
A Rule-based Framework for Creating Instance Data
from OpenStreetMap ?

Thomas Eiter1, Jeff Z. Pan3, Patrik Schneider1,4, Mantas Šimkus1, and Guohui Xiao2

1 Institute of Information Systems, Vienna University of Technology, Austria
2 Faculty of Computer Science, Free University of Bozen-Bolzano, Italy

3 University of Aberdeen, UK
4 Vienna University of Economics and Business, Austria

Abstract. Reasoning engines for ontological and rule-based knowledge bases
are becoming increasingly important in areas like the Semantic Web or informa-
tion integration. It has been acknowledged however that judging the performance
of such reasoners and their underlying algorithms is difficult due to the lack of
publicly available datasets with large amounts of (real-life) instance data. In this
paper we describe a framework and a toolbox for creating such datasets, which is
based on extracting instances from the publicly available OpenStreetMap (OSM)
geospatial database. To this end, we give a formalization of OSM and present a
rule-based language to specify the rules to extract instance data from OSM data.
The declarative nature of the approach in combination with external functions
and parameters allows one to create several variants of the dataset via small mod-
ifications of the specification. We describe a highly flexible toolbox to extract
instance data from a given OSM map and a given set of rules. We have employed
our tools to create benchmarks that have already been fruitfully used in practice.

1 Introduction
Reasoning over ontological and rule-based knowledge bases (KBs) is receiving increas-
ing attention. In particular Description Logics (DLs), which provide the logical foun-
dations to OWL ontology languages, are a well-established family of decidable logics
for knowledge representation and reasoning. They offer a range of expressivity well-
aligned with computational complexity. Moreover, several systems have been devel-
oped in the last decade to reason over DL KBs, which usually consist of a TBox that
describes the domain in terms of concepts and roles, an ABox that stores information
about known instances of concepts and their participation in roles.

Naturally, classical reasoning tasks like TBox satisfiability and subsumption under
a TBox have received most attention and many reasoners have been devoted to them.
A different category are reasoners for ontology-based query answering (OQA), which
are designed to answer queries over DL KBs in the presence of large data instances
(see e.g. Ontop [14], Pellet [19],and OWL-BGP [13]). TBoxes in this setting are usu-
ally expressed in low complexity DLs, and are relatively small in size compared to the
instance data. These features make reasoners for OQA different from classical (TBox)

? This work was supported by the Vienna Science and Technology Fund (WWTF) project
ICT12-15, by the Austrian Science Fund (FWF) project P25207, and by the EU project Op-
tique FP7-318338.



reasoners. The DL community is aware that judging the performance of OQA reasoners
and their underlying algorithms is difficult due to the lack of publicly available bench-
marks consisting of large amounts of real-life instance data. In particular, the popular
Lehigh University Benchmark (LUBM) [10] only allows to generate random instance
data, which provides only a limited insight into the performance of OQA systems.

In this paper, we consider publicly available geographic datasets as a source of
test data for OQA systems and other types of reasoners. For the benchmark creation,
we need a framework and a toolbox for extracting and enhancing instance data from
OpenStreetMap (OSM) geospatial data.5 The OSM project aims to collaboratively cre-
ate an open map of the world. It has proven hugely successful and the map is con-
stantly updated and extended. OSM data describes maps in terms of (possibly tagged)
points, geometries, and more complex aggregate objects called relations. We believe
the following features make OSM a good source to obtain instance data for reason-
ers: (a) Datasets of different sizes exist; e.g., OSM maps for all major cities, countries,
and continents are directly available or can be easily generated. (b) Depending on the
location (e.g., urban versus rural), the density, separation, and compactness of object
location varies strongly.6 (c) Spatial objects have an inherent structure of containment,
bordering, and overlapping, which can be exploited to generate spatial relations (e.g.,
contains). (d) Spatial objects are usually tagged with semantic information like the
type of an object (e.g., hospitals, smoking area), or the cuisine of a restaurant. In the
DL world this information can be naturally represented in terms of concepts and roles.

Motivated by this, we present a rule-based framework and a toolbox to create bench-
mark instances from OSM datasets. Briefly, the main contributions are the following:
- We give a model-based formalization of OSM datasets which aims at abstracting from

the currently employed but rather ad-hoc XML or object-relational representation. It
allows one to view OSM maps as relational structures, possibly enriched with com-
putable predicates like the spatial relations contains or next.

- Building on the above formalization, we present a rule-based language to extract
information from OSM datasets (viewed as relational structures). In particular, a user
can specify declarative rules which prescribe how to transform elements of an OSM
map into ABox assertions. Different benchmark ABoxes can be created via small
modifications of external functions, input parameter, and the rules of the specification.

- Our language is based on an extension of Datalog, which enjoys clear and well ac-
cepted semantics [1]. It has convenient features useful for benchmark generation.

- We have implemented a toolbox to create ABoxes from given input sources (e.g. an
OSM database) and a given set of rules. The toolbox is highly configurable and can
operate on various input/output sources, like RDF datasets, RDBMSs, and external
functions. The input and result quality is measurable using descriptive statistics.

- By employing the above generation toolbox, we show on a proof-of-concept bench-
mark, how configurable and extensible the framework is. The toolbox has been al-
ready fruitfully been used for two benchmarks [5, 7].

Our framework and toolbox provide an attractive means to develop tailored bench-
marks for evaluating query answering systems, to gain new insights about them.

5 http://www.openstreetmap.org
6 E.g., visible in https://www.mapbox.com/osm-data-report/



2 Formalization of OSM
In this section we formally describe our model for OSM data, which we later employ
to describe our rule-based language to extract instance data from OSM data. Maps in
OSM are represented using four basic constructs (a.k.a. elements):7

- nodes, which correspond to points with a geographic location;
- geometries (a.k.a. ways), which are given as sequences of nodes;
- tuples (a.k.a. relations), which are a sequences of nodes, geometries, and tuples;
- tags, which are used to describe metadata about nodes, geometries, and tuples.

Geometries are used in OSM to express polylines and polygons, in this way describing
streets, rivers, parks, etc. OSM tuples are used to relate several elements, e.g. to indicate
the turn priority in an intersection of two streets.

To formalize OSM maps, which in practice are encoded in XML, we assume in-
finite mutually disjoint sets Mnid,Mgid,Mtid and Mtags of node identifiers, geometry
identifiers, tuple identifiers and tags, respectively. We let Mid = Mnid ∪Mgid ∪Mtid and
call it the set of identifiers. An (OSM) map is a tripleM = (D, E ,L) as follows.
1. D ⊆ Mid is a finite set of identifiers called the domain ofM.
2. E is a function from D such that:

(a) if e ∈ Mnid, then E(e) ∈ R×R;
(b) if e ∈ Mgid, then E(e) = (e1, . . . , em) with {e1, . . . , em} ⊆ D ∩Mnid;
(c) if e ∈ Mtid, then E(e) = (e1, . . . , em) with {e1, . . . , em} ⊆ D.

3. L is a labeling function L : D → 2Mtags .
Intuitively, in a map M = (D, E ,L) the function E assigns to each node identifier a
coordinate, to each geometry identifier a sequence of nodes, and to each tuple identifier
a sequence of arbitrary identifiers.

Example 1. Assume we want to represent a bus route that, for the sake of simplicity,
goes in a straight line from the point with coordinate (0, 0) to the point with coordinate
(2, 0). In addition, the bus stops are at 3 locations with coordinates (0, 0), (1, 0) and
(2, 0). The names of the 3 stops are S0, S1 and S2, respectively. This can be represented
via the following mapM = (D, E ,L), where

- D = {n0, n1, n2, g, t} with {n0, n1, n2} ⊆ Mnid, g ∈ Mgid and t ∈ Mtid,
- E(n0) = (0, 0), E(n1) = (1, 0), E(n2) = (2, 0),
- E(g) = (n0, n2) and E(t) = (g, n0, n1, n2),
- L(n0) = {S0}, L(n1) = {S1} and L(n2) = {S2}.

The tuple (g, n0, n1, n2) encodes the 3 stops n0, n1, n2 tied to the route given by g.

Enriching Maps with Computable Relations. The above formalizes the raw repre-
sentation of OSM data. To make it accessible to rules, we allow to enrich maps with
arbitrary computable relations over Mid. In this way, we support incorporation of infor-
mation that need not be given explicitly but can be computed from a map. Let Mrels be an
infinite set of map relation symbols, each with an associated nonnegative integer, called
the arity. An enriched map is a tuple M = (D, E ,L, ·M), where (D, E ,L) is a map
and ·M is a partial function that assigns to a map relation symbol R ∈ Mrels a relation
RM ⊆ Dn, where n is the arity of R. In this way, a map can be enriched with exter-
nally computed spatial relations like the binary relations “is closer than 100m”, “inside

7 For clarity, we rename the expressions used in OSM.



a country”, “reachable from”, etc. For the examples below, we assume that an enriched
mapM as above always defines the unary relation Tagα for every tag α ∈ Mtags. In
particular, we let e ∈ TagMα iff α ∈ L(e), where e ∈ D. We will also use unary rela-
tions Point and Geom for points and geometries, and the binary relation Inside, where
Inside(x, y) will mean that the point x is located inside the geometry y.

3 A Rule Language for Data Transformation
We define a rule-based language that can be used to describe how an ABox is created
from an enriched map. Our language is based on Datalog with stratified negation [1].

Let Drels be an infinite set of Datalog relation symbols, each with an associated arity.
For simplicity, and with a slight abuse of notation, we assume that DL concept and role
names form a subset of Datalog relations. Formally, we take an infinite set Dconcepts ⊆
Drels of unary relations called concept names and an infinite set Droles ⊆ Drels of binary
relations called role names. Let Dvars be a countably infinite set of variables. Elements
of Mid ∪ Dvars are called terms.

An atom is an expression R(t) or not R(t), where R is a map or a Datalog re-
lation symbol of arity n, and t is an n-tuple of terms. We call R(t) and not R(t) a
positive atom and a negative atom, respectively. A rule r is an expression of the form
B1, . . . , Bn → H, where B1, . . . , Bn are atoms (called body atoms) and H is a posi-
tive atom with a Datalog relation symbol (called the head atom). We use body+(r) and
body−(r) for the sets of positive and negative atoms in {B1, . . . , Bn}, respectively. We
assume (Datalog) safety, i.e. each variable of r occurs in body+(r). A program P is any
finite set of rules. A rule or program is ground if it has no occurrences of variables. A
rule r is positive if body−(r) = ∅. A program P is positive if all rules of P are positive.
A program P is stratified if it can be partitioned into programs P1, . . . , Pn such that:

(i) If r ∈ Pi and not R(t) ∈ body−(r), then there is no j ≥ i such that Pj has a
rule with R occurring in the head.

(ii) If r ∈ Pi and R(t) ∈ body+(r), then there is no j > i such that Pj has a rule
with R occurring in the head.

The semantics of a program P is given relative to an enriched mapM. Its ground
program ground(P,M) can be obtained from P by replacing in all possible ways the
variables in rules of P with identifiers occurring in M or P . We use a variant of the
Gelfond-Lifschitz reduct [9] to get rid of map atoms in a program. The reduct of P
w.r.t.M is the program PM obtained from ground(P,M) as follows:

(a) Delete from the body of every rule r every map atom not R(t) with t 6∈ RM.
(b) Delete every rule r whose body contains a map atom not R(t) with t ∈ RM.

Observe that PM is an ordinary stratified Datalog program with identifiers acting as
constants. We let PM(M, P ) denote the perfect model of the program PM. See [1]
for the construction of PM(M, P ) by fix-point computation along the stratification.
We are now ready to extract an ABox. Given a mapM and a program P , we denote by
ABox(M, P ) the restriction of PM(M, P ) to the atoms over concept and role names.

We next illustrate some features of our rule language. The basic available service is
to extract instances of concepts or roles by posing a standard conjunctive query over an
OSM map. F.i., the following rule collects in the role hasCinema the cinemas of a city
(we use sans-serif and typewriter font for map and Datalog relations, respectively):



Point(x),Tagcinema(x),Geom(y),Tagcity(y), Inside(x, y)→ hasCinema(y, x).

Negation in rule bodies can be used for default, closed-world conclusions. E.g., the
rule states that recreational areas include all parks that are not known to be private:

Geom(x),Tagpark(x),not Tagprivate(x)→ RecreationalArea(x)

Recursion is also useful and e.g., allows to deal with reachability, which appears
naturally and in many forms in the context of geographic data. E.g. suppose we want to
collect pairs b1, b2 of bus stops such that b2 is reachable from b1 using public buses. To
this end, we can assume the availability of an external binary relation hasStop which
relates bus routes and their stops, i.e. hasStop(x, y) is true in case x is a geometry
identifier corresponding to a bus route and y is a point identifier corresponding to a bus
stop in the route represented by x. Then the desired pairs of bus stops can be collected
in the role ReachByBus using the following recursive rules:

hasStop(x, y1), hasStop(x, y2)→ ReachByBus(y1, y2)

ReachByBus(y1, y2), ReachByBus(y2, y3)→ ReachByBus(y1, y3).

Extending the Rule Language with ETL Features. We introduce a custom language
for the benchmark generation, which extends the Datalog language of the previous para-
graph with extract, transform, and load (ETL) features. The combined language con-
sists of Data Source Declarations, Mapping Axioms, and Datalog Rules. Data Source
Declarations contain general definitions like RDBMS connection strings. A mapping
axiom defines a single ETL step, where the syntax is an extension of the Ontop map-
ping language. It is defined either as a pair of source and target or as a triple of source,
transform, and target: Each pair/triple has a first column containing a constant, a second
column referring to the data source declarations, and a third column, which is modified
depending on the source, target, or transformation line, respectively.8

4 Benchmarking Framework
The rule language L of the previous section gives us the means to define the data
transformations. We combine the language with an OSM database S, an input ontol-
ogy O (a.k.a TBox), a set Q of conjunctive or SPARQL queries, the generation pa-
rameters P , and external functions F . The benchmark framework is denoted as F =
〈S,O,Q,L,P,F〉 and produces a set of ABox instances denoted asA = (A1, . . . , An).
Note that F might modify O slightly.
Workflow. The workflow of creating a benchmark and evaluating the respective rea-
soners can be split into an initial and a repeating part. The initial part consists of the
following elements: First, one has to choose the ontology O and decide which ontol-
ogy language should be investigated. The ontology statistics gives a first impression on
the expressivity of the language such as DL-LiteR [4] or EL [2]. Then, O has to be
customized (e.g., remove axioms) and loaded to the system. For Q, either handcrafted
queries (related to a practical domain) have to built or synthetic queries have to be gen-
erated (e.g., Sygenia [11]). After the initial part, we are able to generate the instance
data for the fixed O and Q. This part of the workflow can be repeated until certain
properties are reached. It has the following steps:

8 See the detailed syntax, prerequisites, and tools on https://github.com/ghxiao/city-bench



 
E

TL
 M

od
e

D
at

al
og

 M
od

e

Transformation Step

Postgres
Databases

RDF Files

Datalog Evaluation

Text Reader

Database
Reader

RDF Reader

External
Script

Reader

External
Scripts

Text Files

Text Writer

Database
Writer

Stdout

reads
reads

reads

executes

writes

writes

executes

writes

Mapping File

Input

executes

Fig. 1: System architecture, full lines are the control and dotted lines are the data flow

1. Creating an OSM database S with several instances, i.e., cities or countries;8

2. Applying dataset statistics to get a broad overview of the dataset, which leads to
the selection of “interesting” datasets from S;

3. Creating the rules of L to define the transformation for the instance generation and
defining the parameters P and choosing the needed external functions of F ;

4. Calling the generation toolbox (see Section 5) and create the instances of A;
5. Using ABox statistics to evaluate A′s quality, if not satisfactory, repeat from 3.;

Descriptive Statistics. For the benchmark creation, descriptive statistics serves two
purposes. First, it gives a broad picture of the datasets, which is important to formulate
the mapping rules. Second, we use the statistics to guide and fine tune the instance
generation. I.e., for generating the next relation, different distances can be calculated
leading to different sizes of A. Descriptive statistics can be applied on three levels. On
the ontology level, ontology metrics regarding O can be produced using owl-toolkit9 to
calculate the number of concepts, roles, and axioms (e.g., sub-concept). On the dataset
level, we provide general information on the selected OSM database instance including
the main elements Points, Lines, Roads, and Polygons and details about frequent item
sets [3] of keys and tags. On the ABox level we provide the statistics of the generated
instances in A. For this, we count the assertion in A for every atomic concept or role
name ofO. For future work, we aim to estimate the instances based on the subsumption
graph for the entire concept/role hierarchy.
External Functions and Parameters. External functions bridge the gap between L
and external computations. They allow us to develop dataset-specific customization and
functionalities, where the results (atoms) are associated with predicates of L. In Table 1,
we list the currently available external functions. In addition, we provide the functions
deleteRandom and deleteByFilter which drop instances randomly or filter out instances

9 https://github.com/ghxiao/owl-toolkit



Table 1: Available External Functions
Name Description Predicate

transformOSM generates from OSM tags atoms which represent concepts/roles
of O. It has to be customized to the signature of O.

TagPark(x)

transformOSM-
Random

instead of generating directly from OSM tags, it generates
atoms according to a probabilities P assigned to a set O of OSM
tags, e.g., P (PublicPark)=0.8 and P (PrivatePark)=0.2.

TagP,O(x)

generateSpatial-
Relation

generates the spatial relations contains or next, where a
threshold parameter for the object distance can be given.

next10m(x, y)

generateStreet-
Graph

generates the road/transport graph by creating instances for
edges and vertices based on streets and corners between them.

connected(x, y)
Tagcorner(x)

from A. The parameters are the means to fine-tune the generation. They are often not
directly observable, hence we need the statistics tool to get a better understanding of
data sources. From recent literature [20, 16], we identified the following parameters for
the instance generation:
- ABox Size: choice of the OSM instance (e.g., major cities or countries), but also by

applying deleteRandom and deleteByFilter;
- Degree of ABox Saturation: can be indirectly manipulated by the use of Datalog rules

in L to generate instances which otherwise would be deduced.
- Distribution/Density of Nominal/Numeric Values: input for transformOSMRandom;
- Selectivity of Concept/Role Assertions: input for transformOSM and transformOSM-

Random and choice of OSM instances;
- Graph Structure: choice of OSM instance and selected graph (e.g., road vs. public

transport network) for generateStreetGraph.

5 Implementation
We have developed for the framework a generation toolbox in Python 2.7. The main
script generate.py is called as follows: generate.py –mappingFile mapping.txt

Modes. We provide two different modes with different evaluation strategies. The Direct
mode is designed for simple bulk processing, where scalability and performance is cru-
cial and complex calculations are moved to custom external scripts. We implemented
the computation in a data streaming-based manner. The target components could be
extended to custom triple stores like Jena TDB. The mapping axioms are evaluated in
sequential order, hence dependencies between sources and targets are not considered.
The Datalog mode extends the Direct mode and is designed for Datalog programs using
the DLV system for evaluation.10 The Datalog results are calculated in-memory and we
follow a three-layered computation: 1. Previous ETL steps are evaluated to create the
fact files for the EDB; 2. The defined Datalog programs (maintained in external files)
are evaluated on the EDB files with the DLV module; 3. The (filtered) results (i.e., per-
fect models) are parsed and converted to tuples which then can be used by any target
component. For now, we only handle a single model due to stratified Datalog.

10 http://www.dlvsystem.com/dlv/



Table 2: Cities Dataset
City #Points #Lines #Poly

Cork 6 068 14 378 4 934
Riga 19 172 43 042 67 708
Bern 68 831 83 351 151 195
Vienna 245 107 151 863 242 576
Berlin 236 114 218 664 430 652

Table 3: Road Network Instances
#Road #Node #connect #Shop #Bank #opr #next50

6 476 45 459 46 013 278 36 36 750
6 620 35 107 37 007 827 102 102 1 408
17 995 130 849 134 670 1 539 120 120 10 285
40 915 191 220 207 429 5 259 506 506 23 151
46 320 204 342 226 554 9 791 588 588 81 911

Architecture. In Figure 1, we show the architecture of the framework. It naturally re-
sults from the two modes and the source and target components. The following source
and target components are implemented. For Text files, we use the standard functions of
Python for reading, writing, and evaluating regular expressions. For RDF files, which
are accessed by SPARQL queries, we leverage the functions of the rdflib library. At
present for RDBMSs, we only include access to the spatial-extended RDBMS Post-
GIS 2.12 (for PostgreSQL), which is the most common system for OSM.

External Functions and Statistics. Besides the main script, we implemented Python
scripts for the external functions from Section 4 for processing the (OSM) data. The
list of implemented functions (e.g., GenerateStreetGraph.py) is available online.8

StatsOSM.py and StatsABox.py are the statistical scripts for estimating the struc-
ture of the ABox and the main OSM elements. It calculates the values for the most
used field/tag combination. Additionally, we find the most frequent item sets using the
FP-Growth algorithm.11 For the ABox, we use the rdflib library to count and report the
basic concept and role assertions.

6 Example Benchmark

In this section, we demonstrate how the framework can be applied to generate a proof-
of-concept benchmark for OQA systems. All the mapping files, test datasets, and statis-
tics are available online.12

OSM Dataset and Benchmark Ontology. There are different subsets of different
sizes and structures available for OSM. For this example, we chose the cities of Cork,
Riga, Bern, Vienna, and Berlin.13 Using the dataset statistics module for Vienna, we
observe for the field Shop 816 supermarkets, 453 hairdressers, 380 bakeries. For the
field Highway, we have 29 392 residential, 4 087 secondary, and 3 973 primary streets.

The DL-LiteR [4] benchmark ontology is taken from the MyITS project [6]. It is
tailored to geospatial and project specific data sources (e.g., a restaurant guide). The
ontology is for OQA systems of average difficulty having only a few existential quan-
tification on the right-hand side of the inclusion axioms. Due to its size and concept and
role hierarchy depth, it poses a challenge regarding the rewritten query size.

11 https://github.com/enaeseth/python-fp-growth
12 https://github.com/ghxiao/city-bench/tree/master/benchmarks/rr2015
13 Downloaded on the 1.10.14 from http://download.bbbike.org/osm/bbbike/



Creation of the Street Network. Besides creating the concept assertions for banks
and shops, we extract the road network of the cities using the external function generat-
eStreetGraph and encode the different roads into a single road graph. The road graph is
represented by nodes which are asserted to the concept Point and by edges which are
asserted to the role connected. By increasing the distances (e.g., from 50m to 100m)
we saturate the next relation and generate more instances. Further, we use Datalog
rules to calculate all paths (i.e. the transitive closure) of the street graph. The ABox
statistics is shown in Table 2, the cities are of increasing size, starting with Cork (25
000 objects) and ending with Berlin (885 000 objects).

7 Related Work
In addition to the “de facto” standard benchmark LUBM [10] and extended LUBM [16]
with randomly generated instance data with a fixed ontology, several other works deal
with testing OQA systems. They can be divided along conceptional reasoning, query
generation, mere datasets, synthetic and real-life instance generation. The benchmarks
provided by [18] consist of a set of ontologies and handcrafted queries, tailored for
testing query rewriting techniques. These benchmarks are a popular choice for compar-
ing the sizes of generated queries. In [20], the authors have provided tools to generate
ABoxes for estimating the incompleteness of a given OQA system. In a similar spirit
is [11], which provides tools to automatically generate conjunctive queries for testing
correctness of OQA systems. The same authors also provide a collection of benchmarks
for evaluating query rewriting systems [17]. They did not offer any novel generation
tool. The work of [15] for OBDA is designed based on real data from the Norwegian
Petroleum Directorate FactPages. However, it is focused solely on a fixed DL-LiteR
ontology and queries. None of the above benchmarks provide large amounts of real-life
instance data and an extended framework including various parameters and external
functions. Furthermore, most of the mentioned approaches do not consider an iterative
generation process using statistics to guide the generation. In the area of Spatial Se-
mantic Web systems, a couple of benchmarks have been proposed to test geospatial
extensions of SPARQL including the spatial extension of LUBM in [12] and the Ge-
ographica benchmark [8]. They are pre-computed and Queries geared towards testing
spatial reasoning capabilities of systems, but not designed with OQA in mind.

8 Conclusion and Outlook
We have presented a flexible framework for generating instance data from a geospa-
tial database for OQA systems. In particular, we have introduced a formalization of
OSM and a Datalog-based mapping language as the formal underpinning of the frame-
work. Datalog offers powerful features such as recursion and negation for benchmark
generation. We have implemented an instance generation tool supporting the main Dat-
alog mode and a simple Direct (extract-transform-load) mode for several types of input
sources. Finally, we have demonstrated our approach on a proof-of-concept benchmark.

Future research is naturally directed to variants and extensions of the presented
framework. We aim to extend the implementation to capture more input and output
sources, further parameters (e.g. various degrees of graph connectedness) and services.
Furthermore, a tighter integration of the Datalog solver/engine and the source/target



components using dlvhex14 is desired, which leads to a more efficient evaluation and
more advanced capabilities (e.g., creating different ABoxes using all calculated answer
sets). Then, we aim to apply our framework to generate benchmarks for an extensive
study of different OQA reasoners with different underlying technologies. Finally, the
instance assertion statistics could be extended to the full subsumption graph.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
2. F. Baader, S. Brand, and C. Lutz. Pushing the EL envelope. In Proc. of IJCAI 2005, pages

364–369. Morgan-Kaufmann Publishers, 2005.
3. C. Borgelt. Frequent item set mining. Wiley Interdisc. Rew.: Data Mining and Knowledge

Discovery, 2(6):437–456, 2012.
4. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning

and efficient query answering in description logics: The dl-lite family. J. Autom. Reasoning,
39(3):385–429, 2007.

5. T. Eiter, M. Fink, and D. Stepanova. Computing repairs for inconsistent dl-programs over
EL ontologies. In Proc. of JELIA 2014, pages 426–441, 2014.

6. T. Eiter, T. Krennwallner, and P. Schneider. Lightweight spatial conjunctive query answering
using keywords. In Proc. of ESWC 2013, pages 243–258, 2013.

7. T. Eiter, P. Schneider, M. Simkus, and G. Xiao. Using openstreetmap data to create bench-
marks for description logic reasoners. In Workshop proc. of ORE 2014, July 2014.

8. George Garbis, Kostis Kyzirakos, and Manolis Koubarakis. Geographica: A benchmark for
geospatial rdf stores (long version). In Proc. of ISWC 2013, pages 343–359. Springer, 2013.

9. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proc. of
ICLP/SLP 1988, volume 88, pages 1070–1080, 1988.

10. Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge base systems. Web
Semantics, 3(2-3):158 – 182, 2005.

11. M. Imprialou, G. Stoilos, and B. Cuenca Grau. Benchmarking ontology-based query rewrit-
ing systems. In Proc. of AAAI 2012, 2012.

12. D. Kolas. A benchmark for spatial semantic web systems. In 4th International Workshop on
Scalable Semantic Web Knowledge Base Systems (SSWS2008), October 2008.

13. I. Kollia and B. Glimm. Optimizing SPARQL query answering over OWL ontologies. J.
Artif. Intell. Res. (JAIR), 48:253–303, 2013.

14. R. Kontchakov, M. Rezk, M. Rodriguez-Muro, G. Xiao, and M. Zakharyaschev. Answer-
ing SPARQL queries over databases under OWL 2 QL entailment regime. In Proc. of
ISWC 2014. Springer, 2014.

15. D. Lanti, M. Rezk, G. Xiao, and D. Calvanese. The NPD benchmark: Reality check for
OBDA systems. In Proc. of EDBT 2015. ACM Press, 2015.

16. L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, and S. Liu. Towards a complete OWL ontology
benchmark. In Proc. of ESWC 2006, pages 125–139. Springer.

17. J. Mora and O. Corcho. Towards a systematic benchmarking of ontology-based query rewrit-
ing systems. In Proc. of ISWC 2013, pages 376–391. Springer, 2013.

18. H. Pérez-Urbina, I. Horrocks, and B. Motik. Efficient query answering for OWL 2. In
Proc. of ISWC 2009, pages 489–504, 2009.

19. E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical OWL-DL
reasoner. J. Web Sem., 5(2):51–53, 2007.

20. G. Stoilos, B. Cuenca Grau, and I. Horrocks. How incomplete is your semantic web rea-
soner? In Proc. of AAAI 2010. AAAI Press, 2010.

14 http://www.kr.tuwien.ac.at/research/systems/dlvhex/


