
Ontology-Based Data Access with a
Horn Fragment of Metric Temporal Logic

S. Brandt,1 E. Güzel Kalaycı,2 R. Kontchakov,3 V. Ryzhikov,2 G. Xiao,2 M. Zakharyaschev3
1Siemens CT, Germany 2Free University of Bozen-Bolzano, Italy 3Birkbeck, University of London, UK

Abstract

We advocate datalogMTL, a datalog extension of a Horn frag-
ment of the metric temporal logic MTL, as a language for
ontology-based access to temporal log data. We show that
datalogMTL is EXPSPACE-complete even with punctual in-
tervals, in which case MTL is known to be undecidable. Non-
recursive datalogMTL turns out to be PSPACE-complete for
combined complexity and in AC0 for data complexity. We
demonstrate by two real-world use cases that nonrecursive
datalogMTL programs can express complex temporal con-
cepts from typical user queries and thereby facilitate access
to log data. Our experiments with Siemens turbine data and
MesoWest weather data show that datalogMTL ontology-
mediated queries are efficient and scale on large datasets of
up to 11GB.

1 Introduction

Data gathering at Siemens In order to prevent malfunc-
tions and abnormal behaviour, Siemens operates remote-
diagnostic centres that gather and analyse data from installa-
tions worldwide such as gas turbines for power generation.
For the service engineers working in those centres, analysing
the data often begins by running queries that aggregate sen-
sor measurements such as the power output of the turbine,
its maximum rotor speed, average exhaust temperature, etc.
A typical query dealing with unexpected stops of a turbine
might be ‘find when an active power trip occurred’, that is:

(ActivePowerTrip) the active power was above 1.5MW for
a period of at least 10 seconds, maximum 3 seconds after
which there was a period of at least one minute where
active power was below 0.15MW.

Under the traditional workflow, an engineer would call an IT
expert who would produce a specific script such as

message("active power TRIP") =
$t1: eval(>, #activePower, 1.5) :

for(>= 10s)
&&

eval(<, #activePower, 0.15) :
start(after[0s, 3s] $t1:end):
for(>= 1m);

Copyright © 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

for the turbine aggregated data stored in a table TB_Sensor:
turbineId dateTime activePower rotorSpeed mainFlame . . .

. . .
tb0 2015-04-04 12:20:48 2 1550 0
tb0 2015-04-04 12:20:49 1.8 1400 null
tb0 2015-04-04 12:20:52 1.7 1350 1

. . .

Data gathering accounts for a major part of the time
service engineers require for activities at Siemens remote-
diagnostic centres, most of which due to the indirect access
to data. The complexity of the task stems from the lack of
abstraction and the heterogeneity of data sources.

OBDA Ontology-based data access (Poggi et al. 2008) of-
fers a different workflow that excludes the IT middleman.
Domain experts develop an ontology providing definitions
of the terms the engineers may be interested in together
with mappings relating these terms to the database schemas.
Modulo such an ontology, the query above could simply
be ActivePowerTrip(tb0)@x, where x is an answer vari-
able over time intervals. Unfortunately, the OBDA ontology
and query languages standardised by W3C—the OWL 2 QL
profile of OWL 2 and SPARQL—are not suitable for the
Siemens case as they were not designed to deal with essen-
tially temporal data and concepts.

One approach to temporal OBDA is to use OWL 2 QL as
an ontology language, assuming that ontology axioms hold
at all times, and extend the query language with various
temporal operators (Gutiérrez-Basulto and Klarman 2012;
Baader, Borgwardt, and Lippmann 2013; Borgwardt, Lipp-
mann, and Thost 2013; Özçep et al. 2013; Klarman and
Meyer 2014; Özçep and Möller 2014; Kharlamov et al.
2016). However, OWL 2 QL is not able to define the tempo-
ral feature of ‘active power trip’, and so the engineer would
have to capture it in a complex temporal query. Another
known approach is to allow the temporal operators of linear
temporal logic LTL in both queries and ontologies (Artale et
al. 2013; 2015). However, sensor data come at irregular time
intervals, which makes it impossible to adequately represent
‘10 seconds’ or ‘1 minute’ in LTL.

Metric temporal logic A more suitable formalism for cap-
turing the meaning of concepts such as ‘active power trip’ is
the logic MTL designed by Koymans (1990) and Alur and
Henzinger (1993) for modelling and reasoning about real-

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

1070

time systems. MTL can be interpreted over the reals (R,≤)
and allows formulas such as �[1.5,3]ϕ (or [1.5,3]) that hold
at a moment t iff ϕ holds at every (respectively, some) mo-
ment in the interval [t− 3, t− 1.5], which can easily capture
the temporal feature of ‘active power trip’. Unfortunately,
MTL turns out to be undecidable (Alur and Henzinger 1993)
and EXPSPACE-complete if punctual operators such as [1,1]

are disallowed (Alur, Feder, and Henzinger 1996).
Our contribution In this paper, we first investigate the Horn
fragment of MTL (without diamond operators in the head of
rules) and its datalog extension datalogMTL, where ‘active
power trip’ can be defined by the rule
ActivePowerTrip(v) ← Turbine(v) ∧

�[0,1m] ActivePowerBelow0.15(v) ∧
[60s,63s] �[0,10s] ActivePowerAbove1.5(v), (1)

which is assumed to hold at all times. We show that answer-
ing ontology-mediated queries (Π, G(v)@x) is EXPSPACE-
complete, where Π is a datalogMTL program, G(v) a goal
with individual variables v, and x a variable for intervals
during which G(v) holds. We also observe that hornMTL
becomes undecidable if diamond operators are allowed in
the head of rules.

From the practical point of view, most interesting are
nonrecursive datalogMTL queries, where query answering
is in AC0 for data complexity and PSPACE-complete for
combined complexity (even NP-complete if the arity of
predicates is bounded). In this case, we develop a query
answering algorithm that can be implemented in standard
SQL (with window functions). We also present a frame-
work for practical OBDA with nonrecursive datalogMTL
queries and temporal log data stored in databases as above.
Finally, we evaluate our framework on two use cases.
We develop a datalogMTL ontology for temporal con-
cepts used in typical queries at Siemens (e.g., NormalStop
that takes place if events ActivePowerOff, MainFlameOff,
CoastDown6600to1500, and CoastDown1500to200 happen
in a certain temporal pattern). We also create a weather on-
tology defining standard meteorological concepts such as
Hurricane (HurricaneForceWind, wind with the speed above
118 km/h, lasting at least 1 hour). Using Siemens sensor
databases and MesoWest historical records of the weather
stations across the US, we experimentally demonstrate that
our algorithm is efficient in practice and scales on large
datasets of up to 11GB.

2 DatalogMTL
In our applications, the intended flow of time is the real num-
bers R (but the results of this section hold also for the ratio-
nal numbers Q). By an interval, ι, we mean any nonempty
subset of R of the form [t1, t2], [t1, t2), (t1, t2] or (t1, t2)
with t1, t2 ∈ Q ∪ {−∞,∞} and t1 ≤ t2 (we identify
(t,∞] with (t,∞), [−∞, t] with (−∞, t], etc.). A range, �,
is an interval with non-negative endpoints. The end-points
of intervals and ranges are represented in binary. An indi-
vidual term, τ , is an individual variable, v, or a constant, c.
A datalogMTL program, Π, is a finite set of rules of the form

A+ ← A1 ∧ · · · ∧Ak or ⊥ ← A1 ∧ · · · ∧Ak,

where k ≥ 1, each Ai is either an inequality τ
= τ ′ or
defined by the grammar

A ::= P (τ1, . . . , τm) | ��A | ��A | �A | �A

and A+ does not contain any diamond operators � and �.
The atoms A1, . . . , Ak constitute the body of the rule, while
A+ or ⊥ its head. As usual, we assume that every variable
in the head of a rule also occurs in its body.

A data instance, D, is a finite set of facts of the form
P (c)@ι, where P (c) is a ground atom and ι is an interval,
stating that P (c) holds throughout ι.

An interpretation, M, is based on a domain Δ
= ∅ (for
the individual variables and constants). For any m-ary pred-
icate P , m-tuple a from Δ, and moment of time t ∈ R, the
interpretation M specifies whether P is true on a at t, in
which case we write M, t |= P (a). Let ν be an assignment
of elements of Δ to the individual variables (we adopt the
standard name assumption: ν(c) = c, for every individual
constant c). We then set inductively:

M, t |=ν P (τ) iff M, t |= P (ν(τ)),

M, t |=ν τ
= τ ′ iff ν(τ)
= ν(τ ′),
M, t |= ��A iff M, s |= A for all s with s− t ∈ �,

M, t |= ��A iff M, s |= A for all s with t− s ∈ �,

M, t |= �A iff M, s |= A for some s with s− t ∈ �,

M, t |= �A iff M, s |= A for some s with t− s ∈ �.

We say that M satisfies Π under ν if, for all t ∈ R and all
rules A ← A1 ∧ · · · ∧Ak in Π, we have

M, t |=ν A whenever M, t |=ν Ai for 1 ≤ i ≤ k

(as usual M, t
|=ν ⊥). M is a model of Π and D if it sat-
isfies Π under every assignment, and M, t |= P (c) for any
P (c)@ι in D and any t ∈ ι. Π and D are consistent if they
have a model.

Note that ranges � in the temporal operators can be punc-
tual [t, t], in which case �[t,t]A is equivalent to [t,t]A, and
�[t,t]A to [t,t]A.

A datalogMTL query takes the form (Π, q(v, x)), where
q(v, x) = Q(τ)@x, for some predicate Q, v is a tuple
of individual variables occurring in the terms τ , and x an
interval variable. A certain answer to (Π, q(v, x)) over a
data instance D is a pair (c, ι) such that c is a tuple of
constants from D (of the same length as v), ι an interval
and, for any t ∈ ι and any model M of Π and D, we
have M, t |=ν Q(τ), where ν maps v to c. For example,
suppose D consists of the facts Turbine(tb0)@(−∞,∞),
ActivePowerAbove1.5(tb0)@[13:00:00, 13:00:15), Active-
PowerBelow0.15(tb0)@[13:00:17, 13:01:25), and Π is just
rule (1). Then any subinterval of [13:01:17, 13:01:18) is a
certain answer to (Π,ActivePowerTrip(tb0)@x).

By answering datalogMTL queries we understand the
problem of checking whether a given pair (c, ι) is a cer-
tain answer to a given datalogMTL query (Π, q(v, x)) over
a given data instance D. Our first result is the following the-
orem, which is to be put in the context of undecidability of
MTL over R, and its EXPSPACE-completeness over the in-
tegers Z (Alur and Henzinger 1993).

1071

Theorem 1. Answering datalogMTL queries is EXPSPACE-
complete (even in the propositional case) for combined com-
plexity.

To give the intuition behind the proof, we note first that
every datalogMTL program Π can be transformed (using
polynomially-many fresh predicates) to a datalogMTL pro-
gram in normal form that contains only rules of the form

P (τ) ←
∧

i∈I

Pi(τi), ⊥ ←
∧

i∈I

Pi(τi), (2)

�� P (τ) ← P ′(τ ′), �� P (τ) ← P ′(τ ′), (3)

P (τ) ← ��P
′(τ ′), P (τ) ← ��P

′(τ ′) (4)

and gives the same certain answers as Π. For example,
the rule P (τ) ← P1(τ1) ∧ �P2(τ2) can be replaced by
P (τ) ← P1(τ1) ∧ P ′

2(τ2) and ��P
′
2(τ2) ← P2(τ2), where

P ′
2 is a fresh predicate of the same arity as P2.
We now require the following notation. Given an interval

ι and a range �, we set

ι+ � = {t+ k | t ∈ ι and k ∈ �}.
For example, if ι = (ιb, ιe) and � = [�b, �e], then ι + � is
the interval (ιb+�b, ιe+�e); if ι = [ιb, ιe] and � = [�b, �e],
then ι+ � = [ιb + �b, ιe + �e]. Next, by ι− � we denote

the maximal interval ι′ such that ι′ + � = ι.

Note that ι−� is only defined if there is t′ such that t′+k ∈ ι,
for k ∈ �, in which case we write � � ι. If � � ι, then
ι′ is defined uniquely. For example, if ι = (ιb, ιe) and � =
[�b, �e] with � � ι, then ι−� is the interval (ιb−�b, ιe−�e);
if ι = (ιb, ιe) and � = (�b, �e) with � � ι, then ι − � =
[ιb − �b, ιe − �e].

Now, given a data instance D, we denote by Π(D) the
closure (by transfinite induction) of D under the rules:

(coal) if P (c)@ιi ∈ D, for i ∈ I , and
⋂

i∈I ιi
= ∅, then
we add P (c)@

⋃
i∈I ιi to D (overlapping intervals ιi are

coalesced into their union);

(horn) if P (c) ← ∧
i∈I Pi(ci) is an instance of a rule in

Π with Pi(ci)@ιi in D and
⋂

i∈I ιi
= ∅, then we add
P (c)@

⋂
i∈I ιi to D;

(��←) if ��P (c) ← P ′(c′) is an instance of a rule in Π
with P ′(c′)@ι ∈ D, then we add P (c)@(ι+�) to D (and
similarly for ��P (c) ← P ′(c′));

(←��) if P (c) ← ��P
′(c′) is an instance of a rule in Π

with P ′(c′)@ι ∈ D and � � ι, then we add P (c)@(ι−�)
to D (and similarly for P (c) ← ��P

′(c′)).

Define a canonical interpretation CΠ,D whose object do-
main consists of the individual constants in Π and D, and
CΠ,D, t |= P (c) iff P (c)@ι ∈ Π(D), for some ι t.

Lemma 2. (i) If ⊥@ι ∈ Π(D) for some ι, then Π and D are
inconsistent; otherwise, CΠ,D is the minimal model of Π and
D in the sense that P (c)@ι ∈ Π(D) implies M, t |= P (c),
for any model M of Π and D and any t ∈ ι.

(ii) A pair (c, ι) is a certain answer to (Π, q(v, x)) over
D consistent with Π iff CΠ,D, t |= q(c) for all t ∈ ι.

Let 1 be the greatest common divisor of the (rational)
numbers in Π and D. Let grid(Π,D) be the closure of these
numbers under the operations +1 and −1. It is not hard to
see that the order (grid(Π,D),≤) is isomorphic to (Z,≤).
Lemma 3. For any ground P (c) and any t ∈ grid(Π,D),
we either have CΠ,D, t′ |= P (c), for all t′ ∈ (t, t + 1), or
CΠ,D, t′
|= P (c), for all t′ ∈ (t, t+ 1).

The EXPSPACE upper bound in Theorem 1 can now be
obtained by (exponential) reduction to LTL over Z, which is
known to be PSPACE-complete (Sistla and Clarke 1985).

The diamond operators � and � are disallowed in the
head of datalogMTL rules for the following reason. Denote
by datalogMTL� the extension of datalogMTL that allows
arbitrary temporal operators in the head of rules. The ex-
tended language turns out to be much more powerful and can
encode 2-counter Minsky machines, which gives the follow-
ing theorem; cf. (Madnani, Krishna, and Pandya 2013).
Theorem 4. Answering datalogMTL� queries is undecid-
able.

As none of the datalogMTL programs required in our use
cases is recursive, we now consider the class datalognrMTL
of nonrecursive datalogMTL programs. More precisely, for
a program Π, let � be the dependence relation on the pred-
icate symbols in Π: P � Q iff Π has a clause with P in the
head and Q in the body. Π is called nonrecursive if P �∗ P
does not hold for any predicate symbol P in Π, where �∗ is
the transitive closure of �.

For datalognrMTL queries, one can define a finite or-
der grid(Π,D) of exponential size, for which Lemma 3
holds with two additional infinite intervals (−∞,min) and
(max,∞), where max and min are the maximal and mini-
mal integers occurring in D; if they do not exist, grid(Π,D)
is just one interval (−∞,∞). Since grid(Π,D) can be en-
coded in polynomial space, we can use a tableau-like top-
down procedure to obtain a PSPACE upper bound for an-
swering nonrecursive datalogMTL queries:
Theorem 5. Answering datalognrMTL queries is PSPACE-
complete for combined complexity (even in the propositional
case) and in AC0 for data complexity.

The following example shows how a datalognrMTL pro-
gram can generate all possible assignments of truth-values to
given propositional variables, which is required in the proof
of the PSPACE lower bound in Theorem 5.
Example 6. Let Π3 be a datalognrMTL program with
propositional variables p, q, r, . . . as well as p̄, q̄, r̄, . . . (rep-
resenting ¬p,¬q,¬r, . . .) and the rules

rσ ← rσ0 , (5)
qσ ← qσ0 , qσ ← [4,4]q

σ
0 , (6)

pσ ← pσ1 , pσ ← [4,4]p
σ
1 , (7)

pσ1 ← pσ0 , pσ1 ← [2,2]p
σ
0 , (8)

where σ ∈ {0, 1}, s1 = s and s0 = s̄, for any propositional
variable s. Let D be a data instance with the facts

p0@[0, 1), p0@[1, 2), q0@[0, 2), q0@[2, 4),

r0@[0, 4), r0@[4, 8).

1072

The canonical model CΠ3,D is shown below, where an arrow
(iσ) indicates an application of the rule (i) in Π3 for σ:

0 1 2 3 4 5 6 7 8

p0 p̄0

p1 p̄1 p1 p̄1

p p̄ p p̄ p p̄ p p̄

(81) (80)

(71) (70) (71) (70)

q0 q̄0

q q̄ q q̄

(61) (60)

r0 r̄0

r r̄

(51) (50)

Note that the Horn fragment of the Halpern-Shoham logic
HS is P-complete over dense orders but undecidable over
discrete ones (Bresolin et al. 2016), while the Horn fragment
of LTL is P-complete without the next operator, PSPACE-
complete with the next operator, and P-complete in the non-
recursive case (even with next) over Z (Artale et al. 2014).

3 Implementing datalognrMTL in SQL

In our applications, instead of the PSPACE top-down tableau
procedure we use a rewriting approach that produces an SQL
query implementing a bottom-up evaluation. Namely, we
rewrite a given datalognrMTL query (Π, Q(τ)@x) with Π
in normal form (2)–(4) to an SQL query computing the cer-
tain answers (c, ι) to the query with maximal intervals ι.

In a nutshell, the rewriting algorithm produces SQL views
that apply the rules (coal), (horn), (��←) and (←��) above
to the facts extracted from the database using mappings. The
algorithm starts with tables P containing these facts and
having all the temporal intervals sorted (which is usually the
case for log data and mappings such as M in Section 4).
Each table P is coalesced by the algorithm from (Zhou,
Wang, and Zaniolo 2006) into a new table in time O(|P |).
By applying a rule (��←) or (← ��) to P ′, we construct
a table P in time O(|P ′|). The rule (horn) is applied to the
tables Pi, for i ∈ I , by a variant of the merge join algorithm
in time O(|I|n|I|m), where n is the maximum number of in-
dividual tuples in Pi, i ∈ I , and m is the maximum number
of interval tuples. We then form the union of the k-many ta-
bles constructed for the same P ; as the intervals in them are
sorted, we obtain a sorted table for P in time O(|I|n|I|mk)
and then coalesce it in linear time. Observe that the time re-
quired to compute the resulting table P is polynomial in n
(of degree |I|) and linear in m, which explains linear pat-
terns in our experiments below, where the size of individual
tuples is fixed. To compute the table for the goal Q, we it-
erate the described procedure d times, where d is the length
of the longest chain of predicates in the dependence rela-
tion � for Π. Thus, the overall time required to compute the
goal predicate Q is exponential in d and the size of Π itself,
polynomial in n and linear in m.

4 Use Cases

We test the feasibility of OBDA with datalognrMTL by
querying Siemens turbine log data and MesoWest weather
data. First, we briefly describe these use cases.
Siemens service centres store aggregated turbine sensor data
in tables such as TB_Sensor. The data comes with (not nec-
essarily regular) timestamps t1, t2, . . . , and it is deemed that
the values remain constant in every interval [ti, ti+1). Us-
ing a set of mappings, we extract from these tables a data
instance containing ground facts such as

ActivePowerAbove1.5(tb0)@[12:20:48, 12:20:49),

ActivePowerAbove1.5(tb0)@[12:20:49, 12:20:52),

RotorSpeedAbove1500(tb0)@[12:20:48, 12:20:49),

MainFlameBelow0.1(tb0)@[12:20:48, 12:20:52).

For example, the first two of them are obtained from the ta-
ble TB_Sensor using the following SQL mapping M:

ActivePowerAbove1.5(x)@[t1, t2) ←
SELECT x, t1, t2 FROM (

SELECT turbineId AS x,

LAG(dateTime) OVER (w) AS t1,

LAG(activePower) OVER (w) AS lag_activePower,
dateTime AS t2

FROM TB_Sensor
WINDOW w AS (PARTITION BY turbineId

ORDER BY dateTime)

) tmp

WHERE lag_activePower > 1.5

In terms of the basic predicates above, we define more com-
plex ones that are used in queries posed by the Siemens
engineers. Below is a snippet of our datalognrMTL ontol-
ogy (the complete ontology can be found in the technical
report (Brandt et al. 2016)):

NormalStop(v) ← CoastDown1500to200(v) ∧
(0,9m]

[
CoastDown6600to1500(v) ∧
(0,2m]

(
MainFlameOff(v) ∧
(0,2m]ActivePowerOff(v)

)]
,

MainFlameOff(v) ← �[0s,10s]MainFlameBelow0.1(v),

ActivePowerOff(v) ← �[0s,10s]MainPowerBelow0.15(v),

CoastDown6600to1500(v) ←
�[0s,30s] RotorSpeedBelow1500(v) ∧

(0,2m] �(0,30s] RotorSpeedAbove6600(v),

CoastDown1500to200(v) ←
�[0s,30s] RotorSpeedBelow200(v) ∧

(0,9m] �(0,30s] RotorSpeedAbove1500(v),

NormalRestart(v) ←
NormalStart(v) ∧ (0,1h]NormalStop(v).

1073

MesoWest. The MesoWest1 project makes publicly avail-
able historical records of the weather stations across the
US showing such parameters of meteorological conditions
as temperature, wind speed and direction, amount of pre-
cipitation, etc. Each station outputs its measurements with
some periodicity, with the output at a time ti+1 containing
the accumulative (e.g., for precipitation) or averaged (e.g.,
for wind speed) value over the interval (ti, ti+1]. The data
comes in a table Weather, which looks as follows:
stationId dateTime airTemp windSpeed windDir hourPrecip . . .

. . .
KBVY 2013-02-15;15:14 8 45 10 0.05
KMNI 2013-02-15;15:21 6 123 240 0
KBVY 2013-02-15;15:24 8 47 10 0.08
KMNI 2013-02-15;15:31 6.7 119 220 0

. . .

One more table, Metadata, provides some atemporal meta
information about the stations:

stationId county state latitude longitude . . .
. . .

KBVY Essex Massachusetts 42.58361 -70.91639
KMNI Essex Massachusetts 33.58333 -80.21667

. . .

The monitoring and historical analysis of the weather in-
volves answering queries such as ‘find showery counties,
where one station observes precipitation at the moment,
while another one does not, but observed precipitation 30
minutes ago’.

We use SQL mappings over the Weather table similar to
those in the Siemens case to obtain ground atoms such as

NorthWind(KBVY)@(15:14, 15:24],

HurricaneForceWind(KMNI)@(15:21, 15:31],

Precipitation(KBVY)@(15:14, 15:24],

TempAbove0(KBVY)@(15:14, 15:24],

TempAbove0(KMNI)@(15:21, 15:31]

(according to the standard definition, the hurricane force
wind is above 118 km/h). On the other hand, mappings to
the Metadata table provide atoms such as

LocatedInCounty(KBVY,Essex)@(−∞,∞),

LocatedInState(KBVY,Massachusetts)@(−∞,∞).

Our ontology contains definitions of various meteorological
terms; a few examples are given below:

ShoweryCounty(v)← LocatedInCounty(u1, v) ∧
LocatedInCounty(u2, v) ∧ Precipitation(u1) ∧

NoPrecipitation(u2) ∧ (0,30m]Precipitation(u2),

�[0,1h] Hurricane(v)← �[0,1h]HurricaneForceWind(v),

HurricaneAffectedState(v)← LocatedInState(u, v) ∧
Hurricane(u),

�[0,24h] ExcessiveHeat(v)← �[0,24h]TempAbove24(v) ∧
[0,24h]TempAbove41(v),

1http://mesowest.utah.edu/

HeatAffectedCounty(v)← LocatedInCounty(u, v)∧
ExcessiveHeat(u),

CyclonePatternState(v)← LocatedInState(u1, v) ∧
LocatedInState(u2, v) ∧ LocatedInState(u3, v) ∧

LocatedInState(u4, v) ∧ EastWind(u1) ∧
NorthWind(u2) ∧WestWind(u3) ∧ SouthWind(u4).

5 Experiments

To evaluate the performance of the SQL queries produced
by the datalognrMTL rewriting algorithm outlined above,
we developed two benchmarks for our use cases. We ran
the experiments on an HP Proliant server with 24 Intel
Xeon CPUs (@3.47GHz), 106GB of RAM and five 1TB
15K RPM HD. We used PostgreSQL as a database engine.
The maximum physical memory consumption in our exper-
iments was 12.9GB.
Siemens provided us with a sample of data for one run-
ning turbine, which we denote by tb0, over 4 days in
the form of the table TB_Sensor. The data table was
rather sparse, containing a lot of nulls, because different
sensors recorded data at different frequencies. For exam-
ple, ActivePower arrived most frequently with average pe-
riodicity of 7 seconds, whereas the values for the field
MainFlame arrived most rarely, every 1 minute on av-
erage. We replicated this sample to imitate the data for
one turbine over 10 different periods ranging from 32 to
320 months. The statistics of the data sets is given in Ta-
ble 1a. With a timeout of 30 minutes, we evaluated four
queries ActivePowerTrip(tb0)@x, NormalStart(tb0)@x,
NormalStop(tb0)@x, and NormalRestart(tb0)@x. The ex-
ecution times are given in the picture below, which shows
their linear growth in the number of months and, conse-
quently, in the size of data (confirming theoretical results
since we deal with a single turbine).

0

500

1000

1500

32
0.7

64
1.4

96
2.2

128
2.9

159
3.7

191
4.4

223
5.2

255
5.9

287
6.7

319
7.4

number of months and database size (GB)

ru
nn

ing
 tim

e
(s

ec
on

ds
)

active−power−trip
normal−restart
normal−start
normal−stop

Note that the normal restart (start) query timeouts on the data
for more than 15 (respectively, 20) years, which is more than
enough for the monitoring and diagnostics tasks at Siemens,
where the two most common application scenarios for sen-
sor data analytics are daily monitoring (that is, analytics of
high-frequency data of the previous 24 hours) and fleet-level
analytics of key-performance indicators over one year. In
both cases, the computation time of the results is far less
a crucial cost factor than the lead-time for data preparation.
MesoWest. In contrast to the Siemens case, the weather
tables contain very few nulls. Normally, the data values
arrive with periodicity from 1 to 20 minutes. We tested

1074

months 32 64 96 128 159 191 223 255 287 320
raw size (GB) 0.7 1.4 2.2 2.9 3.7 4.4 5.2 5.9 6.7 7.4
total size (GB) 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

(a) Siemens data for one turbine.
years 1 2 3 4 5 6 7 8 9 10

raw size (GB) 0.3 0.8 1.4 2.0 2.7 3.7 4.9 6.1 7.7 11.0
total size (GB) 0.4 1.1 2.0 2.9 3.9 5.4 7.1 8.9 11.0 14.0

(b) NY weather stations from 2005 to 2014.

states 2 3 4 6 8 10 12 14 17 19
names DE,GA +NY +MD +NJ,RI +MA,CT +LA,VT +ME,WV +NH,NC +MS,SC,ND +KY,SD

raw size (GB) 1.2 2.4 3.1 3.9 5.1 6.1 7.1 8.1 9.2 10.0
total size (GB) 2.0 4.1 5.3 6.5 8.6 10.0 12.0 14.0 16.0 18.0

(c) Weather data for 1–19 states in 2012.

Table 1: The size of the data sets used in the experiments.
Raw size: the size of the data itself stored in PostgreSQL reported by the pg_relation_size function.

Total size: the size of the total data (including the index) stored in PostgreSQL reported by the pg_total_relation_size function.

the performance of our algorithm by increasing (i) the
temporal span (with some necessary increase of the spatial
spread) and (ii) the geographical spread of data. For (i),
we took the New York state data for the 10 continuous
periods between 2005 and 2014; see Table 1b. As each
year around 70 new weather stations were added, our 10
data samples increase more than linearly in size. For (ii),
we fixed the time period of one year (2012) and linearly
increased the data from 1 to 19 states (NY, NJ, MD, DE,
GA, RI, MA, CT, LA, VT, ME, WV, NH, NC, MS, SC,
ND, KY, SD); see Table 1c. In both cases, with a timeout
of 30 minutes, we executed four datalognrMTL queries
ShoweryCounty(v)@x, HurricaneAffectedState(NY)@x,
HeatAffectedCounty(v)@x, CyclonePatternState(NY)@x.
The execution times are given in the pictures below (de-
pending on the number of years in the first case and the
number of states in the second):

0

500

1000

1500

1/229
0.3

2/306
0.8

3/370
1.4

4/441
2.0

5/484
2.7

6/542
3.7

7/595
4.9

8/642
6.1

9/807
7.7

10/874
11.0

number of years/stations and database size (GB)

ru
nn

ing
 tim

e
(s

ec
on

ds
)

CyclonePatternState
HeatAffectedCounty
HurricaneAffectedState
ShoweryPatternCounty

In the experiment (i), we observe a mild non-linear de-
pendency (the growth is even closer to linear if measured
in the size of the data sets, as 70 new stations are added
each year on average). The experiment (ii) exhibits lin-
ear behaviour even though about 500 stations are added
in each new data set. The linear behaviour in that case
can be explained by the fact that the data can be natu-
rally partitioned into ‘chunks’ according to the location
states of the stations so that the chunks are independent
in the sense that, for any query Q and chunks D and D′,
we have Q(D ∪ D′) = Q(D) ∪ Q(D′). Such linear per-

formance is then realised by PostgreSQL taking advan-
tage of proper indexes over individuals and intervals. Note
that the cyclone pattern state query is most expensive be-
cause its definition includes a join of four atoms for winds
in four directions, each with a large volume of instances.

0

500

1000

1500

1/408
1.2

 2/659
 2.4

4/1120
3.1

6/1476
3.9

8/1875
5.1

10/2305
6.1

12/2669
7.1

14/3019
8.1

17/3508
9.2

19/4037
10.0

number of states/stations and database size (GB)

ru
nn

ing
 tim

e
(s

ec
on

ds
)

CyclonePatternState
HeatAffectedCounty
HurricaneAffectedState
ShoweryPatternCounty

Overall, the results of the experiments look very en-
couraging: our datalognrMTL query rewriting algorithm
produces SQL queries that are executable by a standard
database engine PostgreSQL in acceptable time over large
sets of real-world temporal data of up to 11GB. The rel-
atively challenging queries such as NormalRestart and
CyclonePatternState require a large number of temporal
joins, which turn out to be rather expensive. One promis-
ing optimisation could be to employ distributed computing
techniques to further exploit spatial/temporal partitions.

6 Conclusions and Future Work

To facilitate access to sensor temporal data with the aim of
monitoring and diagnostics, we suggested the ontology lan-
guage datalogMTL, a combination of datalog with the Horn
fragment of the metric temporal logic MTL. We showed that
answering datalogMTL queries is EXPSPACE-complete for
combined complexity, but becomes undecidable if the dia-
mond operators are allowed in the head of rules. We also
proved that answering nonrecursive datalogMTL queries is
PSPACE-complete for combined complexity and in AC0

for data complexity. We tested feasibility and efficiency of
OBDA with datalognrMTL on two real-world use cases

1075

by querying Siemens turbine data and MesoWest weather
data. Namely, we designed datalognrMTL ontologies defin-
ing typical concepts used by Siemens engineers and vari-
ous meteorological terms, developed and implemented an al-
gorithm rewriting datalognrMTL queries into SQL queries,
and then executed the SQL queries obtained by this algo-
rithm from our ontologies over the Siemens and MesoWest
data, showing their acceptable efficiency and scalability. (To
the best of our knowledge, this is the first work on practical
OBDA with temporal ontologies, and so no other systems
with similar functionalities are available for comparison.)

Based on these encouraging results, we plan to extend
datalogMTL with the since and until operators and in-
clude our temporal OBDA framework into the Ontop plat-
form (Rodriguez-Muro, Kontchakov, and Zakharyaschev
2013; Kontchakov et al. 2014; Calvanese et al. 2017).2 We
are also working on the streaming data setting, where the
challenge is to continuously evaluate queries over the incom-
ing data.

Acknowledgements

This paper was supported by the EU IP Optique, n. FP7-
318338, and the UK EPSRC project iTract EP/M012670.
We are grateful to Diego Calvanese for helpful discussions.

References

Alur, R., and Henzinger, T. A. 1993. Real-time logics: Com-
plexity and expressiveness. Inf. Comput. 104(1):35–77.
Alur, R.; Feder, T.; and Henzinger, T. A. 1996. The benefits
of relaxing punctuality. J. ACM 43(1):116–146.
Artale, A.; Kontchakov, R.; Wolter, F.; and Zakharyaschev,
M. 2013. Temporal description logic for ontology-based
data access. In Proc. of IJCAI, 711–717. IJCAI/AAAI.
Artale, A.; Kontchakov, R.; Ryzhikov, V.; and Zakharyas-
chev, M. 2014. A cookbook for temporal conceptual data
modelling with description logics. ACM Trans. Comput.
Log. 15(3):25:1–25:50.
Artale, A.; Kontchakov, R.; Kovtunova, A.; Ryzhikov, V.;
Wolter, F.; and Zakharyaschev, M. 2015. First-order
rewritability of temporal ontology-mediated queries. In
Proc. of IJCAI, 2706–2712. IJCAI/AAAI.
Baader, F.; Borgwardt, S.; and Lippmann, M. 2013. Tempo-
ralizing ontology-based data access. In Proc. of the 24th Int.
Conf. on Automated Deduction, CADE-24, volume 7898 of
LNCS, 330–344. Springer.
Borgwardt, S.; Lippmann, M.; and Thost, V. 2013. Temporal
query answering in the description logic DL-Lite. In Proc. of
the 9th Int. Symposium on Frontiers of Combining Systems,
FroCoS’13, volume 8152 of LNCS, 165–180. Springer.
Brandt, S.; Güzel Kalaycı, E.; Kontchakov, R.; Ryzhikov,
V.; Xiao, G.; and Zakharyaschev, M. 2016. Ontology-based
data access with a Horn fragment of metric temporal logic
(technical report). http://www.inf.unibz.it/~gxiao/AAAI-
17-MTL-Datalog-TR.pdf.

2http://ontop.inf.unibz.it/

Bresolin, D.; Kurucz, A.; Muñoz-Velasco, E.; Ryzhikov, V.;
Sciavicco, G.; and Zakharyaschev, M. 2016. Horn fragments
of the Halpern-Shoham interval temporal logic (technical re-
port). CoRR abs/1604.03515.
Calvanese, D.; Cogrel, B.; Komla-Ebri, S.; Kontchakov, R.;
Lanti, D.; Rezk, M.; Rodríguez-Muro, M.; and Xiao, G.
2017. Ontop: Answering SPARQL queries over relational
databases. Semantic Web Journal.
Gutiérrez-Basulto, V., and Klarman, S. 2012. Towards a uni-
fying approach to representing and querying temporal data
in description logics. In Proc. of RR, volume 7497 of LNCS,
90–105. Springer.
Kharlamov, E.; Brandt, S.; Jiménez-Ruiz, E.; Kotidis, Y.;
Lamparter, S.; Mailis, T.; Neuenstadt, C.; Özçep, Ö. L.;
Pinkel, C.; Svingos, C.; Zheleznyakov, D.; Horrocks, I.;
Ioannidis, Y. E.; and Möller, R. 2016. Ontology-based inte-
gration of streaming and static relational data with optique.
In Proc. of the 2016 Int. Conf. on Management of Data, SIG-
MOD Conference 2016, 2109–2112. ACM.
Klarman, S., and Meyer, T. 2014. Querying temporal
databases via OWL 2 QL. In Proc. of the 8th Int. Conf. on
Web Reasoning and Rule Systems, RR 2014, volume 8741 of
LNCS, 92–107. Springer.
Kontchakov, R.; Rezk, M.; Rodriguez-Muro, M.; Xiao, G.;
and Zakharyaschev, M. 2014. Answering SPARQL queries
over databases under OWL 2 QL entailment regime. In Proc.
of ISWC, Part I, volume 8796 of LNCS, 552–567. Springer.
Koymans, R. 1990. Specifying real-time properties with
metric temporal logic. Real-Time Systems 2(4):255–299.
Madnani, K.; Krishna, S. N.; and Pandya, P. K. 2013. On
the decidability and complexity of some fragments of Metric
Temporal Logic. CoRR abs/1305.6137.
Özçep, Ö., and Möller, R. 2014. Ontology based data access
on temporal and streaming data. In the 10th Int. Summer
School on Reasoning Web, RW 2014, volume 8714 of LNCS,
279–312. Springer.
Özçep, Ö.; Möller, R.; Neuenstadt, C.; Zheleznyakov, D.;
and Kharlamov, E. 2013. A semantics for temporal and
stream-based query answering in an OBDA context. Tech-
nical report, Deliverable D5.1, FP7-318338, EU.
Poggi, A.; Lembo, D.; Calvanese, D.; De Giacomo, G.;
Lenzerini, M.; and Rosati, R. 2008. Linking data to on-
tologies. J. on Data Semantics X:133–173.
Rodríguez-Muro, M.; Kontchakov, R.; and Zakharyaschev,
M. 2013. Ontology-based data access: Ontop of databases.
In Proc. of ISWC, Part I, volume 8218 of LNCS, 558–573.
Springer.
Sistla, A., and Clarke, E. 1985. The complexity of proposi-
tional linear temporal logics. J. ACM 32:733–749.
Zhou, X.; Wang, F.; and Zaniolo, C. 2006. Efficient temporal
coalescing query support in relational database systems. In
Proc. of the 17th Int. Conf. on Database and Expert Systems
Applications, DEXA 2006, volume 4080 of LNCS, 676–686.
Springer.

1076

