,≤) is not able to ade-
quately represent the temporal data and knowledge in the Siemens use case because measurements
are taken and sent asynchronously by multiple sensors at irregular time intervals, which can depend
on the turbine model, sensor type, etc. To model measurements and events using discrete time, one
could take a sufficiently small time unit (quantum), say 1 second, and encode ‘active power was
below 0.15MW for a period of one minute’ by an LTL -formula of the form©Pp∧©2

Pp∧· · ·∧©60
P p,

where ©P is the previous-time operator. One problem with this encoding is that it is clearly awk-
ward, not succinct, and only works under the assumption that the active power is measured each and
every second. If, for some reason, a measurement is missing as in TB_Sensor, the formula becomes
inadequate. This problem can be solved by using the (more succinct) metric temporal logic MTL
with operators like �[1,60] interpreted as ‘at every time instant within the previous minute when a
measurement was taken’. The satisfiability problem for the description logic ALC extended with
such operators over (N,≤) was investigated by Gutiérrez-Basulto, Jung, & Ozaki (2016b). A more
fundamental issue with modelling turbine events using discrete time is that it only applies to data
complying with the chosen quantum and requires amendments every time the quantum has to be

1. Surveys of early developments in temporal deductive databases are given by Baudinet, Chomicki, and Wolper (1993),
Chomicki and Toman (1998).

3

set to a different value because of a new equipment or because asynchronous sensor measurements
start to happen more frequently. Thus, a better way of modelling the temporal data and events under
consideration is by means of a suitable fragment of MTL interpreted over dense time such as the
rationals (Q,≤) or reals (R,≤). This would allow us to capture, for example, that one event, say
a sharp temperature rise, happened just before (maybe a fraction of a quantum), and so possibly
caused another event, say an emergency shutdown, which is a typical feature of an asynchronous
behaviour of real-time systems where the actual time of event occurrences cannot be predicted at
the modelling stage.
The metric temporal logic MTL was originally designed for modelling and reasoning about real-
time systems (Koymans, 1990; Alur & Henzinger, 1993). MTL is equipped with two alternative
semantics, pointwise and continuous (aka interval-based). In both semantics, the timestamps are
taken from a dense timeline (T,≤) such as (Q,≤) or (R,≤). Under the pointwise semantics, an
interpretation is a timed word, that is, a finite or infinite sequence of pairs (Σi, ti), where Σi is a
subset of propositional variables that are assumed to hold at ti ∈ T and ti < tj for i < j. Under
the continuous semantics, an interpretation is an assignment of a set of propositional variables to
each t ∈ T. MTL allows formulas such as �[1.5,3]ϕ (or [1.5,3]ϕ) that holds at a moment t if and
only if ϕ holds at every (respectively, some) moment in the interval [t + 1.5, t + 3]. However,
under the pointwise semantics, t must be a timestamp from the timed word and ϕ must only hold at
every (respectively, some) ti with 1.5 ≤ ti − t ≤ 3. Thus, �[1,1]⊥ is satisfiable under the pointwise
semantics, for example, by a timed word with ti+1−ti > 1, but not under the continuous semantics.

In the Siemens case, we assume that the real-time system is being continuously monitored, the
result of the next measurement of a sensor is only recorded when it exceeds the previous one by some
fixed margin, and events such as active power trip can happen between measurements. This makes
the continuous semantics a natural choice for temporal modelling. The satisfiability problem for
MTL under this semantics turns out to be undecidable (Alur & Henzinger, 1993) and EXPSPACE-
complete if the punctual operators such as [1,1] are disallowed (Alur, Feder, & Henzinger, 1996);
see also (Ouaknine & Worrell, 2005, 2008). Note that, under the pointwise semantics, MTL is
decidable over finite timed words, though not primitive recursive (Ouaknine & Worrell, 2005).
Our contribution. Having analysed two real-world scenarios of querying asynchronous real-time
systems (to be discussed in Section 6), we came to a conclusion that a basic ontology language for
temporal OBDA should contain datalog rules with MTL operators in their bodies. In this language,
for example, the event of active power trip can be defined by the rule

ActivePowerTrip(v)← Turbine(v) ∧ �[0,1m] ActivePowerBelow0.15(v) ∧

[60s,63s] �[0,10s] ActivePowerAbove1.5(v). (1)

The variables of the predicates in such rules range over a (non-temporal) object domain. Thus, the
intended domain for v in (1) comprises turbines, their parts, sensors, etc. The underlying (dense)
timeline is implicit: we understand (1) as saying that ActivePowerTrip(v) holds at any given time
instant t if the pattern shown in the picture below has occurred before t:

t

ActivePowerTrip

ActivePowerBelow0.15ActivePowerAbove1.5
v

1m

63s

10s

4

Unlike model-checking liveness properties (that some events eventually happen) in transition sys-
tems, our task is to query historical data for events that have already happened and are actually
implicitly recorded in the data. As a consequence, we do not need ontology axioms with even-
tuality operators in the head such as [0,3s]ShutDown(v) ← ActivePowerTrip(v) saying that an
active power trip must be followed by a shutdown within 3 seconds. OWL 2 QL allows existen-
tial quantification in the head of rules such as ∃u hasRotor(v, u) ← Turbine(v) stating that every
turbine has a rotor. Although axioms of this sort are present in the Siemens turbine configuration
ontology (Kharlamov, Mailis, Mehdi, Neuenstadt, Özçep, Roshchin, Solomakhina, Soylu, Svingos,
Brandt, Giese, Ioannidis, Lamparter, Möller, Kotidis, & Waaler, 2017), we opted not to include ∃
in the head of rules in our language. On the one hand, we have not found meaningful queries in the
use cases for which such axioms would provide more answers. On the other hand, it is known that
existential axioms may considerably increase the combined complexity of both atemporal (Gottlob,
Kikot, Kontchakov, Podolskii, Schwentick, & Zakharyaschev, 2014; Bienvenu, Kikot, Kontchakov,
Podolskii, & Zakharyaschev, 2018) and temporal ontology-mediated query answering (Artale et al.,
2015). For these reasons, we do not allow existential rules in our ontology language and leave their
investigation for future work.

The resulting temporal ontology language can be described as a datalog extension of the Horn
fragment of MTL (without diamond operators in the head of rules). We denote this language
by datalogMTL and prove in Section 3 that answering ontology-mediated queries of the form
(Π, G(v)@x) is EXPSPACE-complete for combined complexity, where Π is a datalogMTL pro-
gram, G(v) a goal with individual variables v, and x a variable over time intervals during which
G(v) holds. On the other hand, we show that hornMTL becomes undecidable if the diamond op-
erators are allowed in the head of rules. We also prove that answering propositional datalogMTL
queries is P-hard for data complexity. To compare, recall that answering ontology-mediated queries
with propositional (not necessarily Horn) LTL ontologies is NC1-complete for data complexity (Ar-
tale et al., 2015).

From the practical point of view, most interesting are nonrecursive datalogMTL queries. We
show in Section 4 that answering such queries is in AC0 for data complexity (assuming that data
timestamps and the ranges of the temporal operators in datalogMTL programs are represented as fi-
nite binary fractions) and PSPACE-complete for combined complexity (even NP-complete if the
arity of predicates is bounded). In this case, we develop a query answering algorithm that can
be implemented in standard SQL with window functions. We also present in Section 5 a frame-
work for practical OBDA with nonrecursive datalogMTL queries and temporal log data stored in
databases as shown above. Finally, in Section 6, we evaluate our framework on two use cases. We
develop a datalogMTL ontology for temporal concepts used in typical queries at Siemens (e.g.,
NormalStop that takes place if events ActivePowerOff, MainFlameOff, CoastDown6600to1500,
and CoastDown1500to200 happen in a certain temporal pattern). We also create a weather ontol-
ogy defining standard meteorological concepts such as Hurricane (HurricaneForceWind, wind with
the speed above 118 km/h, lasting at least 1 hour). Using Siemens sensor databases and MesoWest
historical records of the weather stations across the US, we experimentally demonstrate that our
algorithm is efficient in practice and scales on large datasets of up to 8.3GB. We used two systems,
PostgreSQL and Apache Spark, to evaluate our SQL programs. To our surprise, Apache Spark
achieved tenfold better performance on the weather data than PostgreSQL. This effect can be at-
tributed to the capacity of Spark to parallelise query execution as well as to the natural ‘modularity’
of weather data by location.

5

An extended abstract of this paper was presented at AAAI-17 (Brandt, Kalaycı, Kontchakov,
Ryzhikov, Xiao, & Zakharyaschev, 2017).

2. DatalogMTL

In the standard metric temporal logic MTL (Alur et al., 1996), the temporal domain is the real
numbers R, while the intervals % in the constrained temporal operators such as % (sometime in the
future within the interval % from now) have natural numbers or∞ as their endpoints. In the context
of the applications of MTL we deal with in this paper, it is more natural to assume that the endpoints
of % are non-negative dyadic rational numbers—finite binary fractions2 such as 101.011—or∞. We
denote the set of dyadic rationals by Q2 and remind the reader that Q2 is dense in R and, by Cantor’s
theorem, (Q2, <) is isomorphic to (Q, <). By an interval, ι, we mean any nonempty subset of Q2

of the form [t1, t2], [t1, t2), (t1, t2] or (t1, t2), where t1, t2 ∈ Q2 ∪ {−∞,∞} and t1 ≤ t2. We
identify (t,∞] with (t,∞), [−∞, t] with (−∞, t], etc. A range, %, is an interval with non-negative
endpoints. The temporal operators of MTL take the form �%, % and U%, which refer to the future,
and �%, % and S%, which refer to the past. The end-points of intervals and ranges are assumed to
be represented in binary.

An individual term, τ , is an individual variable, v, or a constant, c. As usual, we assume that
there is a countably-infinite list of predicate symbols, P , with assigned arities. A datalogMTL pro-
gram, Π, is a finite set of rules of the form

A+ ← A1 ∧ · · · ∧Ak or ⊥ ← A1 ∧ · · · ∧Ak,

where k ≥ 1, each Ai (1 ≤ i ≤ k) is either an inequality (τ 6= τ ′) or defined by the grammar

A ::= P (τ1, . . . , τm) | > | �%A | �%A | %A | %A | A U% A′ | A S% A′

and A+ is given by the same grammar but without any ‘non-deterministic’ operators %, %, U%, S%.
The atoms A1, . . . , Ak constitute the body of the rule, while A+ or⊥ its head. As usual, we assume
that every variable in the head of a rule also occurs in its body.

A data instance, D, is a finite set of facts of the form P (c)@ι, where P (c) is a ground atom
(with a tuple c of individual constants) and ι an interval. The fact P (c)@ι states that P (c) holds
throughout the interval ι. We denote by num(D) the set of numbers (excluding ±∞) that occur in
D, and by num(Π,D) the set of number occurring in Π or D.

An interpretation, M, is based on a domain ∆ 6= ∅ for the individual variables and constants.
For any m-ary predicate P , m-tuple a from ∆, and moment of time t ∈ R, the interpretation M
specifies whetherP is true on a at t, in which case we write M, t |= P (a). Let ν be an assignment of
elements of ∆ to the individual terms. To simplify notation, we adopt the standard name assumption
according to which ν(c) = c, for every individual constant c. We then set inductively:

M, t |=ν P (τ) iff M, t |= P (ν(τ)),

M, t |=ν (τ 6= τ ′) iff ν(τ) 6= ν(τ ′),

M, t |=ν �%A iff M, s |=ν A for all s with s− t ∈ %,
M, t |=ν �%A iff M, s |=ν A for all s with t− s ∈ %,
M, t |=ν

%A iff M, s |=ν A for some s with s− t ∈ %,

2. In other words, a dyadic rational is a number of the form n/2m, where n ∈ Z and m ∈ N.

6

M, t |=ν
%A iff M, s |=ν A for some s with t− s ∈ %,

M, t |=ν A U% A′ iff M, t′ |=ν A′ for some t′ with t′ − t ∈ % and M, s |=ν A for all s ∈ (t, t′),

M, t |=ν A S% A′ iff M, t′ |=ν A′ for some t′ with t− t′ ∈ % and M, s |=ν A for all s ∈ (t′, t),

M, t |=ν >,
M, t 6|=ν ⊥.

The picture below illustrates the semantics of the ‘future’ operators for % = [d, e]:

t

�%A

s
A

d

e

t

%A

s
A•

d

e

t

AU%A′

s
A′•

d

e
A

We say that M satisfies a datalogMTL program Π under an assignment ν if, for all t ∈ R and
all the rules A← A1 ∧ · · · ∧Ak in Π, we have

M, t |=ν A whenever M, t |=ν Ai for 1 ≤ i ≤ k.

We call M a model of Π and D and write M |= (Π,D) if M satisfies Π under every assignment,
and M, t |= P (c) for any P (c)@ι in D and any t ∈ ι. Π and D are consistent if they have a model.

Note that ranges % in the temporal operators can be punctual [r, r], in which case �[r,r]A is
equivalent to [r,r]A, and �[r,r]A to [r,r]A. We also observe that >S% A is equivalent to %A (that
is, M, t |=ν > S% A iff M, t |=ν

%A for all M, t and ν), and > U% A is equivalent to %A.
A datalogMTL query takes the form (Π, q(v, x)), where Π is a datalogMTL program and

q(v, x) = Q(τ)@x, for some predicate Q, v is a tuple of all individual variables occurring in
the terms τ , and x an interval variable. A certain answer to (Π, q(v, x)) over a data instanceD is a
pair (c, ι) such that c is a tuple of constants fromD of the same length as v, ι an interval and, for any
t ∈ ι, any model M of Π and D, and any assignment ν mapping v to c, we have M, t |=ν Q(τ). In
this case, we write M, t |= q(c). If the tuple v is empty (that is, Q(τ) does not have any individual
variables), then we say that ι is a certain answer to (Π, q(x)) over D.

Example 1. Suppose that Π has one rule (1) and D consists of the facts

Turbine(tb0)@(−∞,∞),

ActivePowerAbove1.5(tb0)@[13:00:00, 13:00:15),

ActivePowerBelow0.15(tb0)@[13:00:17, 13:01:25).

Then any subinterval of the interval [13:01:17, 13:01:18) is a certain answer to the datalogMTL
query (Π,ActivePowerTrip(tb0)@x).

7

Example 2. We illustrate the importance of the operators S (since) and U (until) using an example
inspired by the ballet moves ontology (Raheb, Mailis, Ryzhikov, Papapetrou, & Ioannidis, 2017).
Suppose we want to say that SupportBending is a move spanning from the beginning to the end of
RightAndLeftSupportLowPlace provided that it is preceded by RightAndLeftSupportMiddlePlace,
which ends within 3s from the beginning of the RightAndLeftSupportLowPlace, as shown below:

RightAndLeftSupportMiddlePlace RightAndLeftSupportLowPlace

SupportBending

3s

[0,3s]RightAndLeftSupportMiddlePlace

We can define the SupportBending move using the following rule:

SupportBending←
RightAndLeftSupportLowPlace S[0,∞)

(
[0,3s]RightAndLeftSupportMiddlePlace

)
.

(note that a definition of SupportBending in datalogMTL would be problematic if only the 2 and
3 operators were available).

By answering datalogMTL queries we understand the problem of checking whether a given pair
(c, ι) is a certain answer to a given datalogMTL query (Π, q(v, x)) over a given data instanceD. The
consistency (or satisfiability) problem is to check whether a given datalogMTL program Π is consis-
tent with a given data instance D. As usual in database theory (Vardi, 1982) and ontology-mediated
query answering, we distinguish between the combined complexity and the data complexity of these
problems: the former regards all the ingredients—Π, q(c, ι) and D—as input, while the latter one
assumes that Π and q are fixed and only D and (c, ι) are the input.

Proposition 3. Answering datalogMTL queries and consistency checking are polynomially re-
ducible to the complement of each other.

Proof. Suppose first that we want to check whether (c, ι) is a certain answer to (Π, q(v, x)) over
D, where q(v, x) = Q(τ)@x and ι = [−t1, t2), t1, t2 ∈ Q≥0

2 ; other types of ι are considered
analogously. Consider the following program Π′ and data instance D′:

Π′ = Π ∪ {⊥ ← P (v) ∧�[0,t1]Q(v) ∧�(0,t2)Q(v)},
D′ = D ∪ {P (c)@[0, 0]},

where P is a fresh predicate. It is readily seen that (c, ι) is a certain answer to (Π, q(v, x)) over D
iff Π′ is not consistent with D′. Conversely, Π and D are consistent iff [0, 0] is not a certain answer
to (Π, P@x) over D, where P is a fresh 0-ary predicate, that is, a propositional variable.

We conclude this section by reminding the reader that, over the integer numbers (Z, <), MTL
is as expressive as the linear temporal logic LTL with the operators ©F (at the next moment), U
(until), 2F (always in the future), 3F (some time in the future) and their past counterparts ©P , S,
2P and 3P . For example, the LTL -formula ©FA is equivalent to [1,1]A and A U B under the

8

irreflexive semantics to A U(0,∞) B; conversely, [2,3]A is clearly equivalent to the LTL -formula
©F©FA ∨ ©F©F©FA. However, MTL operators are more succinct, which explains why MTL -
satisfiability over (Z, <) is EXPSPACE-complete (Alur & Henzinger, 1993; Furia & Spoletini, 2008)
whereas LTL -satisfiability is PSPACE-complete (Sistla & Clarke, 1985).

In the next section, we show that consistency checking for datalogMTL programs is EXPSPACE-
complete for combined complexity. It follows from Proposition 3 that answering datalogMTL queries
is EXPSPACE-complete as well. On the other hand, we also prove that answering propositional
datalogMTL queries is P-hard for data complexity, and that the extension of datalogMTL with in
the head of rules leads to undecidability.

3. Complexity of answering datalogMTL queries

Observe first that every datalogMTL program Π can be transformed (using polynomially-many fresh
predicates) to a datalogMTL program in normal form that only contains rules such as

P (τ)←
∧
i∈I

Pi(τi), ⊥ ←
∧
i∈I

Pi(τi), (2)

P (τ)← P1(τ1) S% P2(τ2), P (τ)← P1(τ1) U% P2(τ2), (3)

P (τ)← �%P1(τ1), P (τ)← �%P1(τ1), (4)

and gives the same certain answers as Π over any data instance. (In particular, datalogMTL programs
in normal form do not contain occurrences of the diamond operators.) For example, we can replace
the rule �%′P (τ)← P1(τ1) ∧�%P2(τ2) in Π with three rules

P ′(τ)← P1(τ1) ∧ P ′2(τ2),

P ′2(τ2)← �%P2(τ2),

P (τ)← >S%′ P ′(τ),

where P ′ is a fresh predicate of the same arity as P and P ′2 a fresh predicate of the same arity as P2.
Moreover, we can only consider those programs and data instances where intervals take one of the
following two forms:

– (t1, t2) with t1, t2 ∈ Q2 ∪ {−∞,∞},

– [t, t] with t ∈ Q2; such intervals are called punctual.

For example, a data instance D = D′ ∪ {P (c)@(t1, t2]} is equivalent to the data instance

D = D′ ∪ {P (c)@(t1, t2), P (c)@[t2, t2]}

in the sense that is gives the same certain answers asD, the rule P (v)← �(r1,r2]P
′(v) is equivalent

to P (v)← �(r1,r2)P
′(v)∧�[r2,r2]P

′(v), whereas the rule P (v)← P1(v)U(r1,r2]P2(v) is equivalent
to the pair of rules

P (v)← P1(v) U(r1,r2) P2(v), P (v)← P1(v) U[r2,r2] P2(v).

9

We use the following notations. We assume that 〈 is one of (and [, while 〉 is one of) and]. Given
an interval ι = 〈ιb, ιe〉 and a range %, we set

ι+o % =

{
〈ιb + r, ιe + r〉, if % = [r, r],

(ιb + r1, ιe + r2), if % = (r1, r2),
ι−o % =

{
〈ιb − r, ιe − r〉, if % = [r, r],

(ιb − r2, ιe − r1), if % = (r1, r2).

In other words, ι+o % = {t+ k | t ∈ ι and k ∈ %} and ι−o % = {t− k | t ∈ ι and k ∈ %}. We also
set

ι−c % =

〈ιb − r, ιe − r〉, if % = [r, r],

[ιb − r1, ιe − r2], if % = (r1, r2), r2, ιe ∈ Q2,

[ιb − r1,∞), if % = (r1, r2), r2 =∞ or ιe =∞,

ι+c % =

〈ιb + r, ιe + r〉, if % = [r, r],

[ιb + r2, ιe + r1], if % = (r1, r2), r2, ιb ∈ Q2,

(−∞, ιe + r1], if % = (r1, r2), r2 =∞ or ιb = −∞.

We assume that ι−c % and ι+c % are only defined if r2 − r1 ≤ ιe − ιb, in which case we write
% v ι. Thus, ι−c % is defined if there is t′ such that t′ + k ∈ ι, for all k ∈ %. Symmetrically, ι+c %
is defined if there is t′ such that t′ − k ∈ ι. The picture below illustrates the intuition behind ι+o %
and ι+c %, for non-punctual %, and the difference between them:

ι+o % ()

% ())

r2

r1

())

r2

r1

ι 〈 〉

% ())

r2

r1

())

r2

r1

ι+c % []

Furthermore, we write

–
⋂
i∈I ιi 6= ∅ to say that the intersection of the intervals ιi, for i ∈ I , is non-empty;

–
⋂
i∈I ιi for the intersection of the intervals ιi provided that

⋂
i∈I ιi 6= ∅; otherwise

⋂
i∈I ιi is

undefined;

–
⋃
i∈I ιi for the union of the intervals ιi provided that

⋃
i∈I ιi is a single interval; otherwise⋃

i∈I ιi is undefined;

– ιc for the closure of an interval ι, that is ιc = [ιb, ιe] for any ι = 〈ιb, ιe〉.

Suppose now that we are given a datalogMTL program Π (in normal form) and a data instance
D. We define a (possibly infinite) set CΠ,D of atoms of the form P (c)@ι or ⊥@ι that contains all
answers to datalogMTL queries with Π over D. The construction is essentially the standard chase

10

procedure from database theory (Abiteboul, Hull, & Vianu, 1995) adapted to time intervals and
the temporal operators by mimicking their semantics. The only new chase rule is coalescing (coal)
that merges—possibly infinitely-many—smaller intervals into the lager one they cover. Because of
this rule, our chase construction requires transfinite recursion; cf. also (Bresolin, Kurucz, Muñoz-
Velasco, Ryzhikov, Sciavicco, & Zakharyaschev, 2017; Artale et al., 2015).

Let C be some set of atoms of the form P (c)@ι or ⊥@ι from Π and D. Denote by cl(C) the
result of applying exhaustively and non-recursively the following rules to C:

(coal) if P (c)@ιi ∈ C, for all i ∈ I with a possibly infinite set I , and
⋃
i∈I ιi is defined, then we

add P (c)@
⋃
i∈I ιi to C;

(horn) if P (c)←
∧
i∈I Pi(ci) is an instance of a rule in Π with all Pi(ci)@ιi in C and

⋂
i∈I ιi 6= ∅,

then we add P (c)@
⋂
i∈I ιi to C; if ⊥ ←

∧
i∈I Pi(ci) is an instance of a rule in Π, then we

add ⊥@
⋂
i∈I ιi to C;

(S%) if P (c) ← P1(c1) S% P2(c2) is an instance of a rule in Π with Pi(ci)@ιi ∈ C for i ∈ {1, 2},
ιc1 ∩ ι2 6= ∅, and ((ιc1 ∩ ι2) +o %) ∩ ιc1 6= ∅, then we add P (c)@((ιc1 ∩ ι2) +o %) ∩ ιc1 to C; see
the picture below, where % = (r1, r2);

ι2 〈
P2 〉

ι1 〈
P1 〉

(ιc1 ∩ ι2) [〉

(ιc1 ∩ ι2) +o % [〉
r1

r2

()

((ιc1 ∩ ι2) +o %) ∩ ιc1 (]

(�%) if P (c)← �%P1(c1) is an instance of a rule in Π with P1(c1)@ι ∈ C and % v ι, then we add
P (c)@(ι−c %) to C;

(U%) if P (c)← P1(c1)U% P2(c2) is an instance of a rule in Π with Pi(ci)@ιi ∈ C, ιc1 ∩ ι2 6= ∅ and
((ιc1 ∩ ι2)−o %) ∩ ιc1 6= ∅, then we add P (c)@((ιc1 ∩ ι2)−o %) ∩ ιc1 to C;

(�%) if P (c)← �%P1(c1) is an instance of a rule in Π with P1(c1)@ι ∈ C and % v ι, then we add
P (c)@(ι+c %) to C.

We set cl0(D) = D ∪ {>(−∞,∞)} and, for any successor ordinal ξ + 1 and limit ordinal ζ,

clξ+1(D) = cl(clξ(D)), clζ(D) =
⋃

ξ<ζ
clξ(D) and CΠ,D = clω1(D), (5)

where ω1 is the first uncountable ordinal (as clω1(D) is countable, there is an ordinal α < ω1 such
that clα(D) = clβ(D), for all β ≥ α). We regard CΠ,D as both a set of atoms of the form P (c)@ι
or ⊥@ι and an interpretation where, for any t ∈ R, any P (different from ⊥), and any tuple c of
individual constants, we have CΠ,D, t |= P (c) iff P (c)@ι ∈ CΠ,D and t ∈ ι. The domain of CΠ,D
is the set ind(D) ∪ ind(Π) that comprises the individual constants occurring in D and Π.

We illustrate the definition above by a simple example:

11

Example 4. Let Π have two rules P ← �[1,1]P and Q ← �(0,∞)P , and let D = {P (0, 1]}. The
first ω steps of the construction of CΠ,D will produce, using the rules (�%) and (coal), the atoms
P (n, n+ 1] and P (0, n+ 1], for n < ω. In the step ω + 1, (coal) will give P (0,∞) and then (�%)
will return Q@[0,∞).

Lemma 5. Let Π be a datalogMTL program andD a data instance. Then, for any predicate symbol
P from Π and D, any tuple c of constants from D and Π, and any interval ι,

(i) P (c)@ι ∈ CΠ,D implies M, t |= P (c), for all t ∈ ι and all models M of Π and D;

(ii) if ⊥@ι /∈ CΠ,D for any ι, then CΠ,D |= (Π,D); otherwise, Π and D are inconsistent.

Proof. (i) Suppose that M is a model of Π and D, and that P (c)@ι ∈ CΠ,D. Let ξ be the smallest
ordinal such that P (c)@ι ∈ clξ(D). We show that M, t |= P (c) for all t ∈ ι by induction of ξ. If
ξ = 0, then P (c)@ι ∈ D, and since M satisfies every assertion inD, we are done. If ξ = ξ′+1 then
P (c)@ι was obtained from clξ

′
(D) by applying one of the construction rules for CΠ,D. Suppose

P (c)@ι is P (c)@
⋃
i∈I ιi obtained by (coal). By the induction hypothesis, M, t |= P (c) for all

t ∈ ιi and i ∈ I . Clearly, M, t |= P (c) for all t ∈
⋃
i∈I ιi, and so for all t ∈ ι. The case of (horn) is

similar (with intersection in place of union).
Suppose P (c)@ι is obtained by (S%) from Pi(ci)@ιi, i ∈ {1, 2}. By the induction hypothesis,

M, t |= Pi(ci) for every t ∈ ιi. Take an arbitrary t ∈ ((ιc1 ∩ ι2) +o %) ∩ ιc1. Then there exists
t′ ∈ ιc1 ∩ ι2 such that t − t′ ∈ % and M, t |= P2(c2). Moreover, we have M, s |= P1(c1) for all
s ∈ (t′, t). Therefore, M, t |= P1(c1) S P2(c2). If P (c)@ι is obtained by (�%) from P1(c1)@ι, the
proof is analogous by considering t ∈ ι−c %. The remaining rules are treated similarly.

(ii) Suppose ⊥@ι /∈ CΠ,D for any ι. By definition, D ⊆ CΠ,D, and so CΠ,D |= P (c)@ι for
every P (c)@ι ∈ D. To show that all the rules in Π are satisfied by CΠ,D, we take an assignment
ν, a rule P (τ) ←

∧
i∈I Pi(τi) from Π, and suppose that CΠ,D, t |=ν Pi(τi), for all i ∈ I . By the

definition of CΠ,D, it follows that CΠ,D, t |= Pi(ν(τi)) and Pi(ν(τi)) ∈ CΠ,D, for some ιi 3 t.
Moreover, there are ordinals ξi, i ∈ I , such that Pi(ν(τi))@ιi ∈ clξi(D). By the rule (horn), we
then have P (ν(τ))@

⋂
i∈I ιi ∈ clmax{ξi|i∈I}+1(D), from which P (ν(τ))@

⋂
i∈I ιi ∈ CΠ,D, and so

CΠ,D, t |= P (ν(τ)). Now, consider a rule⊥ ←
∧
i∈I Pi(τi) and suppose that CΠ,D, t |=ν Pi(τi), for

all i ∈ I . By the argument above, we then should have⊥@
⋂
i∈I ιi ∈ CΠ,D, which is a contradiction.

For a rule P (τ) ← P1(τ1) S% P2(τ2), take an arbitrary t and suppose that CΠ,D, t2 |=ν P2(τ2) for
some t2 with t − t2 ∈ % and CΠ,D, t1 |=ν P1(τ1) for all t2 ∈ (t2, t). By the construction of
CΠ,D, it follows that P2(ν(τ2))@ι2 ∈ CΠ,D for some ι2 3 t2. Moreover, there are finitely many
intervals ι′i, i ∈ I , such that (t2, t) ⊆

⋃
i∈I ι

′
i and P1(ν(τ1))@ι′i ∈ CΠ,D. By the rule (coal),

P1(ν(τ1))@ι1 ∈ CΠ,D for ι1 =
⋃
i∈I ι

′
i. It follows then that t2, t ∈ ιc1, and so ιc1 ∩ ι2 6= ∅ and

t ∈ ((ιc1 ∩ ι2) +o %) ∩ ιc1. Thus, by the rule (S%), we have P (ν(τ))@((ιc1 ∩ ι2) +o %) ∩ ιc1 ∈ CΠ,D.
Therefore, CΠ,D, t |=ν P (τ). The remaining rules are considered in the same manner.

That ⊥@ι ∈ CΠ,D, for some ι, implies inconsistency of D and Π follows from (i).

If ⊥@ι /∈ CΠ,D, we call CΠ,D the canonical (or minimal) model of Π and D. We now establish
an important property of CΠ,D that will allow us to reduce consistency checking for datalogMTL
programs and data to the satisfiability problem for formulas in the linear temporal logic LTL over
(Z, <).

Recall that the greatest common divisor of a finite set N ⊆ Q (at least one of which is not 0)
is the largest number gcd(N) > 0 such that every n ∈ N is divisible by gcd(N) (in the sense that

12

n/ gcd(N) ∈ Z). It is known that gcd(N) always exists and gcd(N) ≤
∏
n∈N |n|. It is easy to see

that, for any a finite set N ⊆ Q2 (at least one of which is not 0), we have gcd(N) = 2m, where m
is the maximal natural number such that n/2m ∈ N is an irreducible fraction. Thus, gcd(N) can
be computed and stored using space polynomial in |N | (the size of the binary encoding of N). To
make further definitions simpler, it will be convenient to assume that gcd(N) = 1 if N = {0}.

Given a datalogMTL program Π and a data instance D, we take d = gcd(num(Π,D)). Denote
by secΠ,D the set of all the intervals of the form [kd, kd] and ((k − 1)d, kd), for k ∈ Z. Clearly,
secΠ,D is a partition of Q2. We represent secΠ,D as

secΠ,D = {. . . , σ−3, σ−2, σ−1, σ0, σ1, σ2, σ3, . . . },

where σ0 = [0, 0], σ1 = (0, d), σ2 = [d, d], σ3 = (d, 2d), σ−1 = (−d, 0), etc. Thus, σi is punctual
if i is even and non-punctual if i is odd. We refer to the σi as sections of secΠ,D.

Lemma 6. For every atom P (c) and every σ ∈ secΠ,D, we either have CΠ,D, t |= P (c) for all
t ∈ σ, or CΠ,D, t 6|= P (c) for all t ∈ σ.

Proof. It suffices to show that every interval ι such that P (c)@ι ∈ CΠ,D takes one of the following
forms: (−∞,∞), 〈dk,∞), (−∞, dk〉, 〈dk, dk′〉, where k, k′ ∈ Z. This can readily be done by
induction on the construction of CΠ,D. Indeed, when applied to a set of atoms of this form, the
operator cl also results in a set of such atoms.

Our aim now is to encode the structure of CΠ,D given by Lemma 6 by means of an LTL -formula
ϕΠ,D that is satisfiable over (Z, <) iff Π and D are consistent. The LTL -formula ϕΠ,D contains
propositional variables of the form P c, where P is a predicate symbol from Π and D of arity m
and c an m-tuple of individual constants from D and Π, as well as two additional propositional
variables odd and even. We define ϕΠ,D as a conjunction of the following clauses, where ν is any
assignment of the individual constants from D and Π to the terms in Π, and 2ψ is a shorthand for
2Pϕ ∧ ϕ ∧2Fϕ:

– even ∧2(even→ ©F odd) ∧2(odd→ ©F even);

– 2(P ν(τ) ←
∧
i∈I

P
ν(τi)
i), for every rule P (τ)←

∧
i∈I Pi(τi) in Π;

– 2(⊥ ←
∧
i∈I

P
ν(τi)
i), for every rule ⊥ ←

∧
i∈I Pi(τi) in Π;

– for every rule P (τ)← P1(τ1) S% P2(τ2) in Π with % = [r, r], we require two clauses:

2
(
P ν(τ) ← even ∧©−2r/dP

ν(τ2)
2 ∧

∧
−2r/d<j<0

©jP
ν(τ1)
1

)
,

2
(
P ν(τ) ← odd ∧©−2r/dP

ν(τ2)
2 ∧

∧
−2r/d≤j≤0

©jP
ν(τ1)
1

)
,

where ©nϕ = ©F . . .©F︸ ︷︷ ︸
n

ϕ if n > 0, ©0ϕ = ϕ, and ©nϕ = ©P . . .©P︸ ︷︷ ︸
|n|

ϕ if n < 0;

13

– for every rule P (τ)← P1(τ1) S% P2(τ2) in Π with % = (r1, r2), we require four clauses:

2
(
P ν(τ) ← even ∧

∨
−2r2/d<k<−2r1/d

(©kP
ν(τ2)
2 ∧©keven ∧

∧
k<j<0

©jP
ν(τ1)
1

)
,

2
(
P ν(τ) ← even ∧

∨
−2r2/d<k<−2r1/d

(©kP
ν(τ2)
2 ∧©kodd ∧

∧
k≤j<0

©jP
ν(τ1)
1

)
,

2
(
P ν(τ) ← odd ∧

∨
−2r2/d≤k≤−2r1/d

(©kP
ν(τ2)
2 ∧©keven ∧

∧
k<j≤0

©jP
ν(τ1)
1

)
,

2
(
P ν(τ) ← odd ∧

∨
−2r2/d≤k≤−2r1/d

(©kP
ν(τ2)
2 ∧©kodd ∧

∧
k≤j≤0

©jP
ν(τ1)
1

)
;

– for every rule P (τ)← P1(τ1) S% P2(τ2) in Π with % = (r1,∞),

2
(
P ν(τ) ← even ∧

∧
−2r1/d≤j<0

©jP
ν(τ1)
1 ∧©−2r1/d(P

ν(τ1)
1 S (even ∧ P ν(τ2)

2) ∨

P
ν(τ1)
1 S (odd ∧ P ν(τ1)

1 ∧ P ν(τ2)
2))

)
,

2
(
P ν(τ) ← odd ∧

∧
−2r1/d≤j≤0

©jP
ν(τ1)
1 ∧©−2r1/d(P

ν(τ2)
2 ∨ P ν(τ1)

1 S (even ∧ P ν(τ2)
2) ∨

P
ν(τ1)
1 S (odd ∧ P ν(τ1)

1 ∧ P ν(τ2)
2))

)
(recall that P S Q holds at i iff there exists k < i, such that Q holds at k and P holds at all j
with k < j < i);

– similar clauses for the rules of the form P (τ)← P1(τ1) U% P2(τ2) (here we need the ‘until’
operator U), P (τ)← �%P1(τ1) and P (τ)← �%P1(τ1) in Π;

– for every fact P (c)@ι in D, we need the clauses:

©2r/dP c, if ι = [r, r],∧
2r1/d<i<2r2/d

©iP c, if ι = (r1, r2) and r1, r2 ∈ Q2,

©2r1/d2FP
c, if ι = (r1, r2), r1 ∈ Q2 and r2 =∞,

©2r2/d2PP
c, if ι = (r1, r2), r1 = −∞ and r2 ∈ Q2,

2F2PP
c, if ι = (r1, r2), r1 = −∞ and r2 =∞.

Lemma 7. (Π, D) is consistent iff ϕΠ,D is satisfiable.

Proof. (⇒) If CΠ,D is a model of (Π,D), we define an LTL-interpretation M by taking

– M, i |= P c iff CΠ,D, t |= P (c), for all t ∈ σi and i ∈ Z, all tuples of individual constants c,
and predicates P ;

– M, i |= even, for even i ∈ Z;

– M, i |= odd, for odd i ∈ Z.

14

It is routine to check that M, 0 |= ϕΠ,D, taking into account that CΠ,D, t |= P1(c1) S% P2(c2) for
some (= all) t ∈ σi iff the following conditions hold:

Case % = [r, r]: CΠ,D, t
′ |= P2(c2), for some t′ ∈ σi−2r/d, and CΠ,D, s |= P1(c1) for all s ∈ σj

such that

i− 2r/d < j < i, if i is even,

i− 2r/d ≤ j ≤ i, if i is odd;

Case % = (r1, r2): there exists σk with CΠ,D, t
′ |= P2(c2), for some t′ ∈ σk, and CΠ,D, s |= P1(c1)

for all s ∈ σj such that

i− 2r2/d < k < i− 2r1/d, k < j < i, if i is even and k is even,

i− 2r2/d < k < i− 2r1/d, k ≤ j < i, if i is even and k is odd,

i− 2r2/d ≤ k ≤ i− 2r1/d, k < j ≤ i, if i is odd and k is even,

i− 2r2/d ≤ k ≤ i− 2r1/d, k ≤ j ≤ i, if i is odd and k is odd;

and similarly for the other temporal operators in ϕΠ,D.
(⇐) Suppose now that ϕΠ,D is satisfiable. Take the canonical model M of ϕΠ,D such that

M, 0 |= ϕΠ,D; see (Artale, Kontchakov, Ryzhikov, & Zakharyaschev, 2013) for details. Using the
observations above, it is not hard to check that M, i |= P c iff CΠ,D, t |= P (c), for all t ∈ σi and
i ∈ Z, all tuples of individual constants c and predicates P . Details are left to the reader.

We are now in a position to prove our first complexity result:

Theorem 8. Consistency checking for datalogMTL programs is EXPSPACE-complete. The lower
bound holds even for propositional datalogMTL.

Proof. We first show the upper bound. By the two lemmas above, a datalogMTL program Π is con-
sistent with a data instance D iff the LTL formula ϕΠ,D is satisfiable. Thus, a consistency checking
EXPSPACE algorithm can first construct ϕΠ,D, which requires exponential time in the size of Π
and D. Indeed, the greatest common divisor of the set num(Π,D) can be computed in polynomial
time. The LTL formula ϕΠ,D contains exponentially many clauses (as there are exponentially many
assignments ν) of at most exponential size (as they contain 2t/d conjuncts or disjuncts, where t is
a number from Π or D). After that we can run a standard PSPACE satisfiability checking algorithm
for LTL ; see, e.g., (Sistla & Clarke, 1985).

We establish the matching lower bound by reduction of the non-halting problem for determin-
istic Turing machines with an exponential tape. Let M a deterministic Turing machine that re-
quires 2f(m) cells of the tape given an input of length m, for some polynomial f . Let n = f(m).
Without loss of generality, we can assume that M never runs outside the first 2n cells. Suppose
M = (Q,Γ,#,Σ, δ, q0, qh), where Q is a finite set of states, Γ a tape alphabet, # ∈ Γ the blank
symbol, Σ ⊆ Γ a set of input symbols, δ : (Q \ {qh})×Γ→ Q×Γ×{L,R} a transition function,
and q0, qh ∈ Q are the initial and halting states, respectively. Let ~a = a1 . . . am be an input for M .
We construct a propositional datalogMTL program Π and a data instance D such that they are not
consistent iffM accepts ~a. In our encoding, we employ the following propositional variables, where
a ∈ Γ, q ∈ Q:

15

– Hq,a indicating that a cell is read by the head, the current state of the machine is q, and the
cell contains a;

– Na indicating that a cell is not read by the head and contains a,

– first and last marking the first and last cells of a configuration, respectively.

The program Π consists of the following rules, for a, a′, a′′ ∈ Γ, q, q′ ∈ Q:

�2n+1 Hq′,a′′ ← Hq,a ∧�1Na′′ , �2nNa′ ← Hq,a, if δ(q, a) = (q′, a′, R),

�2n−1 Hq′,a′′ ← Hq,a ∧�1Na′′ , �2nNa′ ← Hq,a, if δ(q, a) = (q′, a′, L),

�2n Na ← �1Na′ ∧Na ∧�1Na′′ ,

�2n Na ← �1Hq,a′ ∧Na ∧�1Na′′ , if δ(q, a′) 6= (r, b, R) for all r, b,

�2n Na ← �1Na′ ∧Na ∧�1Hq,a′′ , if δ(q, a′′) 6= (r, b, L) for all r, b,

�2n Na ← Na ∧ first ∧�1Na′ ,

�2n Na ← Na ∧ first ∧�1Hq,a′ , if δ(q, a′) 6= (r, b, L) for all r, b,

�2n Na ← �1Na′ ∧Na ∧ last,

�2n Na ← �1Nq,a′ ∧Na ∧ last, if δ(q, a′) 6= (r, b, R) for all r, b,

�2n first← first,

�2n last← last,

⊥ ← Hqh,a,

�1 N# ← N# ∧ (0,∞)N
<
,

where �r is an abbreviation for �[r,r] and similarly for �r. Let D contain the following facts:

Nai@[i, i], for 1 < i ≤ m, N#@[m+ 1,m+ 1], N<
#@[2n, 2n],

Hq0,a1@[1, 1], first@[1, 1], last@[2n, 2n].

The program represents the computation of M on ~a as a sequence of configurations. The initial
one is spread over the time instants 1, . . . , 2n, from which the first m instants represent ~a and the
remaining ones are #. The second configuration uses the next 2n instants (i.e., 2n+1, . . . , 2n+2n),
etc. It is routine to check that M halts on ~a iff Π and D are inconsistent.

Note that datalogMTL allows punctual intervals of the form [r, r] as ranges of temporal opera-
tors, and that full propositional MTL with such intervals is undecidable (Alur & Henzinger, 1993).

Now we turn to the data complexity of datalogMTL and show the following result:

Theorem 9. Consistency checking and answering propositional datalogMTL queries is P-hard for
data complexity (under LOGSPACE reductions).

Proof. We establish this lower bound by reduction of the monotone circuit value problem, which
is known to be P-complete (Arora & Barak, 2009). Let C be a monotone circuit with input gates
having fan-in 1 and all other gates fan-in 2. We assume that the gates that are enumerated by con-
secutive positive integers, so that if there is an edge from n tom then n < m. Let N = 2k, for some
k ∈ N, be the minimal number that is greater than or equal to the maximal gate number. We encode
the computation ofC on an input α by a data instanceDC with the following punctual facts, where
[n] stands for [n, n]:

16

– V [2n+ n/N], if n is an input gate and α(n) = V ∈ {T, F};
– D[2n+ n/N], if n is an OR gate;

– C[2n+ n/N], if n is an AND gate;

– I0[2n+m/N], I1[2n+ k/N], if n is a gate with input gates m and k.

Let ΠC be a datalogMTL program with the rules

T ← [2,2]T, F ← [2,2]F,

T ← [0,1](I0 ∧ T) ∧D, F ← [0,1](I0 ∧ F) ∧ C,
T ← [0,1](I1 ∧ T) ∧D, F ← [0,1](I1 ∧ F) ∧ C,
F ← [0,1](I0 ∧ F) ∧ [0,1](I1 ∧ F) ∧D, T ← [0,1](I0 ∧ T) ∧ [0,1](I1 ∧ T) ∧ C.

Suppose n is the output gate. Then it is straightforward to check that the value of C on α is T iff
(Π,D) |= T [2n + n/N]. This immediately implies the required hardness for the query answer-
ing problem. An example of a circuit C with an assignment α, and an initial part of the canonical
model of (ΠC ,DC) are shown below, with the black symbols above the timestamps indicating what
is given in DC and the grey ones what is implied by ΠC :

∧
4

∨
3

∧
5

F
1

T
2

T
0

0

T

1
8

2
8

3
8

4
8

5
8

1 16
8

T

F

. . . 21
8

3 34
8

T F

T

. . . 39
8

5 48
8

I0

T

I1

F T

. . .

D

T

53
8

. . .

To show P-hardness of the consistency problem, it suffices to add the fact P [2n+ n/N] to DC , for
a fresh P , and the axiom ⊥ ← P ∧ T to ΠC .

The exact data complexity of answering propositional datalogMTL queries remains open. It
is worth noting that answering ontology-mediated queries with propositional LTL ontologies is
NC1-complete for data complexity (Artale et al., 2015), while answering propositional datalog
queries with the Halpern-Shoham operators is P-complete for data complexity (Kontchakov, Pan-
dolfo, Pulina, Ryzhikov, & Zakharyaschev, 2016).

The diamond operators % and % are disallowed in the head of datalogMTL rules. Denote
by datalogMTL3 the extension of datalogMTL that allows both box and diamond operators in the
head of rules. We show now that this language has much more expressive power and can encode
2-counter Minsky machines, which gives the following theorem; cf. (Madnani, Krishna, & Pandya,
2013):

Theorem 10. Consistency checking for propositional datalogMTL3 programs is undecidable.

Proof. We use some ideas of (Madnani et al., 2013), where a non-Horn fragment of MTL was
shown to be undecidable. The proof is by reduction of the undecidable non-halting problem for

17

Minksy machines: given a 2-counter Minsky machine, decide whether it does not halt starting from
0 in both counters.

Suppose we are given a Minsky machine with counters C1 and C2 that has n− 1 instructions of
the form

i: Increment(Ck), goto j,

i: Decrement(Ck), goto j,

i: If Ck = 0 then j1 else j2,

where i, j, j1 and j2 are instruction indexes, k = 1, 2, and the n-th instruction is

n: Halt.

We encode successive configurations of the machine using the sequence [0, 4), [4, 8), [8, 12), . . .
of time intervals. The current instruction index is represented by a propositional variable Pi, for
1 ≤ i ≤ n, that holds at the first point, say 4m, of the interval [4m, 4m+ 4). The current value, say
k1, of the counter C1 is encoded by exactly k1 moments of time in the interval (4m + 1, 4m + 2)
where the propositional variable C holds true. Similarly, the value k2 of C2 is encoded by exactly
k2 moments in the interval (4m+ 3, 4m+ 4) where the propositional variable C holds true.

The initial configuration is encoded by the following data instance D, where the variable Z
indicates that both counters are 0:

P1@[0, 0], Z@(1, 2), Z@(3, 4). (6)

For every i (1 ≤ i ≤ n) we require the rules

�[0,1]Z ←Pi, �[2,3]Z ← Pi, ⊥ ← Z ∧ C, ⊥ ← Z ∧N (7)

saying, in particular, that C cannot hold true outside the intended intervals (here N is an auxiliary
variable). To simplify notation, we use the following abbreviations: À = �[1,1], Á = �[3,3], and
© = �[4,4]. The machine instructions are encoded as follows (the instructions for C2 are obtained
by replacing À with Á):

©Pj1 ← Pi ∧À�(0,1)Z,

©Pj2 ← Pi ∧À (0,1)C, i: if C1 = 0 then j1
À�(0,1)CP← Pi, Á�(0,1)CP← Pi, else j2
©Pj ← Pi, À�(0,1)IC← Pi, Á�(0,1)CP← Pi, i: Inc(C1), goto j

©Pj ← Pi, À�(0,1)DC← Pi, Á�(0,1)CP← Pi, i: Dec(C1), goto j.

Here the variable CP means copying of the counter value, DC means decrementing it by 1, and IC
incrementing it by 1. To achieve this, we require the following rules:

©C ← CP ∧ C, ©Z ← CP ∧ Z,
©C ← DC ∧ C ∧ (0,1)C,

©Z ← DC ∧ Z ∧ (0,1)C, ©�[0,1] Z ← DC ∧ C ∧�(0,1)Z,

(0,1)N ← �(0,1)IC ∧�(0,1)Z, (0,1)N ← C ∧ IC ∧�(0,1)Z, (8)
©C ← IC ∧ C, ©C ← IC ∧N, (9)
©Z ← IC ∧ Z ∧ (0,1)N, ©�(0,1) Z ← IC ∧N ∧�(0,1)Z, (10)

18

We explain the intuition behind the most complex rules (8)–(10) that are used to model the increment
of the counters. The rules (8) mark a new time-point with the variable N in a block located after
the last C-time-point in this block (or, according the first axiom, N is placed anywhere in the block
if the current value of a counter is 0). The rules (9) insert C in the next block, where in the current
block we have either C or N . The rules (10) transfer Z from the current block to the next one
excluding the time-point where N holds. Finally, we add the rule

⊥ ← Pn, n: Halt.

It is not hard to check that the program and data instance above are consistent iff the given 2-counter
Minsky machine does not halt.

The diamond operators in the head of rules can encode disjunction and thereby ruin ‘Hor-
ness’. Thus, the temporalised description logic EL with such rules is undecidable (Lutz, Wolter,
& Zakharyaschev, 2008); cf. also (Gutiérrez-Basulto et al., 2016a). The addition of diamonds in
the heads to the Horn fragment of the propositional Halpern-Shoham logic HS can make a P-
complete logic undecidable (Bresolin et al., 2017). A distinctive feature of these formalisms is
their two-dimensionality (Gabbay, Kurucz, Wolter, & Zakharyaschev, 2003), while propositional
datalogMTL is one-dimensional. Diamonds in the head of rules also ruin FO-rewritability of an-
swering ontology-mediated queries with temporalised DL-Lite ontologies by increasing their data
complexity to CONP (Artale et al., 2013). The same construction actually shows that nonrecursive
datalogMTL with binary predicates and diamonds in the heads is CONP-hard.

4. Nonrecursive datalogMTL

As none of the datalogMTL programs required in our use cases is recursive, we now consider
the class datalognrMTL of nonrecursive datalogMTL programs. We first show that consistency
checking (and so query answering) for datalognrMTL programs is PSPACE-complete for combined
complexity. Then we regard a given datalognrMTL program as fixed and reduce these problems
to evaluating a (data-independent) FO(<)-formula over any given data, thereby establishing that
datalognrMTL is in AC0 for data complexity.

More precisely, for a program Π, let l be the dependence relation on the predicate symbols
in Π: we have P l Q iff Π contains a clause with P in the head and Q in the body. Π is called
nonrecursive if P l+ P does not hold for any predicate symbol P in Π, where l+ is the transitive
closure of l. We denote by depthΠ(P) the maximal number l such that P0 l P1 l · · · l Pl = P .
(Note that depthΠ(P) = 0 iff either P does not occur in Π or P occurs only in the body of some
rules.) The maximal depthΠ(P) over all predicates P is denoted by depth(Π). It should be clear
that, for any nonrecursive Π and any data instanceD, there exists some n ∈ N such that cln+1(D) =
cln(D) = CΠ,D. Therefore, CΠ,D is finite.

Denote by minD and maxD the minimal and, respectively, maximal finite numbers that occur
in the intervals from D. Let K be the largest number occurring in Π. We then set

Ml = minD −K × depth(Π) and Mr = maxD +K × depth(Π).

Let d = gcd(num(Π,D)). The next lemma will be required for our PSPACE algorithm checking
consistency of datalognrMTL programs.

19

Lemma 11. Let Π be a datalognrMTL program. Then every interval ι such that P (c)@ι ∈ CΠ,D or
⊥(c)@ι ∈ CΠ,D takes one of the following forms: (−∞,∞), 〈dk,∞), (−∞, dk〉, 〈dk, dk′〉, where
k, k′ ∈ Z and Ml ≤ dk ≤ dk′ ≤Mr.

Proof. That every interval in CΠ,D is of the form (−∞,∞), 〈dk,∞), (−∞, dk〉, 〈dk, dk′〉, where
k, k′ ∈ Z, was observed in the proof of Lemma 6. Thus, we only need to establish the bounds on
dk and dk′. For each P , let hi(P) and lo(P) be the maximal and, respectively, minimal number
dk ∈ Q such that P (c)@ι ∈ CΠ,D and dk is an end-point of ι. Note that hi(P) and lo(P) can be
undefined. We are going to show that hi(P) is either undefined or hi(P) ≤ maxD+ depthΠ(P)K.
(That lo(P) is either undefined or lo(P) ≥ minD−depthΠ(P)K is left to the reader.) Clearly, this
fact implies the required bounds on dk and dk′.

The proof is by induction on the construction of CΠ,D. Let hin(P) be the maximal dk ∈ Q2 such
that P (c)@ι ∈ cln(D) and dk is an end-point of ι. We show by induction on n that either hin(P) is
undefined or hin(P) ≤ maxD +KdepthΠ(P).

For the basis of induction, if hi0(P) is defined and P (c)@ι ∈ cl0(D) is an atom mentioning
hi0(P), then P (c)@ι ∈ D and hi0(P) ≤ maxD. Assume next that n = n′ + 1. Suppose hin(P) is
defined and let P (c)@ι ∈ cln(D) be an atom mentioning hin(P). If P (c)@ι ∈ cln

′
(D), we are done

by the induction hypothesis. Otherwise, we consider how P (c)@ι was obtained. Suppose it was
obtained by (coal) with ι =

⋃
i∈I ιi. By the induction hypothesis, hin

′
(P) ≤ maxD+KdepthΠ(P),

and so every number mentioned in {ιi | i ∈ I} does not exceed maxD + KdepthΠ(P). Thus,
we have hin(P) ≤ maxD + KdepthΠ(P). Now suppose that P (c)@ι was obtained by (horn)
from Pi(ci)@ιi, i ∈ I . Observe that depthΠ(Pi) < depthΠ(P) and, by the induction hypothesis,
hin

′
(Pi) ≤ maxD +KdepthΠ(Pi). Since ι =

⋂
i∈I ιi, the maximal number mentioned in ι cannot

exceed maxD + KdepthΠ(P). Thus, hin(P) ≤ maxD + KdepthΠ(P). Consider now the case
when P (c)@ι was obtained by applying (S%) to Pi(ci)@ιi, i ∈ {1, 2}. By the induction hypothesis,
the largest number mentioned in ιi does not exceed maxD + KdepthΠ(Pi). On the other hand,
depthΠ(Pi) < depthΠ(P) and the maximal number in ι cannot be larger that the maximal number
in {ιi | i ∈ {1, 2}} plus K. Thus, the maximal number in ι does not exceed

maxD +KdepthΠ(Pi) +K ≤ maxD +KdepthΠ(P),

and so hin(P) ≤ maxD + KdepthΠ(P). The remaining temporal rules are similar and left to the
reader.

Suppose we are given a datalognrMTL program Π and a data instance D. If Π and D are
inconsistent then, by Lemmas 5 and 11, we have ⊥@ι ∈ CΠ,D, for some ι of the form (−∞,∞),
〈dk,∞), (−∞, dk〉, 〈dk, dk′〉, where k, k′ ∈ Z and Ml ≤ dk ≤ dk′ ≤ Mr. Thus, there is a
derivation of ⊥@ι from Π and D, that is, a tree whose root is ⊥@ι, whose leaves are some atoms
from D, and whose every non-leaf vertex results from applying one of the rules (coal), (horn), (S%),
(�%), (U%), (�%) to the immediate predecessors of this vertex.

Lemma 12. If ⊥@ι ∈ CΠ,D then there is a derivation of ⊥@ι from Π and D such that

(i) the length of any branch in the derivation does not exceed 2|Π|;

(ii) for some polynomial p, every non-leaf vertex, corresponding to the application of (coal) in
the derivation, has at most 2p(|Π|,|D|) immediate predecessors.

20

Proof. To show (i), it suffices to recall that Π is non-recursive (and so none of the rules in Π can be
applied twice in the same branch of the derivation) and observe that we can always replace multiple
successive applications of the rule (coal) with a single application.

(ii) follows from Lemma 11.

Theorem 13. Consistency checking for datalognrMTL programs is PSPACE-complete for combined
complexity. The lower bound holds even for propositional datalognrMTL.

Proof. The upper bound is established by a standard algorithm (Ladner, 1977; Tobies, 2001) us-
ing Lemma 12 and Savitch’s theorem according to which NPSPACE = PSPACE. In essence, the
NPSPACE algorithm guesses branches of the derivation one by one and keeps only last two branches
in memory. By Lemma 12 (i), each branch contains ≤ 2|Π| atoms of the form P (c)@ι, where ι
is as in Lemma 11, and so is stored in polynomial space. In addition, we store the axioms in Π
that created these atoms, or (coal) if the atom was obtained by coalescing. In the latter case, we
also need to guess a number k indicating how many distinct intervals are coalesced to obtain ι. By
Lemma 12 (ii), k ≤ 2p(|Π|,|D|), and so it can be stored in polynomial space.

The lower bound is proved by reduction of the satisfiability problem for quantified Boolean
formulas (QBFs), which is known to be PSPACE-complete. Let ϕ = Qnpn . . . Q0p0ϕ0 be a QBF,
where each Qi is either ∀ or ∃, and ϕ0 = c0 ∧ · · · ∧ cm is a propositional formula in CNF with
ci = l0 ∨ · · · ∨ lk, with each li being either a variable pj or its negation ¬pj , for 0 ≤ j ≤ n. In our
datalognrMTL program, we use the following propositional variables:

– P0, . . . , Pn (to represent p0, . . . , pn from ϕ);

– P̄0, . . . , P̄n (to represent ¬p0, . . . ,¬pn);

– P 0
0 , . . . , P

n
0 for p0; P 1

1 , . . . , P
n
1 for p1, etc.; Pnn for pn, and similarly for ¬pi;

– F0, . . . , Fn+1;

– C0, . . . , Cm (to represent c0, . . . , cm).

We first take a data instance D with the following facts:

P ii@[0, 2i), P̄ ii@[2i, 2i+1), for 0 ≤ i ≤ n.

Starting from this data, we can generate all the truth-assignments for the variables p0, . . . , pn using
the following rules, where 0 ≤ i ≤ n:

Pi ← Pni , P̄i ← P̄ni ,

P j+1
i ← P ji , �2j+1P

j+1
i ← P ji , P̄ j+1

i ← P̄ ji , �2j+1P̄
j+1
i ← P̄ ji , i ≤ j < n.

The canonical model for D and the rules above for the variables p0, p1, p2 (thus, n = 2) is shown in
Fig. 1.

We then need the rules:

Ci ←Pj , pj occurs in ci, (11)

Ci ←P̄j , ¬pj occurs in ci, (12)

F0 ←
∧

0≤i≤m
Ci, (13)

21

0 1 2 3 4 5 6 7 8

P 0
0 P̄ 0

0

P 1
0 P̄ 1

0 P 1
0 P̄ 1

0

P 2
0 P̄ 2

0 P 2
0 P̄ 2

0 P 2
0 P̄ 2

0 P 2
0 P̄ 2

0

P0 P̄0 P0 P̄0 P0 P̄0 P0 P̄0

P 1
1 P̄ 1

1

P 2
1 P̄ 2

1 P 2
1 P̄ 2

1

P1 P̄1 P1 P̄1

P 2
2 P̄ 2

2

P2 P̄2

Figure 1: The canonical model for the proof of Theorem 13.

for 0 ≤ i ≤ m, 0 ≤ j ≤ n. Note that F0 will hold at the moments of time corresponding to the
assignments that make ϕ0 true. Further, we consider the formula ϕi = Qi−1pi−1 . . . Q0p0ϕ0, for
1 ≤ i ≤ n+ 1 (note that ϕn+1 = ϕ), and provide rules that make Fi true precisely at the moments
of time corresponding to the assignments that make ϕi true. We take

�[0,2i]Fi+1 ← Fi ∧ Pi, �[0,2i]Fi+1 ← Fi ∧ P̄i, if Qi = ∃, (14)

�[0,2i+1)Fi+1 ← �[0,2i)Pi ∧�[0,2i+1)Fi, if Qi = ∀, (15)

for 0 ≤ i ≤ n, and, finally,

⊥ ← �[0,2n+1)Fn+1.

All the rules above form the required datalognrMTL program Π. We now prove that Π is consistent
with D iff ϕ is not satisfiable. By Lemma 5, it suffices to show that Fn+1@[0, 2n+1) ∈ CΠ,D iff ϕ
is satisfiable. For (⇒), suppose Fn+1@[0, 2n+1) ∈ CΠ,D. If Qn = ∃ then, in view of (14), either
Fn@[0, 2n), Pn@[0, 2n) ∈ CΠ,D orFn@[2n, 2n+1), P̄n@[2n, 2n+1) ∈ CΠ,D. If the first option holds,
we show that ϕn is satisfiable when pn is true; if the second option holds, we show that ϕn is satisfi-
able when pn is false. Similarly, if Qn = ∀, then by (15), we have Fn@[0, 2n), Pn@[0, 2n) ∈ CΠ,D
and Fn@[2n, 2n+1), P̄n@[2n, 2n+1) ∈ CΠ,D. In this case, we show that ϕn is satisfiable when pn
can be both false and true. To show that Fn@[0, 2n), Pn@[0, 2n) ∈ CΠ,D implies that ϕn is satisfi-
able when pn is true (the other case is analogous and left to the reader), supposeQn−1 = ∃. By (14),
either Fn−1@[0, 2n−1), Pn−1@[0, 2n−1) ∈ CΠ,D or Fn@[2n−1, 2n), P̄n−1@[2n−1, 2n) ∈ CΠ,D. (If

22

Qn−1 = ∀, by (14) both of these options hold.) Therefore, to show that ϕ is satisfiable, it now suf-
fices to show that (i) Fn−1@[0, 2n−1), Pn−1@[0, 2n−1) ∈ CΠ,D implies that ϕn−1 is satisfiable when
pn is true and pn−1 is true; (ii) Fn−1@[2n−1, 2n), P̄n−1@[2n−1, 2n) ∈ CΠ,D implies that ϕn−1 is
satisfiable when pn is true and pn−1 is false. We only consider (i), leaving (ii) to the reader, and after
applying the argument above n times, will need to show that (i) F0@[0, 1), P0@[0, 1) ∈ CΠ,D im-
plies that ϕ0 is satisfiable when pn, . . . , p1 and p0 are all true; (ii) F0@[1, 2), P̄0@[1, 2) ∈ CΠ,D
implies that ϕ0 is satisfiable when pn, . . . , p1 are true while p0 is false. That (i) holds follows
from (11)–(13), and similarly for (ii). This concludes the proof of (⇒); the other direction is proved
analogously.

Using the techniques of (Artale, Kontchakov, Ryzhikov, & Zakharyaschev, 2014), it can be
shown that nonrecursive Horn fragment of LTL is P-complete. The same complexity can be derived
from (Bresolin et al., 2017) for the nonrecursive Horn fragment of the Halpern-Shoham logicHS.

As we have just seen, the combined complexity of query answering drops from EXPSPACE for
datalogMTL to PSPACE for datalognrMTL. We now show that the data complexity drops to AC0,
which is important for practical query answering using standard database systems. Note that this
result is non-trivial in view of Theorem 9. The crux of the proof is encoding coalescing by FO-
formulas with ∀ (which is typically not needed for rewriting atemporal ontology-mediated queries).

Theorem 14. Consistency checking and answering datalognrMTL queries is in AC0 for data com-
plexity.

Proof. We only consider a propositional datalognrMTL program Π. The proof can be straight-
forwardly adapted to the case of arity ≥ 1 by adding more (object) variables to the predicates
used below. Let N be a set of comprising numbers or ∞,−∞. We use N + r as a shorthand for
{t + r | t ∈ N} and similarly for N − r (we assume that t +∞ = ∞ and t −∞ = −∞). For a
propositional variable P in Π, we define two sets le(P) and ri(P) as follows:

– le(P) = ri(P) = {0} if there is no P ′ such that P l P ′;

– otherwise, le(P) is the union of:

–
⋃
i∈I le(Pi), for each P ←

∧
i∈I Pi in Π,

– le(P2) + r1 ∪ ri(P1), for each P ← P1 S〈r1,r2〉 P2 in Π,

– le(P2)− r2 ∪ le(P1), for each P ← P1 U〈r1,r2〉 P2 in Π,

– le(P1) + r2, for each P ← �〈r1,r2〉P1 in Π,

– le(P1)− r1, for each P ← �〈r1,r2〉P1 in Π,

and ri(P) is the union of:

–
⋃
i∈I ri(Pi), for each P (τ)←

∧
i∈I Pi in Π,

– ri(P2) + r2 ∪ ri(P1), for each P ← P1 S〈r1,r2〉 P2 in Π,

– ri(P2)− r1 ∪ le(P1), for each P ← P1 U〈r1,r2〉 P2 in Π,

– ri(P1) + r1, for each P ← �〈r1,r2〉P1 in Π,

– ri(P1)− r2, for each P ← �〈r1,r2〉P1 in Π.

23

Using an argument that is similar to the proof of Lemma 11, one can show the following:

Lemma 15. For any datalognrMTL program Π, any data instance D, and any P@〈t1, t2〉 ∈ CΠ,D,

– t1 = t′1 + n1, for some n1 ∈ le(P) and some t′1 such that P ′[t′1, t
′
1] ∈ D or P ′(t′1, s2) ∈ D,

– t2 = t′2 + n2, for some n2 ∈ ri(P) and some t′2 such that P ′[t′2, t
′
2] ∈ D or P ′(s1, t

′
2) ∈ D.

In view of Lemma 15, we can prove Theorem 14 by constructing FO-formulas ϕ〈m,n〉P (x, y)
with m ∈ le(P) and n ∈ ri(P) such that, for any data instance D,

P@〈t1 +m, t2 + n〉 ∈ CΠ,D iff AD |= ϕ
〈m,n〉
P (t1, t2), (16)

where AD is the FO-structure defined below. To slightly simplify presentation (and without much
loss of generality), we assume that all numbers in num(D) are positive, and set

AD =
(
∆, <, P

[]
1 , P

()
1 , . . . , P

[]
l , P

()
l , bitin , bitfr

)
,

where

– ∆ is a set of (` + 1)-many elements strictly linearly ordered by <, ` is the maximum of the
number of distinct timestamps in D and the number of bits in the longest binary fraction in D
(excluding the binary point); for simplicity, we assume that ∆ = {0, . . . , `}, < is the natural
order, and denote by n̄ the nth fraction in (num(D), <), counting from 0;

– P
[]
i (n, n) holds in AD iff Pi@[n̄, n̄] ∈ D and P ()

i (n,m) holds in AD iff Pi@(n̄, m̄) ∈ D, for
any Pi occurring in D;

– for n̄ 6=∞, bitin(n, i, 0) (bitfr (n, i, 0)) holds in AD iff the ith bit of the integer (respectively,
fractional) part of n̄ is 0, and bitin(n, i, 1) (bitfr (n, i, 1)), for i ∈ ∆, holds in AD iff the ith
bit of the integer (respectively, fractional) part of n̄ is 1 (as usual, we start counting bits from
the least significant one);

– for n̄ =∞, bitin(n, i, 1) and bitfr (n, i, 1) for all i ∈ ∆.

For example, the data instance D = {P [110.001, 110.001], P (10000,∞)} is given as the FO struc-
ture

AD =
(
∆, <, P [], P (), bitin , bitfr

)
,

where ∆ = {0, . . . , 6}, P [] = {(0, 0)}, P () = {(1, 2)}, and

bitin ={(0, 0, 0), (0, 1, 1), (0, 2, 1)} ∪ {(0, i, 0) | 3 ≤ i ≤ 6} ∪
{(1, i, 0) | 0 ≤ i ≤ 3} ∪ {(1, 4, 1)} ∪ {(1, 5, 0)} ∪ {(1, 6, 0)} ∪
{(2, i, 1) | 0 ≤ i ≤ 6}.

bitfr ={(0, 4, 1)} ∪ {(0, i, 0) | 0 ≤ i ≤ 6, i 6= 4} ∪
{(1, i, 0) | 0 ≤ i ≤ 6} ∪
{(2, i, 1) | 0 ≤ i ≤ 6}.

To construct the required ϕ〈m,n〉P (x, y), suppose that we have FO-formulas

24

– coal
〈m,n〉
P (x, y) saying that P@〈x+m, y + n〉 is added to CΠ,D by an application of the rule

(coal);

– ψ
〈m,n〉
P (x, y) saying that

either P@〈x+m, y+ n〉 is added to CΠ,D because it belongs to the given data instance
(in which case we can assume that m = n = 0, and 〈〉 is either () or []),

or P@〈x+m, y+n〉 is added to CΠ,D as a result of an application of one of the ‘logical’
rules.

In this case we can set

ϕ
〈m,n〉
P (x, y) = ψ

〈m,n〉
P (x, y) ∨ coal

〈m,n〉
P (x, y).

Using the predicate isa,b, which is > if a = b and ⊥ otherwise, we can define ψ〈m,n〉P (x, y) as a
disjunction of the following formulas:

– is〈,[∧ is〉,] ∧ ism,0 ∧ isn,0 ∧ P [](x, y);

– is〈,(∧ is〉,) ∧ ism,0 ∧ isn,0 ∧ P ()(x, y);

– for every P ←
∧

1≤i≤k
Pi in Π,

∃x1, y1, . . . , xk, yk
∨

m1∈le(P1)
n1∈ri(P1)

d1∈{[,(}, e1∈{],)}

(
ϕ
d1m1,n1e1
P1

(x1, y1) ∧ · · · ∧
∨

mk∈le(Pk)
nk∈ri(Pk)

dk∈{[,(}, ek∈{],)}

(
ϕ
dkmk,nkek
Pk

(xk, yk) ∧

inter
〈m,n〉
d1m1,n1e1,...,dkmk,nkek(x, y, x1, y1, . . . , xk, yk)

)
. . .
)
,

where inter
〈m,n〉
d1m1,n1e1,...,dkmk,nkek(x, y, x1, y1, . . . , xk, yk) says that 〈x + m, y + n〉 is an in-

tersection of d1x1 + m1, y1 + n1e1, . . . , dkxk + mk, yk + nkek (this formula can easily be
defined in terms of the predicates x+m = y + n and x+m < y + n given below);

– for every P ← P1 S% P2 in Π, the formula σ〈m,n〉%,P,P1,P2
(x, y) saying that 〈x + m, y + n〉

is ((ιc1 ∩ ι2)−o %) ∩ ιc1 for some ι1 and ι2, where P1 and P2 hold, respectively (we give a
definition of σ〈m,n〉%,P,P1,P2

(x, y) in the Appendix);

– analogous formulas encoding the relevant operations on intervals for the other temporal op-
erators.

The formula coal
〈m,n〉
P (x, y) is defined as follows:

coal
〈m,n〉
P (x, y) = ∀z

∧
l∈le(P)∪ri(P)

(
(x+m ≤ z+ l)∧(z+ l ≤ y+m)→ nogaplP,〈m,n〉(z, x, y)

)
, (17)

25

where nogaplP,〈m,n〉(z, x, y) is the formula

∃x1, y1, x2, y2, x3, y3

∨
m1∈le(P)
n1∈ri(P)

d1∈{[,(}, e1∈{],)}

(
ψ
d1m1,n1e1
P (x1, y1) ∧ sub

d1m1,n1e1
〈m,n〉 (x1, y1, x, y) ∧

∨
m2∈le(P)
n2∈ri(P)

d2∈{[,(}, e2∈{],)}

(
ψ
d2m2,n2e2
P (x2, y2) ∧ sub

d2m2,n2e2
〈m,n〉 (x2, y2, x, y) ∧

(
(x1 +m1 < z + l < y1 + n1) ∨ (18)

(x1 +m1 < y1 + l1 = z + l = x2 +m2 < y2 + n2) ∧ ise1,] ∨ isd2,[) ∨ (19)∨
m3∈le(P)
n3∈ri(P)

(
ψ

[m3,n3]
P (x3, y3) ∧ sub

[m3,n3]
〈m,n〉 (x3, y3, x, y) ∧

[
(x3 +m3 = y3 + n3 = z + l = x+m = x1 +m1 < y1 + n1) ∨ (20)

(x1 +m1 < y1 + n1 = z + l = y + n = x3 +m3 = y3 + n3) ∨ (21)

(x1 +m1 < y1 + l1 = z + l = x3 +m3 = y3 + n3 = x2 +m2 < y2 + n2)
])))

(22)

and sub
dm′,n′e
〈m,n〉 (x′, y′, x, y) says that dx′+m′, y′+n′e is a subinterval of 〈x+m, y+n〉. Intuitively,

nogaplP,〈m,n〉(z, x, y) says that around the time instant z+ l (that is, to the left and right of it as well
as at z + l itself), their is no subinterval of 〈x+m, y + n〉 that is not covered by P . The five cases
considered in the formula nogaplP,〈m,n〉(z, x, y) are illustrated in Fig. 2.

When evaluating ϕ〈m,n〉(x, y) over AD, we need to compute the truth-values of x+m = y+ n
and x+m < y+n (for fixedm and n). We regard the former as a formula with the predicates bitin,
bitfr and < that is true just in case x = y + (n −m) if n ≥ m, and y = x + (m − n) otherwise.
We provide a definition of x = y + c, for a positive c, in the Appendix. A formula expressing
x+m < y + n is constructed similarly and left to the reader.

Finally, we show how the formulas ϕ〈m,n〉P (x, y) defined above can be used to check whether
an interval ι = 〈ιb, ιe〉 is a certain answer to (Π, P@x) over D. As follows from Lemma 15, if
⊥@dt1, t2e ∈ CΠ,D then, for some m ∈ le(⊥), n ∈ ri(⊥) and some numbers t′1, t

′
2 ∈ num(D) such

that t′1 (t′2) occurs as the left (right) end of some interval, we have t1 = t′1 + m and t2 = t′2 + n.
Take the structure AιD that extends AD with the numbers ιb and ιe. By (16), ι is a certain answer to
(Π, P@x) over D iff the formula

∃x, y
∨

m∈le(⊥)
n∈ri(⊥)

ϕ
dm,ne
⊥ (x, y) ∨

∃x, y, x1, y1

∨
m1∈le(⊥)
n1∈ri(⊥)

d1∈{[,(}, e1∈{],)}

(
ϕ
d1m,ne1
P (x1, y1) ∧ sub

〈0,0〉
d1m,ne1(x, y, x1, y1) ∧ (x = ιb) ∧ (y = ιe)

)
(23)

holds true in AιD.

26

Case (18)
x+m y + n

x1 +m1 y1 + n1

〈 〉
z + l

Case (19) 〈
x1 +m1

)

y1 + n1

[

x2 +m2

〉

y2 + n2

z + l

Case (20) 〈
x1 +m1

〉
y1 + n1

z + l

[]

x3 +m3 y3 + n3

Case (21) 〈
x1 +m1

〉
y1 + n1

z + l

[]

x3 +m3 y3 + n3

Case (22) 〈

x1 +m1

)

y1 + n1

(

x2 +m2

〉

y2 + n2

z + l

[]

x3 +m3 y3 + n3

Figure 2: Five cases of the formula nogaplP,〈m,n〉(z, x, y).

5. Implementing datalognrMTL

Unfortunately, the (data independent) FO-rewriting (23) turns out to be impractical because of the
universal quantifier used for coalescing in (17). It is well known that ∀ is implemented in SQL
as ¬∃¬ resulting in suboptimal performance in general. Having experimented with a few different
approaches, we decided to use a materialisation (bottom-up) technique. In this section, we first
present a bottom-up algorithm whose worst-case running time is linear in the number of intervals of
an input data instance D, under a practically motivated assumption that the order of occurrence of
the intervals inD coincides with the natural temporal order on those intervals. Then we describe how
our algorithm can be implemented in SQL (with views). In particular, we consider two alternative
implementations of coalescing in SQL.

5.1 Bottom-up algorithm

We first introduce some notation and obtain a few results about temporal tables T with column
names attr1, . . . , attrm, lpar, ledge, redge, rpar. A temporal table with m = 0 will be called purely
temporal. We refer to the i-th row of T as T [i], to the value of the column attrj in the i-th row
as T [i, attrj], and set T [i, attrj , . . . , attrk] = (T [i, attrj], . . . , T [i, attrk]). We assume that the
columns ledge and redge store timestamps or special values for∞,−∞, lpar stores [or (, and rpar

27

stores] or). Define an order ≺ on intervals by taking 〈t1, t2〉 ≺ ds1, s2e iff one of the following
conditions holds:

– t1 < s1;

– t1 = s1, 〈 is [, and d is (;

– t1 = s1, 〈 and d are the same, and t2 < s2;

– t1 = s1, 〈 and d are the same, t2 = s2, 〉 is), and d is].

It should be clear that ≺ is a strict linear order on the set of all intervals. For example, we have
[3, 8) ≺ [4, 7) ≺ (4, 6) ≺ (4, 7) ≺ (4, 7]. (In fact, the results of this section will work with any other
linear order over intervals.) We write T [i, lpar, ledge, redge, rpar] ≺ T ′[j, lpar, ledge, redge, rpar] to
say that the interval defined by the ith row of a temporal table T ≺-precedes the interval given by
the jth row of a temporal table T ′.

We make the following temporal ordering assumption (or TOA), for any temporal table T with
m attributes:

if T [i, attr1, . . . , attrm] = T [j, attr1, . . . , attrm] and i < j,

then T [i, lpar, ledge, redge, rpar] � T [j, lpar, ledge, redge, rpar].

For a purely temporal table T , this assumption means that the rows of T respect �.
Let T [attrj , . . . , attrk] be the projection of T on the columns attrj , . . . , attrk that keeps only

distinct tuples. We define |T |o to be the cardinality of T [attr1, . . . , attrm] and |T |t to be the cardi-
nality of T [lpar, ledge, redge, rpar]. The first measure estimates how large the table is in terms of
individual constants, while the second measure concerns the number of timepoints. For the tables
of extensional predicates in our use-cases, |T |o is much smaller than |T |t.

We say that a table T is coalesced if it does not contain distinct tuples (c1, . . . , cm, 〈, t1, t2, 〉)
and (c1, . . . , cm, d, t′1, t′2, e) such that 〈t1, t2〉 ∩ dt′1, t′2e 6= ∅. For a tuple of individual constants
(c1, . . . , cm), let Tc1,...,cm be the set of all intervals 〈t1, t2〉 such that (c1, . . . , cm, 〈, t1, t2, 〉) occurs
in T . For a set I of intervals, we then denote by coalesce(I) the (minimal) set of intervals that
results from coalescing I. Finally, a coalescing of T is a minimal table, T ∗, with the same columns
as T such that the following condition holds:

(coalesce) for any (c1, . . . , cm) in T [attr1, . . . , attrm] and 〈t1, t2〉 in coalesce(Tc1,...,cm), there ex-
ists (c1, . . . , cm, 〈t1, t2〉) in T ∗.

Clearly, T ∗ is a coalesced table.

Lemma 16. Suppose a table T satisfies TOA. Then its coalescing T ∗ satisfying TOA and such that
|T ∗|o = |T |o and |T ∗|t ≤ |T |t can be computed in time O(|T |2o × |T |t).

Proof. Consider first a purely temporal table S that satisfies temporal ordering. There is a sim-
ple linear-time algorithm to produce a coalesced table S∗ that also satisfies temporal ordering.
Indeed, initially we set 〈b, e〉 = S[0, lpar, ledge, redge, rpar]. In a loop, we take each dt1, t2e =
S[i, lpar, ledge, redge, rpar] (clearly, 〈b, e〉 ≺ dt1, t2e). If dt1, t2e and 〈b, e〉 are disjoint, we add
〈b, e〉 to S∗ and set 〈b, e〉 = dt1, t2e. If they are not disjoint, we set 〈b, e〉 = dt1, t2e ∪ 〈b, e〉 and

28

move on. It is easily checked that the resulting table S∗ is as required. Below, we refer to this
algorithm as an imperative coalescing algorithm.

It only remains to explain how the algorithm above can be applied to T in order to obtain the
required complexity. Note that |T | ≤ |T |o × |T |t and we can construct |T |o-many separate tables
Tc1,...,cm , for each (c1, . . . , cm), in time |T | × |T |o. Then, we can apply the algorithm described
above to each Tc1,...,cm in time |T |t and merge the results. Therefore, the overall running time is
|T | × |T |o + |T |t × |T |o = O(|T |2o × |T |t).

Before presenting our query answering algorithm, we determine the complexity of computing
temporal joins. Let T be a table with attributes attr1, . . . , attrm, lpar, ledge, redge, rpar and let T ′

be a table with attributes attr′1, . . . , attr′n, lpar, ledge, redge, rpar. A temporal join of T and T ′ is a
table T ′′ with attributes attr′′1, . . . , attr′′k, ledge, redge, rpar such that

{attr′′1, . . . , attr′′k} = {attr1, . . . , attrm} ∪ {attr′1, . . . , attr′n}

and (c′′1, . . . , c
′′
k, 〈, t′′1, t′′2, 〉) is in T ′′ iff there exist two tuples (c1, . . . , cm, d, t1, t2, e) from T and

(c′1, . . . , c
′
n, b, t′1, t′2, c) from T ′ satisfying the following conditions:

– c′′i = cj , for all i, j such that attr′′i = attrj ;

– c′′i = c′j , for all i, j such that attr′′i = attr′j ;

– dt1, t2e ∩ bt′1, t′2c 6= ∅ and 〈t′′1, t′′2〉 = dt1, t2e ∩ bt′1, t′2c.

Lemma 17. If T , T ′ satisfy TOA, then a temporal join T ′′ of T and T ′ satisfying TOA and such that
|T ′′|o ≤ |T |o×|T ′|o, |T ′′|t ≤ |T |t+ |T ′|t can be computed in time O(|T |2o×|T ′|2o× (|T |t+ |T ′|t)).

Proof. We first give an algorithm for computing the temporal join of purely temporal tables S and
S′. We assume that these tables are coalesced (which can be done in time O(|S|) and O(|S′|)). The
algorithm works starting from the first tuples S[i] and S′[i′] of the tables. If S[i] ∩ S′[i′] 6= ∅, we
write S[i] ∩ S′[i′] to the output table S′′. Then, if S[i+ 1] � S′[i′ + 1], we set i′ := i′ + 1 (without
changing i); otherwise, i := i+ 1. We iterate until we have considered all the tuples in both tables.
Clearly, computing the full S′′ requires time O(|S|+ |S′|).

The complete algorithm for the tables T and T ′ will first, similarly to the argument of Lemma 16,
produce |T |o-many purely temporal tables Tc1,...,cm , for each (c1, . . . , cm) occurring in T . Note that
|Tc1,...,cm | ≤ |T |t for each of those tables. In the same way, we produce |T ′|o purely temporal tables
T ′c′1,...,c′n

, for each (c′1, . . . , c
′
n) occurring in T ′. It remains to apply the temporal join algorithm

described above to all pairs of tables Tc1,...,cm and T ′c′1,...,c′n
, which can be done in the required

time.

Another operation on temporal tables we need is projection. Let T be a table with column names
as above and let {attr′1, . . . , attr′n} ⊆ {attr1, . . . , attrm}. A projection of T on attr′1, . . . , attr′n is a
table with columns attr′1, . . . , attr′n, lpar, ledge, redge, rpar containing all (c′1, . . . , c

′
n, 〈t1, t2〉) such

that some (c1, . . . , cm, 〈t1, t2〉) is in T and c′i = cj whenever attr′i = attrj . As we have to preserve
the temporal order, our algorithm for computing projections requires some attention. To show that a
naïve projection does not preserve the temporal order, consider a table T with two tuples (a, [, 1, 1,])
and (b, [, 0, 0,]), which satisfies our temporal order assumption. The projection of T that removes
the first column results is the table with two tuples ([, 1, 1,]) and ([, 0, 0,]), which is not ordered.

29

Lemma 18. If T satisfies TOA, then a projection of T satisfying TOA can be computed in time
O(|T |2o × |T |t).

Now, consider the union operation on pairs of tables T and T ′ with the same columns that
returns a table with all the tuples from the set T ∪ T ′.

Lemma 19. For any pair of tables T and T ′ satisfying TOA, their union table also satisfying TOA
can be computed in time O((|T |2o + |T ′|2o)× (|T |t + |T ′|t)).

The proofs of Lemmas 18 and 19 can be found in the Appendix.
We are now in a position to describe the bottom-up query answering algorithm. Suppose we are

given a program Π in normal form. Suppose also that each extensional predicate P is given by a
table TP satisfying TOA. (This assumption can be made in all of our use-cases. Indeed, both tables
TB_Sensor and Weather are naturally ordered by the timestamp, and our mappings (see Section 6)
can be easily written in a way to take advantage of this order and produce tables T satisfying TOA.)
Thus, we can assume that the given data instance D is represented by a set of TP , where each TP
contains all the tuples (c1, . . . , cm, 〈, t1, t2, 〉) such that P (c1, . . . , cm)@〈t1, t2〉 ∈ D.

Consider a predicate P and suppose that we have computed temporal tables TPi satisfying
TOA, for each Pi with P l Pi (see Section 4). We assume that the TPi have (non-temporal)
columns (Pi, 1), . . . , (Pi,m). For each rule α in Π with P in the head, we compute a table TαP
satisfying TOA. If α is of the form (2), we first compute the temporal join T of TP1 , . . . , TPI

(we
change the names so that TPi has columns (Pi, τ1, 1), . . . , (Pi, τm,m), where τi = (τ1, . . . , τm),
and so all the tables TPi have distinct column names). Then we select from T only those tuples
(c1, . . . , cn, 〈, t1, t2, 〉) for which ci = cj in case the column names for ci and cj mention the same
variable x, and the tuples for which ci = a in case the column name for ci mentions the constant a.
These two steps can be done in time O(

∏
i |TPi |2o ×

∑
i |TPi |t), and the size of the resulting table

does not exceed
∏
i |TPi |o ×

∑
i |TPi |t. It remains to perform projection in the following way. Sup-

pose P (τ) with τ = (x1, . . . xm) is the head of α (if τ also contains constants, the procedure below
can be easily modified). Then we keep only one column among all the columns named (Pi, xj , k),
for each variable xj . It remains to rename the remaining (Pi, xj , k) to (P, j), for each j. The total
time required to compute TαP is O(

∏
i |TPi |2o ×

∑
i |TPi |t).

If α is of the form (4), provided that TP1 is coalesced, computing TαP reduces to using arithmetic
operations for ι+c %, ι−c %, and % v ι as in the rules (�%)/(�%), and projection. Therefore, TαP
satisfying TOA can be computed in time |TP1 |2o × |TP1 |t. Computing TαP for rules of the form (3)
can be done in time O(|TP1 |o × |TP2 |o × (|TP1 |t + TP2 |t)). Indeed, to construct TαP for a rule α of
the form P (τ)← P1(τ1)S% P2(τ2)), we follow the rule (S%) and first produce a table T cP1

with the
same columns as TP1 , where for each tuple of TP1 , we apply the operation ·c to its interval. We then
compute the temporal join T of T cP1

and TP2 after applying the renaming described above. Then we
compute T+o% by applying the operation +o% to the interval columns of each tuple in T , after which
we compute the temporal join of T+o% and T cP1

(with renaming applied to the columns of T cP1
). To

produce TαP , it remains to perform projection and renaming as described above. Finally, to compute
TP , it is sufficient to compute the union of all TαP satisfying TOA. Thus, we obtain the following,
where the degree of the rule (2) is |I|, of (3) is 2, and of (4) is 1:

Lemma 20. Let Π be a program and P a predicate in it such that K-many rules have P in the
head, withR being the maximal degree of those rules,m the maximum of |TP ′ |t among P ′ such that

30

P lP ′, and n the maximum of |TP ′ |o among those P ′. Then TP is of size at most nRmRK and can
be computed in time O(n2RmRK).

To compute the table for the goal Q, we iterate the described procedure as many times as the
length of the longest chain of predicates in the dependence relation l for Π. Thus, we obtain:

Theorem 21. Let m be the maximum of |TP |t among the extensional predicates P , and n the
maximum of |TP |o among those P . The overall time required to compute the goal predicate Q of Π
is exponential in the size of Π, polynomial in n, and linear in m.

Note that if all TP are extracted from one table R, as in our use-cases, then n corresponds to
the number of individual tuples in R, whereas m to the number of temporal intervals. It is to be
emphasised that, in practice, programs tend to be small, and the number of individual constants is
also small compared to the number of temporal intervals. The theorem above explains the linear
patterns in our experiments below, where the size of individual tuples is fixed.

5.2 Implementation in SQL

Now, we show how to rewrite a given datalognrMTL query (Π, Q(τ)@x) with Π in normal form
(2)–(4) to an SQL query computing the certain answers (c, ι) to the query with maximal intervals ι.
We illustrate the idea by a (relatively) simple example.

Consider the datalognrMTL query (Π,HeatAffectedCounty(county)@x), where

Π = {�[0,24h] ExcessiveHeat(v)← �[0,24h]TempAbove24(v) ∧ [0,24h]TempAbove41(v),

HeatAffectedCounty(v)← LocatedInCounty(u, v) ∧ ExcessiveHeat(u)}

is part of the meteorological ontology from Section 6. First, we transform Π to normal form:

Π = {ExcessiveHeat(v)← [0,24h]X(v), X(v)← Y(v) ∧ Z(v),

Y(v)← �[0,24h]TempAbove24(v), Z(v)← [0,24h]TempAbove41(v),

HeatAffectedCounty(v)← LocatedInCounty(u, v) ∧ ExcessiveHeat(u)}.

We regard TempAbove24, TempAbove41, LocatedInCounty as extensional predicates given by
the tables TTempAbove24, TTempAbove41, TLocatedInCounty. The first two of these tables have columns
station_id, ledge, redge, and the third one station_id, county, ledge, redge. To simplify presentation,
we omit the columns lpar and rpar used in the previous section and assume that all the temporal in-
tervals take the form (t, t′]; see Section 6.

For each predicate P in Π, we also create a view (temporary table) V ∗P with the same columns
as TP . We set V ∗P = coalesce(TP), where coalesce is a query that implements coalescing in SQL3

We explain the idea behind this query for a temporal table T (as mentioned above, we omit columns
lpar, rpar). For a moment of time t occurring in T , we denote by b≥(T, t) the number of i such that
T [i, ledge] ≥ t, and by e≥(T, t) the number of i such that T [i, redge] ≥ t; the numbers b≤(T, t)
and e≤(T, t) are defined analogously. It can be readily seen that every t in T [ledge] such that
b≥(T, t) = e≥(T, t) is the beginning of some interval in the coalesced table T ∗. Similarly, every

3. It should not be confused with the standard coalesce function in SQL that returns the first of its arguments that is not
null, or null if all of the arguments are null.

31

t′ in T [redge] such that b≤(T, t′) = e≤(T, t′) is the end of some interval in T ∗. The coalesced
intervals of T ∗ can be then obtained as pairs (t, t′′], where t is as above and t′′ is the minimum over
those t′ defined above that are ≥ t. Thus, to coalesce TTempAbove24 we first use the query

Vl = SELECT T.station_id AS station_id, T.ledge AS ledge FROM TTempAbove24 T WHERE

(SELECT COUNT(∗) from TTempAbove24 S WHERE S.ledge ≥ T.ledge AND

S.station_id = T.station_id) =

(SELECT COUNT(∗) from TTempAbove24 S WHERE S.redge ≥ T.ledge AND

S.station_id = T.station_id),

which extracts the pairs (n, t), where t is as described above and station_id = n. An analo-
gous query can be used to produce Vr, a table of pairs (n, t′), where t′ is as described above and
station_id = n. Finally, we set

V ∗TempAbove24 = SELECT Vl.station_id AS station_id, Vl.ledge AS ledge,

(SELECT MIN (Vr.redge) FROM Vr WHERE Vr.redge ≥ Vl.ledge AND

Vl.station_id = Vr.station_id) AS redge

FROM Vl.

A more efficient variant of this algorithm that uses window functions with sorting and partition-
ing allows us to avoid joins used, e.g., in the query Vl (Zhou, Wang, & Zaniolo, 2006). We will
refer to this algorithm in Section 7 as a standard SQL algorithm. In contrast to the imperative algo-
rithm described in the proof of Lemma 16, this algorithm can be implemented using standard SQL
operators.

In addition, for each intensional predicate P of Π, we create a view VP defined by an SQL query
that reflects the definitions of P in Π. For example, we set

VY = SELECT V ∗TempAbove24.station_id AS station_id,

V ∗TempAbove24.ledge + 24h AS ledge, V ∗TempAbove24.redge AS redge,

FROM V ∗TempAbove24 WHERE V ∗TempAbove24.redge− V ∗TempAbove24.ledge ≥ 24h.

This query implements the ι+c% operation for % = [0, 24h], and the WHERE clause checks whether
% v ι holds, where ι = (V ∗TempAbove24.ledge, V ∗TempAbove24.redge]. We then set V ∗Y = coalesce(VY)
and note that the query

SELECT station_id, ledge, redge FROM V ∗Y , (24)

when evaluated over the tables TTempAbove24, TTempAbove41 and TLocatedInCounty, would produce the
answers to the query (Π,Y(station_id, county)@x) with maximal intervals ι = (ιb, ιe], where ιb
corresponds to ledge, and ιe to redge.

We now explain how to construct queries for the concepts whose definitions involve ∧ using the
example of HeatAffectedCounty:

VHeatAffectedCounty = SELECT V ∗LocatedInCounty.county AS county,

MX(V ∗LocatedInCounty.ledge, V
∗
ExcessiveHeat.ledge) AS ledge,

MN(V ∗LocatedInCounty.redge, V
∗
ExcessiveHeat.redge) AS redge

FROM V ∗LocatedInCounty, V
∗
ExcessiveHeat

32

function ans(q(v, x) = Q(τ)@x, Π, M, D):
V = views(Π, M, Q)
ans = SELECT projects(v, τ), ι AS x FROM VQ
return eval(ans ∧ V, D)

function views(Π, M, Q):
V = ∅
for each predicate P defined by M:
V = V ∪

{
VP=coalesce(UNION({SELECT projects(τ , τ), T1.ι AS ι FROM sql AS T1

| P (τ)@ι←sql ∈M}))
}

let l be the dependence relation on the predicates in Π
for each intensional predicate P with Ql P or Q = P:
V = V ∪ {VP=coalesce(UNION({view(r, P) | r ∈ ΠP }))}

return V

function view(r, P):
if r = P (τ)← �%P1(τ1):
V r
P = SELECT projects(τ , τ1), T1.ι−c % AS ι

FROM VP1
AS T1 WHERE join-cond(τ1) AND % v T1.ι

else if r = P (τ)← �%P1(τ1):
V r
P = SELECT projects(τ , τ1), T1.ι+c % AS ι

FROM VP1 AS T1 WHERE join-cond(τ1) AND % v T1.ι
else if r = P (τ)← P1(τ1) S% P2(τ2):
V r
P = SELECT projects(τ), ((T1.ι

c ∩ T2.ι) +o %) ∩ T1.ιc AS ι

FROM VP1 AS T1, VP2 AS T2
WHERE join-cond(τ1, τ2)) AND ((T1.ι

c ∩ T2.ι) +o %) ∩ T1.ιc 6= ∅
else if r = P (τ)← P1(τ1) U% P2(τ2):
V r
P = SELECT projects(τ , τ1, τ2), ((T1.ι

c ∩ T2.ι)−o %) ∩ T1.ιc AS ι

FROM VP1
AS T1, VP2

AS T2
WHERE join-cond(τ1, τ2) AND ((T1.ι

c ∩ T2.ι)−o %) ∩ T1.ιc 6= ∅
else if r = P (τ)← P1(τ1), . . . , Pn(τn):
V r
P = SELECT projects(τ , τ1, . . . , τn), T1.ι ∩ . . . ∩ Tn.ι AS ι

FROM VP1
AS T1, · · ·, VPn

AS Tn
WHERE join-cond(τ1, . . . , τn) AND T1.ι ∩ . . . Tn.ι 6= ∅

return V r
P

function projects(τ , τ1, . . . , τn):
columns = {}
for each vi ∈ τ = v1, ..., vm:

let k, j be a pair of integers such that τk[j] = vi
columns.add(Tk.attrj AS attri)

return columns

function join-cond(τ1, . . . , τn):
cond = true
for each pair of different positions τl[i] and τr[j] such that τl[i] = τr[j]

cond = cond AND (Tl.attri = Tr.attrj)
return cond

Figure 3: The algorithm for evaluating datalognrMTL queries in SQL.

33

WHERE MX(V ∗LocatedInCounty.ledge, V
∗
ExcessiveHeat.ledge) <

MN(V ∗LocatedInCounty.redge, V
∗
ExcessiveHeat.redge)

AND V ∗LocatedInCounty.county = V ∗ExcessiveHeat.county,

where MN (MX) is the function that returns the earliest (latest) of any two given date/time values (it
can be implemented in SQL as a user-defined function, or using the CASE operator). Finally, we use
a query similar to (24) over V ∗HeatAffectedCounty to produce the answers to (Π, q(county, x)).

We are mostly interested in the scenario where the tables TP are not available immediately, but
extracted from raw timestamped data tables R by means of mappings. In this case, we use views VP
instead of TP defined over R. For example, if the raw data is stored in the table Weather, we define
the view:

VTempAbove24 = SELECT sid, ledge, redge

FROM (SELECT station_id AS sid,

LAG(date_time, 1) OVER (w) AS ledge,

date_time AS redge

FROM Weather

WINDOW w AS (PARTITION BY station_id ORDER BY date_time)

) tmp

WHERE air_temp_set_1 >= 24.

Our general rewriting algorithm is outlined in Fig. 3, where the function ans produces an SQL
query that computes the certain answers to (Π, Q(τ)@x) (with maximal intervals) by evaluating
the query over the input database D. The algorithm is a variation of the standard translation of non-
recursive Datalog to relational algebra—see, e.g., (Ullman, 1988)—extended with the operations on
temporal intervals described above (they are underlined in Fig. 3).

It is to be noted that the ‘views’ introduced by the algorithm do not require modifying the
underlying database. They can be implemented in different ways: for example, by using subqueries,
common table expressions (CTEs), or temporary tables. For the experiments in Section 7, we use the
last approach, where temporary tables are generated on the fly and exist only within a transaction.

6. Use Cases

We test the feasibility of OBDA with datalognrMTL by querying Siemens turbine log data and
MesoWest weather data. In this section, we briefly describe these use cases; detailed results of our
experiments will presented in Section 7.
Siemens service centres store aggregated turbine sensor data in tables such as TB_Sensor. The data
comes with (not necessarily regular) timestamps t1, t2, . . . , and it is deemed that the values remain
constant in every interval [ti, ti+1). Using a set of mappings, we extract from these tables a data
instance containing ground facts such as

ActivePowerAbove1.5(tb0)@[12:20:48, 12:20:49),

ActivePowerAbove1.5(tb0)@[12:20:49, 12:20:52),

RotorSpeedAbove1500(tb0)@[12:20:48, 12:20:49),

MainFlameBelow0.1(tb0)@[12:20:48, 12:20:52).

34

For example, the first two of them are obtained from the table TB_Sensor using the following SQL
mappingM:

ActivePowerAbove1.5(tbid)@[ledge, redge)←
SELECT tbid, ledge, redge FROM (

SELECT turbineId AS tbid,

LAG(dateTime, 1) OVER (w) AS ledge,

LAG(activePower, 1) OVER (w) AS lag_activePower,

dateTime AS redge

FROM TB_Sensor

WINDOW w AS (PARTITION BY turbineId ORDER BY dateTime)

) tmp WHERE lag_activePower > 1.5

In terms of the basic predicates above, we define more complex ones that are used in queries posed
by the Siemens engineers:

NormalRestart(v)← NormalStart(v) ∧ (0,1h]NormalStop(v),

NormalStop(v)← CoastDown1500to200(v) ∧ (0,9m]

[
CoastDown6600to1500(v) ∧

(0,2m]

(
MainFlameOff(v) ∧ (0,2m]ActivePowerOff(v)

)]
,

MainFlameOff(v)← �[0s,10s]MainFlameBelow0.1(v),

ActivePowerOff(v)← �[0s,10s]MainPowerBelow0.15(v),

CoastDown6600to1500(v)← �[0s,30s] RotorSpeedBelow1500(v) ∧

(0,2m] �(0,30s] RotorSpeedAbove6600(v),

CoastDown1500to200(v)← �[0s,30s] RotorSpeedBelow200(v) ∧

(0,9m] �(0,30s] RotorSpeedAbove1500(v),

NormalStart(v)← STCtoRUCReached(v) ∧ (0,30s]

[
RampChange1-2Reached(v) ∧

(0,5m]

(
PurgingIsOver(v) ∧ (0,11m]

(
PurgeAndIgnitionSpeedReached(v) ∧

(0,15s]FromStandStillTo180(v)
))]

,

STCtoRUCReached(v)← �(0,30s]RotorSpeedAbove4800(v) ∧

(0,2m] �(0,30s] RotorSpeedBelow4400(v),

RampChange1-2Reached(v)← �(0s,30s]RotorSpeedAbove4400(v) ∧

(0,6.5m] �(0,30s] RotorSpeedBelow1500(v),

PurgingIsOver(v)← �[0s,10s] MainFlameOn(v) ∧

(0,10m]

[
�(0,30s] RotorSpeedAbove1260(v) ∧ (0,2m] �(0,1m] RotorSpeedBelow1000(v)

]
,

PurgeAndIgnitionSpeedReached(v)← �[0s,30s] RotorSpeedAbove1260(v) ∧

(0,2m] �(0,30s] RotorSpeedBelow200(v),

FromStandStillTo180(v)← �[0s,1m] RotorSpeedAbove180(v) ∧

(0,1.5m] �(0,1m] RotorSpeedBelow60(v).

35

MesoWest. The MesoWest4 project makes publicly available historical records of the weather sta-
tions across the US showing such parameters of meteorological conditions as temperature, wind
speed and direction, amount of precipitation, etc. Each station outputs its measurements with some
periodicity, with the output at time ti+1 containing the accumulative (e.g., for precipitation) or av-
eraged (e.g., for wind speed) value over the interval (ti, ti+1]. The data comes in a table Weather,
which looks as follows:

stationId dateTime airTemp windSpeed windDir hourPrecip . . .
. . .

KBVY 2013-02-15;15:14 8 45 10 0.05
KMNI 2013-02-15;15:21 6 123 240 0
KBVY 2013-02-15;15:24 8 47 10 0.08
KMNI 2013-02-15;15:31 6.7 119 220 0

. . .

One more table, Metadata, provides some atemporal meta information about the stations:

stationId county state latitude longitude . . .
. . .

KBVY Essex Massachusetts 42.58361 -70.91639
KMNI Essex Massachusetts 33.58333 -80.21667

. . .

The monitoring and historical analysis of the weather involves answering queries such as ‘find
showery counties, where one station observes precipitation at the moment, while another one does
not, but observed precipitation 30 minutes ago’.

We use SQL mappings over the Weather table similar to those in the Siemens case to obtain
ground atoms such as

NorthWind(KBVY)@(15:14, 15:24],

HurricaneForceWind(KMNI)@(15:21, 15:31],

Precipitation(KBVY)@(15:14, 15:24],

TempAbove0(KBVY)@(15:14, 15:24],

TempAbove0(KMNI)@(15:21, 15:31]

(according to the standard definition, the hurricane force wind is above 118 km/h). On the other
hand, mappings to the Metadata table provide atoms such as

LocatedInCounty(KBVY,Essex)@(−∞,∞),

LocatedInState(KBVY,Massachusetts)@(−∞,∞).

Our ontology contains definitions of various meteorological terms:

ShoweryCounty(v)← LocatedInCounty(u1, v) ∧ LocatedInCounty(u2, v) ∧
Precipitation(u1) ∧ NoPrecipitation(u2) ∧ (0,30m]Precipitation(u2),

�[0,1h] Hurricane(v)← �[0,1h]HurricaneForceWind(v),

HurricaneAffectedState(v)← LocatedInState(u, v) ∧ Hurricane(u),

4. http://mesowest.utah.edu/

36

(a) Siemens data for one turbine.

of months 32 64 96 128 159 191 223 255 287 320
of rows (approx.) 13 M 26 M 39 M 52 M 65 M 77 M 90 M 103 M 116 M 129 M

size (GB) 0.57 1.2 1.7 2.3 2.9 3.4 4.0 4.5 5.1 5.7

(b) NY weather stations from 2005 to 2014.

of years 1 2 3 4 5 6 7 8 9 10
of stations 229 306 370 441 484 542 595 643 807 874

of rows (approx.) 4 M 11 M 19 M 27 M 36 M 49 M 63 M 79 M 99 M 124 M
size (GB) 0.2 0.6 1.1 1.6 2.1 2.9 3.8 4.8 5.9 7.4

(c) Weather data for 1–19 states in 2012.

states DE, +NY +MD +NJ, +MA, +LA, +ME, +NH, +MS,SC, +KY,
GA RI CT VT WV NC ND SD

of states 2 3 4 6 8 10 12 14 17 19
of stations 408 659 1120 1476 1875 2305 2669 3019 3508 4037

of rows (approx.) 17 M 32 M 41 M 52 M 67 M 81 M 93 M 106 M 121 M 141 M
size (GB) 0.9 1.9 2.5 3.1 4.0 4.8 5.5 6.4 7.2 8.3

Table 4: Data sets used in the experiments (the size measured for data in CSV format).

�[0,24h] ExcessiveHeat(v)← �[0,24h]TempAbove24(v) ∧ [0,24h]TempAbove41(v),

HeatAffectedCounty(v)← LocatedInCounty(u, v) ∧ ExcessiveHeat(u),

CyclonePatternState(v)← LocatedInState(u1, v) ∧ LocatedInState(u2, v) ∧
LocatedInState(u3, v) ∧ LocatedInState(u4, v) ∧ EastWind(u1) ∧

NorthWind(u2) ∧WestWind(u3) ∧ SouthWind(u4).

7. Experiments

To evaluate the performance of the SQL queries produced by the datalognrMTL rewriting algorithm
outlined in Section 5.2, we developed two benchmarks for our use cases. We ran the experiments on
an HP Proliant server with 2 Intel Xeon X5690 Processors (each with 12 logical cores at 3.47GHz),
106GB of RAM and five 1TB 15K RPM HD. We used both PostgreSQL 9.6 and the SQL inter-
face (Armbrust, Xin, Lian, Huai, Liu, Bradley, Meng, Kaftan, Franklin, Ghodsi, & Zaharia, 2015)
of Apache Spark 2.1.0. Apache Spark is a cluster-computing framework that provides distributed
task dispatching, scheduling and data parallelisation. For each of these two systems, we provided
two different implementations, imperative and standard SQL, which diverge in the computation of
maximal intervals; see Section 5.

We run all the queries with a timeout of 30 minutes.

Siemens provided us with a sample of data for one running turbine, which we denote by tb0, over
4 days in the form of the table TB_Sensor. The data table was rather sparse, containing a lot of
nulls, because different sensors recorded data at different frequencies. For example, ActivePower
arrived most frequently with average periodicity of 7 seconds, whereas the values for the field
MainFlame arrived most rarely, every 1 minute on average. We replicated this sample to imitate

37

Imperative Standard SQL

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ●

0

500

1000

1500

500

1000

1500

P
ostgreS

Q
L

S
park

0.5
32

1.2
64

1.7
96

2.3
128

2.9
159

3.4
191

4.0
223

4.5
255

5.1
287

5.7
319

0.5
32

1.2
64

1.7
96

2.3
128

2.9
159

3.4
191

4.0
223

4.5
255

5.1
287

5.7
319

ru
nn

in
g

tim
e

(s
ec

on
ds

)

● active−power−trip
normal−restart
normal−start
normal−stop

0

data size (GB):
of months:

Figure 5: Experiment results for the Siemens use case.

the data for one turbine over 10 different periods ranging from 32 to 320 months. The statistics of
the data sets are given in Tables 4a and 8a. We evaluated four queries ActivePowerTrip(tb0)@x,
NormalStart(tb0)@x, NormalStop(tb0)@x and NormalRestart(tb0)@x. The statistics of returned
answers is given in Table 7a.

The execution times for the Siemens use case are given in Fig. 5. Although Apache Spark was
designed to perform efficient parallel computations, it failed to take advantage of this feature due
to the fact that the Siemens data could not be partitioned by mapping each part to a separate core.
PostgreSQL 9.6 also supports parallel query execution in some cases. However, as many operators
(e.g., scans of temporary tables) in our queries are classified either ‘parallel unsafe’ or ‘parallel
restricted’ in the parallel safety documentation5, the query planner failed to produce any parallel
execution strategy in our case. The reason why PostgreSQL outperformed Apache Spark is that the
latter does not provide a convenient way to define proper indexes over temporary tables, which leads
to quadratically growing running times. On the other hand, PostgreSQL shows linear growth in the
size of data (confirming theoretical results since we deal with a single turbine).

Note that the normal restart (start) query timeouts on the data for more than 18 (respectively, 21)
years, which is more than enough for the monitoring and diagnostics tasks at Siemens, where the
two most common application scenarios for sensor data analytics are daily monitoring (that is, ana-
lytics of high-frequency data of the previous 24 hours) and fleet-level analytics of key-performance
indicators over one year. In both cases, the computation time of the results is far less a crucial cost
factor than the lead-time for data preparation.

MesoWest. In contrast to the Siemens case, the weather tables contain very few nulls. Normally, the
data values arrive with periodicity from 1 to 20 minutes. We tested the performance of our algorithm
by increasing (i) the temporal span (with some necessary increase of the spatial spread) and (ii) the
geographical spread of data. For (i), we took the New York state data for the 10 continuous periods

5. https://www.postgresql.org/docs/9.6/static/parallel-safety.html

38

between 2005 and 2014; see Tables 4b and 8b. As each year around 70 new weather stations were
added, our 10 data samples increase more than linearly in size. For (ii), we fixed the time period
of one year (2012) and linearly increased the data from 1 to 19 states (NY, NJ, MD, DE, GA, RI,
MA, CT, LA, VT, ME, WV, NH, NC, MS, SC, ND, KY, SD); see Table 4c and 8c. In both cases,
we executed four datalognrMTL queries ShoweryCounty(v)@x, HurricaneAffectedState(NY)@x,
HeatAffectedCounty(v)@x, CyclonePatternState(NY)@x. The statistics of the returned answers
is shown in Tables 7b and 7c.

The execution times are shown in Fig. 6. All the four queries can be answered within the time
limit. The most expensive one is the cyclone pattern state query because its definition includes a
join of four atoms for winds in four directions, each with a large volume of instances. All the four
sub-figures in Fig. 6 exhibit linear behaviour with respect to the size of data. The nearly tenfold
better performance of Spark over PostgreSQL can be explained by the fact that, unlike the data in
the Siemens case, the MesoWest data is highly parallelisable. Since it was collected from hundreds
of different weather stations, it can be partitioned by station id, state, county, etc. to perfectly fit the
MapReduce programming model extended with resilient distributed datasets (RDDs) (Zaharia, Xin,
Wendell, Das, Armbrust, Dave, Meng, Rosen, Venkataraman, Franklin, Ghodsi, Gonzalez, Shenker,
& Stoica, 2016). In this case, Apache Spark is able to take advantage of the multi-core and large
memory hardware infrastructure, to compute mappings and coalescing in parallel, making it 10
times faster than PostgreSQL; see Figures 6b and 6d.

Overall, the results of the experiments look very encouraging: our datalognrMTL query rewrit-
ing algorithm produces SQL queries that are executable by a standard database engine PostgreSQL
in acceptable time, and by a cluster-computing framework Apache Spark in better than accept-
able time (in case data can be properly partitioned) over large sets of real-world temporal data
of up to 8.3GB in CSV format. The relatively challenging queries such as NormalRestart and
CyclonePatternState require a large number of temporal joins, which turn out to be rather ex-
pensive.

8. Conclusions and Future Work

To facilitate access to sensor temporal data with the aim of monitoring and diagnostics, we suggested
the ontology language datalogMTL, an extension of datalog with the Horn fragment of the metric
temporal logic MTL (under the continuous semantics). We showed that answering datalogMTL
queries is EXPSPACE-complete for combined complexity, but becomes undecidable if the diamond
operators are allowed in the head of rules. We also proved that answering nonrecursive datalogMTL
queries is PSPACE-complete for combined complexity and in AC0 for data complexity. We tested
feasibility and efficiency of OBDA with datalognrMTL on two real-world use cases by querying
Siemens turbine data and MesoWest weather data. Namely, we designed datalognrMTL ontologies
defining typical concepts used by Siemens engineers and various meteorological terms, developed
and implemented an algorithm rewriting datalognrMTL queries into SQL queries, and then executed
the SQL queries obtained by this algorithm from our ontologies over the Siemens and MesoWest
data, showing their acceptable efficiency and scalability. (To the best of our knowledge, this is
the first work on practical OBDA with temporal ontologies, and so no other systems with similar
functionalities are available for comparison.)

39

(a) Experiments over New York data of 2005–2014 (PostgreSQL).

Imperative Standard SQL

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0

300

600

900 P
ostgreS

Q
L

0.2
1

0.6
2

1.1
3

1.6
4

2.1
5

2.9
6

3.8
7

4.8
8

5.9
9

7.4
10

0.2
1

0.6
2

1.1
3

1.6
4

2.1
5

2.9
6

3.8
7

4.8
8

5.9
9

7.4
10

ru
nn

in
g

tim
e

(s
ec

on
ds

)

● CyclonePatternState
HeatAffectedCounty
HurricaneAffectedState
ShoweryPatternCounty

data size (GB):
of years:

(b) Experiments over New York data of 2005–2014 (Spark).

Imperative Standard SQL

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0

50

100

S
park

0.2
1

0.6
2

1.1
3

1.6
4

2.1
5

2.9
6

3.8
7

4.8
8

5.9
9

7.4
10

0.2
1

0.6
2

1.1
3

1.6
4

2.1
5

2.9
6

3.8
7

4.8
8

5.9
9

7.4
10

ru
nn

in
g

tim
e

(s
ec

on
ds

)

● CyclonePatternState
HeatAffectedCounty
HurricaneAffectedState
ShoweryPatternCounty

data size (GB):
of years:

(c) Experiments over 1 year data from 1–19 states (PostgreSQL).

Imperative Standard SQL

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

500

1000 P
ostgreS

Q
L

0.9
1

1.9
2

2.5
4

3.1
6

4.0
8

4.8
10

5.5
12

6.4
14

7.2
17

8.3
19

0.9
1

1.9
2

2.5
4

3.1
6

4.0
8

4.8
10

5.5
12

6.4
14

7.2
17

8.3
19

ru
nn

in
g

tim
e

(s
ec

on
ds

)

● CyclonePatternState
HeatAffectedCounty
HurricaneAffectedState
ShoweryPatternCounty

data size (GB):
of states:

(d) Experiments over 1 year data from 1–19 states (Spark).

Imperative Standard SQL

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

0

25

50

75

100

125

S
park

0.9
1

1.9
2

2.5
4

3.1
6

4.0
8

4.8
10

5.5
12

6.4
14

7.2
17

8.3
19

0.9
1

1.9
2

2.5
4

3.1
6

4.0
8

4.8
10

5.5
12

6.4
14

7.2
17

8.3
19

ru
nn

in
g

tim
e

(s
ec

on
ds

)

● CyclonePatternState
HeatAffectedCounty
HurricaneAffectedState
ShoweryPatternCounty

data size (GB):
of states:

Figure 6: Experiment results for the MesoWest use case.

40

Based on these encouraging results, we plan to include our temporal OBDA framework into
the Ontop platform6 (Rodriguez-Muro et al., 2013; Kontchakov, Rezk, Rodriguez-Muro, Xiao, &
Zakharyaschev, 2014; Calvanese et al., 2017). Note also that datalogMTL presented here has been
recently used to develop an ontology of ballet moves (see Example 2) that underlies a search en-
gine of annotated sequences in ballet videos (Raheb et al., 2017). This is a third use case for our
framework (and we are aware of a few more emerging use cases), which makes an efficient and
user-friendly implementation of the framework a top priority.

We are also working on the streaming data setting, where the challenge is to continuously eval-
uate queries over the incoming data. A rule-based language with window operators for analysing
streaming data has been suggested by Beck, Dao-Tran, Eiter, & Fink (2015). This language is very
expressive as it uses an abstract semantics for window operators (which does not have to guarantee
decidability) and allows negation and disjunction in the rules. It would be interesting to identify and
adapt a suitable fragment of this language in our temporal OBDA framework.

Acknowledgements

This work was supported by the UK EPSRC grant EP/M012670 ‘iTract: Islands of Tractability in
Ontology-Based Data Access’and by the OBATS project at the Free University of Bozen-Bolzano.

References

Abiteboul, S., Hull, R., & Vianu, V. (1995). Foundations of Databases. Addison-Wesley.

Alur, R., Feder, T., & Henzinger, T. A. (1996). The benefits of relaxing punctuality. J. ACM, 43(1),
116–146.

Alur, R., & Henzinger, T. A. (1993). Real-time logics: Complexity and expressiveness. Inf. Comput.,
104(1), 35–77.

Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley, J. K., Meng, X., Kaftan, T., Franklin,
M. J., Ghodsi, A., & Zaharia, M. (2015). Spark SQL: relational data processing in spark. In
Sellis, T. K., Davidson, S. B., & Ives, Z. G. (Eds.), Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, Melbourne, Victoria, Australia, May 31 -
June 4, 2015, pp. 1383–1394. ACM.

Arora, S., & Barak, B. (2009). Computational Complexity: A Modern Approach (1st edition). Cam-
bridge University Press, New York, USA.

Artale, A., Kontchakov, R., Wolter, F., & Zakharyaschev, M. (2013). Temporal description logic
for ontology-based data access. In Proc. of the 23rd Int. Joint Conf. on Artificial Intelligence,
IJCAI 2013. IJCAI/AAAI.

Artale, A., Kontchakov, R., Kovtunova, A., Ryzhikov, V., Wolter, F., & Zakharyaschev, M. (2015).
First-order rewritability of temporal ontology-mediated queries. In Proc. of the 24th Int. Joint
Conf. on Artificial Intelligence, IJCAI 2015, pp. 2706–2712. IJCAI/AAAI.

Artale, A., Kontchakov, R., Kovtunova, A., Ryzhikov, V., Wolter, F., & Zakharyaschev, M. (2017).
Ontology-mediated query answering over temporal data: A survey (invited talk). In TIME,
Vol. 90 of LIPIcs, pp. 1:1–1:37. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

6. http://ontop.inf.unibz.it/

41

Artale, A., Kontchakov, R., Ryzhikov, V., & Zakharyaschev, M. (2013). The complexity of clausal
fragments of LTL. In Logic for Programming, Artificial Intelligence, and Reasoning - 19th
International Conference, LPAR-19, Stellenbosch, South Africa, December 14-19, 2013. Pro-
ceedings, pp. 35–52.

Artale, A., Kontchakov, R., Ryzhikov, V., & Zakharyaschev, M. (2014). A cookbook for temporal
conceptual data modelling with description logics. ACM Trans. Comput. Log., 15(3), 25:1–
25:50.

Baader, F., Borgwardt, S., & Lippmann, M. (2013). Temporalizing ontology-based data access.
In Proc. of the 24th Int. Conf. on Automated Deduction, CADE-24, Vol. 7898 of LNCS, pp.
330–344. Springer.

Baudinet, M., Chomicki, J., & Wolper, P. (1993). Temporal deductive databases. In Temporal
Databases, pp. 294–320.

Beck, H., Dao-Tran, M., Eiter, T., & Fink, M. (2015). LARS: A logic-based framework for analyzing
reasoning over streams. In Bonet, B., & Koenig, S. (Eds.), Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA., pp.
1431–1438. AAAI Press.

Bienvenu, M., Kikot, S., Kontchakov, R., Podolskii, V. V., & Zakharyaschev, M. (2018). Ontology-
mediated queries: Combined complexity and succinctness of rewritings via circuit complex-
ity. J. ACM. In print.

Borgwardt, S., Lippmann, M., & Thost, V. (2013). Temporal query answering in the description
logic DL-Lite. In Proc. of the 9th Int. Symposium on Frontiers of Combining Systems, Fro-
CoS’13, Vol. 8152 of LNCS, pp. 165–180. Springer.

Brandt, S., Kalaycı, E. G., Kontchakov, R., Ryzhikov, V., Xiao, G., & Zakharyaschev, M. (2017).
Ontology-based data access with a horn fragment of metric temporal logic. In Singh, S. P., &
Markovitch, S. (Eds.), Proceedings of the Thirty-First AAAI Conference on Artificial Intelli-
gence, February 4-9, 2017, San Francisco, California, USA., pp. 1070–1076. AAAI Press.

Bresolin, D., Kurucz, A., Muñoz-Velasco, E., Ryzhikov, V., Sciavicco, G., & Zakharyaschev, M.
(2017). Horn fragments of the halpern-shoham interval temporal logic. ACM Trans. Comput.
Log., 18(3), 22:1–22:39.

Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D., Rezk, M., Rodriguez-Muro,
M., & Xiao, G. (2017). Ontop: Answering SPARQL queries over relational databases. Se-
mantic Web, 8(3), 471–487.

Chomicki, J., & Toman, D. (1998). Temporal logic in information systems. In Logics for Databases
and Information Systems, pp. 31–70. Kluwer.

Furia, C. A., & Spoletini, P. (2008). Tomorrow and all our yesterdays: MTL satisfiability over the
integers. In Fitzgerald, J. S., Haxthausen, A. E., & Yenigün, H. (Eds.), Theoretical Aspects
of Computing - ICTAC 2008, 5th International Colloquium, Istanbul, Turkey, September 1-3,
2008. Proceedings, Vol. 5160 of Lecture Notes in Computer Science, pp. 126–140. Springer.

Gabbay, D., Kurucz, A., Wolter, F., & Zakharyaschev, M. (2003). Many-Dimensional Modal Logics:
Theory and Applications, Vol. 148.

42

Gottlob, G., Kikot, S., Kontchakov, R., Podolskii, V. V., Schwentick, T., & Zakharyaschev, M.
(2014). The price of query rewriting in ontology-based data access. Artif. Intell., 213, 42–59.

Gutiérrez-Basulto, V., Jung, J., & Kontchakov, R. (2016a). Temporalized EL ontologies for access-
ing temporal data: Complexity of atomic queries. In Proceedings of the 25th International
Joint Conference on Artificial Intelligence (IJCAI-16). AAAI Press.

Gutiérrez-Basulto, V., Jung, J. C., & Ozaki, A. (2016b). On metric temporal description logics. In
ECAI 2016 - 22nd European Conference on Artificial Intelligence, 29 August-2 September
2016, The Hague, The Netherlands - Including Prestigious Applications of Artificial Intelli-
gence (PAIS 2016), pp. 837–845.

Gutiérrez-Basulto, V., & Klarman, S. (2012). Towards a unifying approach to representing and
querying temporal data in description logics. In Proc. of the 6th Int. Conf. on Web Reasoning
and Rule Systems, RR 2012, Vol. 7497 of LNCS, pp. 90–105. Springer.

Kharlamov, E., Brandt, S., Jiménez-Ruiz, E., Kotidis, Y., Lamparter, S., Mailis, T., Neuenstadt, C.,
Özçep, Ö. L., Pinkel, C., Svingos, C., Zheleznyakov, D., Horrocks, I., Ioannidis, Y. E., &
Möller, R. (2016). Ontology-based integration of streaming and static relational data with
optique. In Proc. of the 2016 Int. Conf. on Management of Data, SIGMOD Conference 2016,
pp. 2109–2112.

Kharlamov, E., Mailis, T., Mehdi, G., Neuenstadt, C., Özçep, Ö. L., Roshchin, M., Solomakhina,
N., Soylu, A., Svingos, C., Brandt, S., Giese, M., Ioannidis, Y. E., Lamparter, S., Möller, R.,
Kotidis, Y., & Waaler, A. (2017). Semantic access to streaming and static data at siemens. J.
Web Sem., 44, 54–74.

Klarman, S., & Meyer, T. (2014). Querying temporal databases via OWL 2 QL. In Proc. of the 8th
Int. Conf. on Web Reasoning and Rule Systems, RR 2014, Vol. 8741 of LNCS, pp. 92–107.
Springer.

Kontchakov, R., Rezk, M., Rodriguez-Muro, M., Xiao, G., & Zakharyaschev, M. (2014). Answering
SPARQL queries over databases under OWL 2 QL entailment regime. In Proc. of the 13th
Int. Semantic Web Conf. (ISWC 2014), Part I, Vol. 8796 of LNCS, pp. 552–567. Springer.

Kontchakov, R., Pandolfo, L., Pulina, L., Ryzhikov, V., & Zakharyaschev, M. (2016). Temporal
and spatial OBDA with many-dimensional halpern-shoham logic. In IJCAI, pp. 1160–1166.
IJCAI/AAAI Press.

Koymans, R. (1990). Specifying real-time properties with metric temporal logic. Real-Time Sys-
tems, 2(4), 255–299.

Ladner, R. E. (1977). The computational complexity of provability in systems of modal proposi-
tional logic. SIAM Journal of Computing.

Lutz, C., Wolter, F., & Zakharyaschev, M. (2008). Temporal description logics: A survey. In Proc. of
the 15th Int. Symposium on Temporal Representation and Reasoning (TIME 2008), pp. 3–14.

Madnani, K., Krishna, S. N., & Pandya, P. K. (2013). On the decidability and complexity of some
fragments of Metric Temporal Logic. CoRR, abs/1305.6137.

Ouaknine, J., & Worrell, J. (2005). On the decidability of metric temporal logic. In Proceedings
of the 20th Annual IEEE Symposium on Logic in Computer Science, LICS ’05, pp. 188–197,
Washington, DC, USA. IEEE Computer Society.

43

Ouaknine, J., & Worrell, J. (2008). Some recent results in metric temporal logic. In Formal Mod-
eling and Analysis of Timed Systems, 6th International Conference, FORMATS 2008, Saint
Malo, France, September 15-17, 2008. Proceedings, pp. 1–13.

Özçep, Ö., Möller, R., Neuenstadt, C., Zheleznyakov, D., & Kharlamov, E. (2013). A semantics
for temporal and stream-based query answering in an OBDA context. Tech. rep., Deliverable
D5.1, FP7-318338, EU.

Özçep, Ö. L., & Möller, R. (2014). Ontology based data access on temporal and streaming data. In
the 10th Int. Summer School on Reasoning Web, RW 2014, Vol. 8714 of LNCS, pp. 279–312.
Springer.

Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., & Rosati, R. (2008). Linking
data to ontologies. J. on Data Semantics, X, 133–173.

Raheb, K. E., Mailis, T., Ryzhikov, V., Papapetrou, N., & Ioannidis, Y. E. (2017). Balonse: Tem-
poral aspects of dance movement and its ontological representation. In The Semantic Web
- 14th International Conference, ESWC 2017, Portorož, Slovenia, May 28 - June 1, 2017,
Proceedings, Part II, pp. 49–64.

Rodriguez-Muro, M., Kontchakov, R., & Zakharyaschev, M. (2013). Ontology-based data access:
Ontop of databases. In The Semantic Web - ISWC 2013 - 12th International Semantic Web
Conference, Sydney, NSW, Australia, October 21-25, 2013, Proceedings, Part I, pp. 558–573.

Sistla, A., & Clarke, E. (1985). The complexity of propositional linear temporal logics. J. ACM, 32,
733–749.

Soylu, A., Giese, M., Jiménez-Ruiz, E., Vega-Gorgojo, G., & Horrocks, I. (2016). Experiencing
OptiqueVQS: a multi-paradigm and ontology-based visual query system for end users. Uni-
versal Access in the Information Society, 15(1), 129–152.

Tobies, S. (2001). Pspace reasoning for graded modal logics. Journal of Logic and Computation,
11(1), 85–106.

Ullman, J. D. (1988). Principles of Database and Knowledge-Base Systems, Volume I. Computer
Science Press.

Vardi, M. (1982). The complexity of relational query languages (extended abstract). In Proc. of the
14th ACM SIGACT Symp. on Theory of Computing (STOC’82), pp. 137–146.

Xiao, G., Calvanese, D., Kontchakov, R., Lembo, D., Poggi, A., Rosati, R., & Zakharyaschev, M.
(2018). Ontology-based data access: A survey. In Proc. of the 28th Int. Joint Conf. on
Artificial Intelligence (IJCAI). IJCAI/AAAI.

Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen, J.,
Venkataraman, S., Franklin, M. J., Ghodsi, A., Gonzalez, J., Shenker, S., & Stoica, I. (2016).
Apache spark: a unified engine for big data processing. Commun. ACM, 59(11), 56–65.

Zhou, X., Wang, F., & Zaniolo, C. (2006). Efficient temporal coalescing query support in relational
database systems. In Proc. of the 17th Int. Conf. on Database and Expert Systems Applica-
tions, DEXA 2006, Vol. 4080 of LNCS, pp. 676–686. Springer.

44

Appendix A.

Proof of Theorem 14

The formula σ〈m,n〉%,P,P1,P2
(x, y) is defined as follows:

∃x1, y1, . . . , x5, y5

∨
m1∈le(P1)
n1∈ri(P1)

d1∈{[,(}, e1∈{],)}

(
ϕ
d1m1,n1e1
P1

(x1, y1) ∧
∨

m2∈le(P2)
n2∈ri(P2)

d2∈{[,(}, e2∈{],)}

(
ϕ
d2m2,n2e2
P2

(x2, y2) ∧

∨
m3=m1
n3=n1

d3∈{[,(}, e3∈{],)}

(
(x3 = x1) ∧ (y3 = y1) ∧ isd3,[∧ ise3,] ∧

∨
m4∈le(P1)∪le(P2)
n4∈ri(P1)∪ri(P2)
d4∈{[,(}, e4∈{],)}

(
inter

d4m4,n4e4
d2m2,n2e2,d3m3,n3e3(x4, y4, x2, y2, x3, y3) ∧

∨
m4∈le(P)
n4∈ri(P)

d5∈{[,(}, e5∈{],)}

(
pluso

d5m5,n5e5
%,d4m4,n4e4(x5, y5, x4, y4) ∧

inter
〈m,n〉
d5m5,n5e5,d3m3,n3e3(x, y, x5, y5, x3, y3)

)))))
,

where pluso
d5m5,n5e5
%,d4m4,n4e4(x5, y5, x4, y4) is an (obvious) formula saying that d5x5 + m5, y5 + n5e5 is

the interval d4x4 +m4, y4 + n4e4 +o %.

The formula x = y + c, for a non-negative c, is defined as follows. For c = ∞, we take the
formula

∀j (bitin(x, j, 1) ∧ bitfr (x, j, 1)),

whereas for a constant c = h/2k, we can use

∀j
((

bitin(x, j, 0) ∧ bitin+h/2k(y, j, 0)
)
∨
(
bitin(x, j, 1) ∧ bitin+h/2k(y, j, 1)

))
∧

∀j
((

bitfr (x, j, 0) ∧ bitfr
+h/2k

(y, j, 0)
)
∨
(
bitfr (x, j, 1) ∧ bitfr

+h/2k
(y, j, 1)

))
,

where predicates bitin+h/2k(y, j, v), saying that v is the j-th bit of the integer part of y + h/2k,

and bitfr
+h/2k

(y, j, v), saying that v is the j-th bit of the fractional part of y + h/2k, are defined

45

inductively as follows:

bitfr
+0/2k

(y, j, v) = bitfr (y, j, v),

bitfr
+(d+1/2k)

(y, j, v) = ∃u
(

(u = `− k) ∧
((

(j ≤ u) ∧ bitfr+d(y, j, v)
)
∨(

(v = 0) ∧ bitfr+d(y, j, 0) ∧ ∃j′((u < j′ < j) ∧ bitfr+d(y, j
′, 0))

)
∨(

(v = 0) ∧ bitfr+d(y, j, 1) ∧ ∀j′((u < j′ < j)→ bitfr+d(y, j
′, 1))

)
∨(

(v = 1) ∧ bitfr+d(y, j, 1) ∧ ∃j′((u < j′ < j) ∧ bitfr+d(y, j
′, 0))

)
∨(

(v = 1) ∧ bitfr+d(y, j, 0) ∧ ∀j′((u < j′ < j)→ bitfr+d(y, j
′, 1))

)))
,

bitin+0/2k(y, j, v) = bitin(y, j, v),

bitin+(d+1/2k)(y, j, v) = ∃u
(

(u = `− k) ∧
(

(
(v = 0) ∧ bitin+d(y, j, 0) ∧ ∃j′(((j′ < j) ∧ bitin+d(y, j

′, 0)) ∨

((u < j′ < j) ∧ bitfr+d(y, j
′, 0)))

)
∨(

(v = 0) ∧ bitin+d(y, j, 1) ∧ ∀j′(((j′ < j)→ bitin+d(y, j
′, 1)) ∧

(u < j′ < j)→ bitfr+d(y, j
′, 1))

)
∨(

(v = 1) ∧ bitin+d(y, j, 0) ∧ ∃j′(((j′ < j) ∧ bitin+d(y, j
′, 0)) ∨

((u < j′ < j) ∧ bitfr+d(y, j
′, 0)))

)
∨(

(v = 1) ∧ bitin+d(y, j, 1) ∧ ∀j′(((j′ < j)→ bitin+d(y, j
′, 1)) ∧

((u < j′ < j)→ bitfr+d(y, j
′, 1)))

)))
.

Here, u = `− k can be easily defined using < and k.

Proofs of Lemmas 18 and 19

Lemma. If T satisfies TOA, then a projection of T satisfying TOA can be computed in timeO(|T |2o×
|T |t).

Proof. We first partition T into a set of purely temporal tables Tc1,...,cm and compute the set of all
individual tuples (c′1, . . . , c

′
n) that will appear in the projection T ′. Let (c′1, . . . , c

′
n) be one such

tuple, and consider the tables Tc11,...,c1m , . . . , Tck1 ,...,ckm such that the projection of each (ci1, . . . , c
i
m)

is precisely (c′1, . . . , c
′
n). Clearly, we have at most |T |o such tables. It is well-known that, for a

pair of ordered tables S and S′, we can construct an ordered table that contains all the tuples
S ∪ S′ in time |S| + |S′|. We use this algorithm k times to obtain an ordered table containing
all the tuples of Tc11,...,c1m ∪ · · · ∪ Tck1 ,...,ckm in time O(k|T |o). We then write the tuples of the form
(c′1, . . . , c

′
n, 〈, t1, t2, 〉), where (〈, t1, t2, 〉) is a tuple from the united table, into the output table. It

can be readily checked that the complete output table can be produced in the required time.

Lemma. For any pair of tables T and T ′ satisfying TOA, their union table also satisfying TOA can
be computed in time O((|T |2o + |T ′|2o)× (|T |t + |T ′|t)).

46

Proof. We first partition T and T ′ into sets of purely temporal tables Tc1,...,cm and, respectively,
T ′c1,...,cm . While doing this partition, we make sure that the tables Tc1,...,cm are stored sequentially
with respect to some order on the tuples (c1, . . . , cm) (it can be done in time |T |2o × |T |t). We do
the same for the tables T ′c1,...,cm . It remains to go through all the tuples 〈, t1, t2, 〉 and d, t′1, t′2, e in
all the tables Tc1,...,cm and T ′c1,...,cm to produce the union table by an algorithm similar to the one
applied to the tables S and S′ in the proof of Lemma 18.

Experimental Results

(a) Number of the results returned from the Siemens queries.

queries
of months

32 64 96 128 159 191 223 255 287 320

ActivePowerTrip 324 648 970 1294 1618 1940 2264 2588 2912 3236
NormalStop 648 1296 1940 2588 3236 3880 4528 5176 5824 6472
NormalStart 162 324 485 647 809 970 1132 1294 1456 1618
NormalRestart 0 0 0 0 0 0 0 0 0 0

(b) Number of the results returned from the NY weather stations from 2005 to 2014.

queries
of months

32 64 96 128 159 191 223 255 287 320

ShoweryPatternCounty 530 1221 1802 2647 3609 4349 5204 5912 6639 7655
HurricaneAffectedState 2 4 5 5 5 8 9 801 1523 1533
HeatAffectedCounty 0 5 7 14 21 33 39 51 57 59
CyclonePatternState 914 1574 1617 1851 1936 2139 2246 2307 2333 2359

(c) Number of the results returned from the Weather data for 1–19 states in 2012.

queries
of months

32 64 96 128 159 191 223 255 287 320

ShoweryPatternCounty 3769 4481 4928 10349 12709 13681 14470 14933 16381 16883
HurricaneAffectedState 2 784 789 789 790 790 798 811 813 813
HeatAffectedCounty 53 65 81 84 88 98 100 117 142 224
CyclonePatternState 9109 9179 9593 17577 30203 38421 40769 43662 54199 56303

Table 7: Number of the results returned.

47

(a) Siemens data for one turbine.
of months 32 64 96 128 159 191 223 255 287 320
of rows 12,935,538 25,871,076 38,726,765 51,662,303 64,597,841 77,453,530 90,389,068 103,324,606 116,260,144 129,195,682

CSV size (GB) 0.57 1.2 1.7 2.3 2.9 3.4 4.0 4.5 5.1 5.7

PostgreSQL raw size (GB) 0.7 1.4 2.2 2.9 3.7 4.4 5.2 5.9 6.7 7.4
total size (GB) 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Parquet size (GB) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(b) NY weather stations from 2005 to 2014.
of years 1 2 3 4 5 6 7 8 9 10
of stations 229 306 370 441 484 542 595 643 807 874
of rows 3,969,455 10,959,978 18,614,686 26,622,218 35,862,560 49,115,307 63,469,733 79,032,846 99,221,419 124,001,260

CSV size (GB) 0.2 0.6 1.1 1.6 2.1 2.9 3.8 4.8 5.9 7.4

PostgreSQL raw size (GB) 0.3 0.8 1.4 2.0 2.7 3.7 4.9 6.1 7.7 11.0
total size (GB) 0.4 1.1 2.0 2.9 3.9 5.4 7.1 8.9 11.0 14.0

Parquet size (GB) 0.03 0.08 0.15 0.2 0.3 0.4 0.5 0.6 0.8 0.9

(c) Weather data for 1–19 states in 2012.

states DE, +NY +MD +NJ, +MA, +LA, +ME, +NH, +MS,SC, +KY,
GA RI CT VT WV NC ND SD

of states 2 3 4 6 8 10 12 14 17 19
of stations 408 659 1120 1476 1875 2305 2669 3019 3508 4037
of rows 16,760,333 32,470,116 41,346,986 51,610,908 66,842,618 80,561,273 92.550.905 106,415,139 121,216,837 140,517,500

CSV size (GB) 0.9 1.9 2.5 3.1 4.0 4.8 5.5 6.4 7.2 8.3

PostgreSQL raw size (GB) 1.2 2.4 3.1 3.9 5.1 6.1 7.1 8.1 9.2 10.0
total size (GB) 2.0 4.1 5.3 6.5 8.6 10.0 12.0 14.0 16.0 18.0

Parquet size (GB) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.1

- CSV: the size of the data in CSV format;
- PostgreSQL (raw size): the size of the data itself stored in PostgreSQL reported by the
pg_relation_size function;

- PostgreSQL (total size): the size of the total data (including the index) stored in PostgreSQL
reported by the pg_total_relation_size function;

- Parquet: the size of the data in Apache Parquet format, used by Apache Spark.

Table 8: The size of the data sets used in the experiments.

48

