
The NPD Benchmark for OBDA Systems

Davide Lanti, Martin Rezk, Mindaugas Slusnys, Guohui Xiao, and Diego Calvanese

Faculty of Computer Science, Free University of Bozen-Bolzano, Italy

Abstract. In Ontology-Based Data Access (OBDA), queries are posed over a
high-level conceptual view, and then translated into queries over a potentially
very large (usually relational) data source. The ontology is connected to the data
sources through a declarative specification given in terms of mappings. Although
prototype OBDA systems providing the ability to answer SPARQL queries over the
ontology are available, a significant challenge remains: performance. To properly
evaluate OBDA systems, benchmarks tailored towards the requirements in this
setting are needed. OWL benchmarks, which have been developed to test the
performance of generic SPARQL query engines, however, fail to evaluate OBDA
specific features. In this work, we propose a novel benchmark for OBDA systems
based on the Norwegian Petroleum Directorate (NPD). Our benchmark comes
with novel techniques to generate, from available data, datasets of increasing size,
taking into account the requirements dictated by the OBDA setting. We validate
our benchmark on significant OBDA systems, showing that it is more adequate
than previous benchmarks not tailored for OBDA.

1 Introduction
In Ontology-Based Data Access (OBDA), queries are posed over a high-level con-

ceptual view, and then translated into queries over a potentially very large (usually
relational) data source. The conceptual layer is given in the form of an ontology that
defines a shared vocabulary. The ontology is connected to the data sources through a
declarative specification given in terms of mappings that relate each (class and property)
symbol in the ontology to a (SQL) view over the data. The W3C standard R2RML [10],
was created with the goal of providing a standardized language for the specification of
mappings in the OBDA setting. The ontology and expose a virtual instance (RDF graph)
that can be queried using the de facto query language in the Semantic Web community:
SPARQL. To properly evaluate the performance of OBDA systems, benchmarks tailored
towards the requirements in this setting are needed. OWL benchmarks, which have been
developed to test the performance of generic SPARQL query engines, however, fail at
1) exhibiting a complex real-world ontology, 2) providing challenging real world queries,
3) providing large amounts of real world data, and the possibility to test a system over
data of increasing size, and 4) capturing important OBDA-specific measures related to
the rewriting-based query answering approach in OBDA.

In this work, we propose a novel benchmark for OBDA systems based on the
Norwegian Petroleum Directorate (NPD), which is a real world use-case adopted in the
EU project Optique1. In the benchmark, which is available online2, we adopt the NPD

1 http://www.optique-project.eu/
2 https://github.com/ontop/npd-benchmark

2 Davide Lanti, Martin Rezk, Mindaugas Slusnys, Guohui Xiao, and Diego Calvanese

Fact Pages as dataset, the NPD Ontology, which has been mapped to the NPD Fact Pages
stored in a relational database, and queries over such an ontology developed by domain
experts. One of the main challenges we address here has been to develop a data generator
for generating datasets of increasing size, starting from the available data. This problem
has been studied before in the context of databases [2], where increasing the data size
is achieved by encoding domain-specific information into the data generator [9, 4, 5].
One drawback of this approach is that each benchmark requires its ad-hoc generator,
and also that it disregards OBDA specific aspects. In the context of triple stores, [25, 14]
present an interesting approach based on machine learning. Unfortunately, the approach
proposed in these papers is specifically tailored for triple stores, and thus it is not directly
applicable to the OBDA settings.

In Section 2, we present the necessary requirements for an OBDA Benchmark. In
Section 3, we discuss the requirements for an OBDA instance generator. In Section 4, we
present the NPD benchmark and an associated relational database generator that gives
rise to a virtual instance through the mapping; we call our generator Virtual Instance
Generator (VIG). In Section 5, we perform a qualitative analysis of the virtual instances
obtained using VIG. In Section 6, we carry out a validation of our benchmark, showing
that it is more adequate than previous benchmarks not tailored for OBDA. We conclude
in Section 7.

2 Requirements for Benchmarking OBDA
In this section we study the requirements that are necessary for a benchmark to

evaluate OBDA systems. In order to define these requirements, we first recall that the
three fundamental components of such systems are: (i) the conceptual layer constituted
by the ontology; (ii) the data layer provided by the data sources; and (iii) the mapping
layer containing the declarative specification connecting the ontological terms to the
data sources. It is this mapping layer that decouples the virtual instance being queried,
from the physical data stored in the data sources. Observe that triple stores cannot be
considered as full-fledged OBDA systems, since they do not make a distinction between
physical and virtual layer. However, given that both, OBDA systems and triple stores,
are considered as (usually SPARQL) query answering systems, we consider it important
that a benchmark for OBDA can also be used to evaluate triple stores. Also, since one
of the components of an OBDA system is an ontology, the requirements we identify
include those to evaluate general knowledge based systems [18, 14, 25]. However, due to
the additional components, there are also notable differences.

Typically OBDA systems follow the workflow below for query answering:

1. Starting phase. The system loads the ontology, the mappings, and performs some
auxiliary tasks needed to process/answer queries in a later stage. Depending on the
system, this step step might be critical, since it might include some reasoning tasks,
for example inference materialization or the embedding of the inferences into the
mappings (T-mappings [20]).

2. Query rewriting phase. The input query is rewritten to a (maybe more complex)
query that takes into account the inferences induced by the intensional level of the
ontology (we forward the interested reader to [16]).

3. Query translation (unfolding) phase. The rewritten query is transformed into a query
over the data sources. This is the phase where the mapping layer comes into play.

The NPD Benchmark for OBDA Systems 3

Table 1: Measures for OBDA
Performance Metrics

name triple store related to phase

Loading Time (T) 1
Rewriting Time (T∗) 2
Unfolding Time — 3
Query execution time (T) 4
Overall response time (T) 2, 3, 4

Quality Metrics
Simplicity R Query (T∗) 2
Simplicity U Query — 3
Weight of R+U (T∗) 2, 3, 4

4. Query execution phase. The data query is executed over the original data source,
answers are produced according to the data source schema, and are translated into
answers in terms of the ontology vocabulary and RDF data types, thus obtaining an
answer for the original input query.

Note that a variation of the above workflow has actually been proposed in [18], but
without identifying a distinct starting phase, and singling out a result translation phase
from query execution. There are several approaches to deal with Phase 2 [16, 24]. The
most challenging task in this phase is to deal with existentials in the right-hand side
of ontology axioms. These axioms infer unnamed individuals in the virtual instance
that cannot be retrieved as part of the answer, but can affect the evaluation of the query.
An approach that has proved to produce good results in practice is the tree-witness
rewriting technique, for which we refer to [16]. For us, it is only important to observe
that tree-witnesses lead to an extension of the original query to account for matching in
the existentially implied part of the virtual instance. Below, we take the number of tree-
witnesses identified in Phase 2 as one of the parameters to measure the complexity of the
combination ontology/query. Since existentials do not occur very often in practice [16],
and can produce an exponential blow-up in the query size, some systems allow to turn
off the part of Phase 2 that deals with reasoning with respect to existentials.

Ideally, an OBDA benchmark should provide meaningful measures for each of
these phases. Unfortunately, such a fine-grained analysis is not always possible, for
instance because the system comes into the form of a black-box with proprietary code
with no APIs providing the necessary information, e.g., the access to the rewritten
query; or because a system combines one or more phases, e.g., query rewriting and
query translation. Based on the above phases, we identify the measures important for
evaluating OBDA systems in Table 1. The meaning of the Performance Measures is
clear from the name, but we will give a brief explanation of the meaning of the Quality
Metrics:

– Simplicity R Query. Simplicity of the rewritten query in terms of language dependent
measures, like the number of rules in case the rewritten query is a datalog program.
In addition, one can include system-dependent features, e.g., # of tree-witnesses in
Ontop .

4 Davide Lanti, Martin Rezk, Mindaugas Slusnys, Guohui Xiao, and Diego Calvanese

– Simplicity U Query. This measures the simplicity of the query over the data source,
including relevant SQL-specific metrics like the number of joins/left-join, the
number of inner queries, etc.

– Weight of R+U. It is the cost of the construction of the SQL query divided by the
overall cost.

We label with (T) those measures that are also valid for triple stores, and with (T∗) those
that are valid only if the triple store is based on query rewriting (e.g., Stardog). Notice
that the two Simplicity measures, even when retrievable, are not always suitable for
comparing different OBDA systems. For example, it might not be possible to compare
the simplicity of queries in the various phases, when such queries are expressed in
different languages.

With these measures in mind, the different components of the benchmark should
be designed so as to reveal strengths and weaknesses of a system in each phase. The
conclusions drawn from the benchmark are more significant if the benchmark resembles
a typical real-world scenario in terms of the complexity of the ontology and queries and
size of the data set. Therefore, we consider the requirements in Table 2.

Table 2: Benchmark Requirements
O1 Q1 M1

The ontology should include
rich hierarchies of classes and
properties.

The query set should be
based on actual user queries.

The mappings should be de-
fined for elements of most hi-
erarchies.

O2 Q2 M2
The ontology should contain
a rich set of axioms that infer
new objects and could lead to
inconsistency, in order to test
the reasoner capabilities.

The query set should be com-
plex enough to challenge the
query rewriter.

The mappings should con-
tain redundancies, and subop-
timal SQL queries to test op-
timizations.

D1 D2 S1
The virtual instance should
be based on real world data.

The size of the virtual in-
stance should be tunable.

The languages of the on-
tology, mapping, and query
should be standard, i.e.,
based on R2RML, SPARQL,
and OWL respectively.

The current benchmarks available for OBDA do not meet several of the requirements
above. Next we list some of the best known benchmarks and their shortcomings when it
comes to evaluate OBDA systems. We show general statistics in Table 3.

Adolena: Designed in order to extend the South African National Accessibility Por-
tal [15] with OBDA capabilities. It provides a rich class hierarchy, but a quite poor
structure for properties. This means that queries over this ontology will usually be
devoid of tree-witnesses. No data-generator is included, nor mappings.
Requirements Missing: O1, Q2, D2, S1

LUBM: The Lehigh University Benchmark (LUBM) [13] consists of a university
domain ontology, data, and queries. For data generation, the UBA (Univ-Bench

The NPD Benchmark for OBDA Systems 5

Table 3: Popular Benchmark Ontologies: Statistics
Ontology Stats. (Total) Queries Stats. (Max)

name #classes #obj/data prop #i-axioms #joins #opt #tw

adolena 141 16 189 5 0 0
lubm 43 32 91 7 0 0
dbpedia 530 2148 3836 7 8 0
bsbm 8 40 0 14 4 0
fishmark 11 94 174 24 12 0

Artificial) data generator is available. However, the ontology is rather small, and the
benchmark is not tailored towards OBDA, since no mappings to a (relational) data
source are provided.
Requirements Missing: O1, Q2, M1, M2, D1

DBpedia: The DBpedia benchmark consists of a relatively large—yet, simple3—
ontology, a set of user queries chosen among the most popular queries posed against
the DBpedia4 SPARQL endpoint, and a synthetic RDF data generator able to
generate data having similar properties to the real-world data. This benchmark is
specifically tailored to triple stores, and as such it does not provide any OBDA
specific components like R2RML mappings, or a data set in the form of a relational
database.
Requirements Missing: O1, O2, Q2, M1, M2

BSBM: The Berlin SPARQL Benchmark [3] is built around an e-commerce use case. It
has a data generator that allows one to configure the data size (in triples), but there is
no ontology to measure reasoning tasks, and the queries are rather simple. Moreover,
the data is fully artificial.
Requirements Missing: O1, O2, Q2, M1, M2, D1,

FishMark: FishMark [1] collects comprehensive information about finned fish species.
This benchmark is based in the FishBase real world dataset, and the queries are
extracted from popular user SQL queries over FishBase; they are more complex
than those from BSBM. However, the benchmark comes neither with mappings nor
with a data generator. The data size is rather small (≈20M triples).
Requirements Missing: O1, D2, S1

A specific challenge comes from requirements D1 and D2, i.e., given an initial
real-world dataset, together with a rich ontology and mappings, expand the dataset in
such a way that it populates the virtual instance in a sensible way (i.e., coherently with
the ontology constraints and relevant statistical properties of the initial dataset). We
address this problem in the next section.

3 Requirements for Generating Virtual Instances
In this section, we present the requirements for an OBDA data generator, under the

assumption that we have an initial database that can be used as a seed to understand the

3 In particular, it is not suitable for reasoning w.r.t. existentials.
4 http://dbpedia.org/sparql

6 Davide Lanti, Martin Rezk, Mindaugas Slusnys, Guohui Xiao, and Diego Calvanese

distribution of the data that needs to be increased. To ease the presentation, we illustrate
the main issues that arise in this context with an example.

Example 1. Suppose we have the following database tables, where the primary keys
are in bold font and the foreign keys are emphasized. We assume that every employee
sells the majority of the products, hence the table TSellsProduct contains roughly
the cross product of the tables TEmployee and TProduct. Next we present only a
fragment of the data.

TEmployee

id name branch

1 John B1
2 Lisa B1

TAssignment

branch task

B1 task1
B1 task2
B2 task1
B2 task2

TSellsProduct

id product

1 p1
2 p2
1 p2
2 p3

TProduct

product size

p1 big
p2 big
p3 small
p4 big

Consider the following mappings populating the ontology concepts Employee,
Branch, and ProductSize, and the object properties SellsProduct and
AssignedTo.

M1 :{id} rdf:type :Employee ← SELECT id from TEmployee
M2 :{branch} rdf:type :Branch ← SELECT branch FROM TAssignments
M3 :{branch} rdf:type :Branch ← SELECT branch FROM TEmployee
M4 :{id} :SellsProduct :{product} ← SELECT id, product FROM TSellsProduct
M5 :{size} rdf:type :ProductSize ← SELECT size FROM TProduct
M6 :{id} :AssignedTo :{task} ← SELECT id, task

FROM TEmployee
NATURAL JOIN
TAssignments

The virtual instance corresponding to the above database and mappings includes the
following RDF triples:

:1 rdf:type :Employee.
:2 rdf:type :Employee.

:1 :SellsProduct :p1.
:1 :SellsProduct :p2.
:2 :AssignedTo :t1.

Suppose now we want to increase the virtual RDF graph by a growth-factor of 2.
Observe that this is not as simple as doubling the number of triples in every concept
and property, or the number of tuples in every database relation. Let us first analyze the
behavior of some of the ontology elements w.r.t. this aspect, and then how the mappings
to the database come into play.

– ProductSize: This concept will contain two individuals, namely small and
big, independently of the growth-factor. Therefore, the virtual instances of the
concept should not be increased when the RDF graph is extended.

– Employee and Branch: Since these classes do not depend on other properties,
and since they are not intrinsically constant, we expect their size to grow linearly
with the growth-factor.

– AssignedTo: Since this property represents an n-to-n relationship, we expect its
size to grow roughly quadratically with the growth-factor.

– SellsProduct: The size of this property grows roughly with the product of the
numbers of Employees and Products. Hence, when we double these numbers,
the size of SellsProduct will roughly quadruplicate.

The NPD Benchmark for OBDA Systems 7

In fact, the above considerations show that we do not have one uniform growth-factor
for the ontology elements. Our choice is to characterize the growth in terms of the
increase in size of those concepts in the ontology that are not intrinsically constant
(e.g., ProductSize), and that do not “depend” on any other concept, considering the
semantics of the domain of interest (e.g., Employee). We take this as measure for the
growth-factor.

The problem of understanding how to generate from a given RDF graph new ad-
ditional triples coherently with the domain semantics is addressed in [25, 19]. The
algorithm in [25] starts from an initial RDF graph and produces a new RDF graph,
considering key features of the original graph (e.g., the distribution of connections
among individuals). However, this approach, and all approaches producing RDF graphs
in general, cannot be directly applied to the context of OBDA, where the RDF graph
is virtual and generated from a relational database. Trying to apply these approaches
indirectly, by first producing a “realistic” virtual RDF graph and then trying to reflect
the virtual data into the physical (relational) data-source, is far from trivial due to the
correlations in the underlying data. This problem, indeed, is closely related to the view
update problem [8], where each class (resp., role or data property) can be seen as a
view on the underlying physical data. The view update problem is known to be chal-
lenging and actually decidable only for a very restricted class of queries used in the
mappings [12]. Note, however, that our setting does not necessarily require to fully solve
the view update problem, since we are interested in obtaining a physical instance that
gives rise to a virtual instance with certain statistics, but not necessarily to a specific
given virtual instance. The problem we are facing nevertheless remains challenging, and
requires further research. We illustrate the difficulties that one encounters again on our
example.

– The property SellsProduct grows linearly w.r.t. the size of the table
TSellsProduct, hence also this table has to grow quadratically with the growth-
factor. Since TSellsProduct has foreign keys from the tables TEmployee and
TProduct, to preserve the inter-table correlation (according to which roughly
every employee is connected to every product), the two tables TEmployee and
TProduct have both to grow linearly. It is worth noting that, to produce one
SellsProduct triple in the virtual instance, we have to insert three tuples in the
database.

– Since also the Branches concept should grow linearly with the growth-factor,
while preserving the intra- and inter-table correlations, also the TAssignment
table should grow linearly, and there should always be less branches than employees
in TEmployee.

– Since ProductSize does not grow, the attribute Size must contain only two
values, despite the linear growth of TProduct.

The previous example illustrated several challenges that need to be addressed by the
generator regarding the analysis of the virtual and physical data, and the insertion of
values in the database. Our goal is to generate a synthetic virtual graph where the cost
of the queries is as similar as possible to the cost that the same query would have in a
real-world virtual graph of comparable size. Observe that the same virtual graph can
correspond to different database instances, that could behave very differently w.r.t. the

8 Davide Lanti, Martin Rezk, Mindaugas Slusnys, Guohui Xiao, and Diego Calvanese

cost of SQL query evaluation. Therefore, in order to keep the cost of the SPARQL query
“realistic”, we need to keep the cost of the translated SQL “realistic” as well.

We are interested in data generators that perform an analysis phase on real-world
data, and that use the statistical information learned in the analysis phase for their task.
We present first in Table 5 the measures that are relevant in the analysis phase. We then
derive the requirements for the data generator by organizing them in two categories: one
for the analysis phase, and one for the generation phase.

Measures for the Analysis Phase. Table 5 is divided in three parts. The top part refers
to measures relevant at virtual instance level, i.e., those capturing the shape of the virtual
instance. Virtual correlation measures the correlation between individuals connected
through a property, i.e., the number of individuals/values to which every individual is
connected via an object/data property. Virtual growth is the expected growth for each
ontology term w.r.t. the growth-factor. Observe that these two measures are strongly
related to each other. The middle part refers to measures at the physical level that strongly
affect the shape of the virtual instance through the form of the mappings. They are based
on the sets of attributes of a table used to define individuals and values in the ontology
through the mapping. We call such a set of attributes an IGA (individual-generating
attributes set). Establishing the relevant statistics requires to identify pairs of IGAs
through mapping analysis. Specifically, intra-table IGA correlation is defined for two
IGAs of the same table, both mapped to individuals/values at the virtual level. It is
measured for tuples over the IGAs as the virtual correlation of the individuals that are
generated via the mapping from the tuples. Inter-table IGA correlation is measured for
IGAs belonging to two different tables, by taking the intra-table IGA correlation over
the join of the two tables. The bottom part refers to measures at the physical level that do
not affect correlation at the virtual instance level, but that influence growth at the virtual
level and the overall performance of the system. Specifically, IGA duplication measures
the number of identical copies of tuples over an IGA, while (intra-table and inter-table)
IGA-pair duplication is measured as the number of identical copies of a tuple over two
correlated IGAs. Notice that, for benchmarking purposes, both IGA correlation and IGA
duplication are important.

Now we are ready to list the requirements for a data generator for OBDA systems.

Requirements for the Analysis Phase. The generator should be able to analyze the
physical instance and the mappings, in order to acquire statistics to assess the measures
identified in Table 5.

Requirements for the Generation Phase. We list now important requirements for the
generation of physical data that gives rise through the mappings to the desired virtual
data instance.

Tunable. The user must be able to specify a growth factor according to which the virtual
instance should be populated.

Virtually Sound. The virtual instance corresponding to the generated physical data must
meet the statistics discovered during the analysis phase and that are relevant at the
virtual instance level.

Physically Sound. The generated physical instance must meet the statistics discovered
during the analysis phase and that are relevant at the physical instance level.

The NPD Benchmark for OBDA Systems 9

Table 5: Relevant measures at the virtual and physical instance level
Measures affecting the virtual instance level

Virtual Correlation (VC) Virtual Growth (VG)
Correlations between the various elements in
the virtual instance.

Function describing how fast concepts (resp.,
role/data properties) grow w.r.t. the growth-
factor.

Measures affecting virtual correlation and virtual growth
Intra-table IGA Correlation (Intra-C) Inter-table IGA Correlation (Inter-C)

Correlation (obtained through repetition anal-
ysis) between IGAs belonging to the same ta-
ble and generating objects connected through a
mapped property.

Correlation (obtained through analysis of the
repetitions of tuples used to join IGAs and of
the joined IGAs) between IGAs belonging to
different tables.

Measures affecting RDBMS performance and virtual growth
IGA Duplication (D)

Repeated IGAs
Intra-table IGA-pair Duplication (Intra-D) Inter-table IGA-pair Duplication (Inter-D)

Repeated pairs of intra-table correlated IGAs. Repeated pairs of inter-table correlated IGAs.

Database Compliant. The generator must generate data that does not violate the con-
straints of the RDBMS engine—e.g., primary keys, foreign keys, constraints on
datatypes, etc.

Fast. The generator must be able to produce a vast amount of data in a reasonable
amount of time (e.g., 1 day for generating an amount of data sufficient to push the
limits of the considered RDBMS system). This requirement is important because
OBDA systems are expected to operate in the context of “big-data” [6].

4 NPD Benchmark
The Norwegian Petroleum Directorate5 (NPD) is a governmental organisation whose

main objective is to contribute to maximize the value that society can obtain from the oil
and gas activities. The initial dataset that we use are the NPD Fact Pages6, containing
information regarding the petroleum activities on the Norwegian continental shelf. The
ontology, the query set, and the mappings to the dataset have all been developed at the
University of Oslo [22], and are freely available online7. Next we provide more details
on each of these items.

The Ontology. The ontology contains OWL axioms specifying comprehensive informa-
tion about the underlying concepts in the dataset; specifically rich hierarchies of classes
and properties, axioms that infer new objects, and disjointness assertions. We took the
OWL QL fragment of this ontology, and we obtained 343 classes, 142 object properties,
238 data properties, 1451 axioms, and maximum hierarchy depth of 10. Since we are
interested in benchmarking OBDA systems that are able to rewrite queries over the
ontology into SQL-queries that can be evaluated by a relational DBMS, we concentrate

5 http://www.npd.no/en/
6 http://factpages.npd.no/factpages/
7 http://sws.ifi.uio.no/project/npd-v2/

10 Davide Lanti, Martin Rezk, Mindaugas Slusnys, Guohui Xiao, and Diego Calvanese

Table 6: Statistics for the queries considered in the benchmark
query #operators #join #depth #tw max(#subclasses) # opt
Q1 12 4 8 0 0 0
Q2 14 5 9 0 0 0
Q3 10 3 7 0 0 0
Q4 14 5 9 0 0 0
Q5 14 5 8 0 0 0
Q6 18 6 12 2 23 0
Q7 17 7 10 0 0 0
Q8 10 3 7 0 0 0
Q9 10 3 7 0 38 0
Q10 9 2 7 0 0 0
Q11 20 7 12 2 23 0
Q12 26 8 12 4 23 0
Q13 8 2 7 0 0 2
Q14 12 2 7 0 0 2

here on the OWL 2 QL profile8 of OWL, which guarantees rewritability of unions of
conjunctive queries (see, e.g., [7]). This ontology is suitable for benchmarking reasoning
tasks, given that (i) it is a representative [17] and complex real-world ontology in terms
of number of classes and maximum depth of the class hierarchy (hence, it allows for
reasoning w.r.t. class hierarchies); (ii) it is complex w.r.t. properties, therefore it allows
for reasoning with respect to existentials.
From the previous facts, it follows that the ontology satisfies requirements O1, O2, S1.

The Query Set. The original NPD SPARQL query set contains 25 queries obtained by
interviewing users of the NPD dataset. Starting from the original NPD query set, we
devised 14 queries having different degrees of complexity (see Table 6). In particular,
observe that most complex queries involve both classes with a rich hierarchy and
tree witnesses, which means that they are particularly suitable for testing the reasoner
capabilities. We also fixed some minor issues, e.g., the absence in the ontology of certain
concepts present in the queries, removing aggregates (to be tackled in future work), and
flattening of nested sub-queries.
From the previous facts, it follows that the queries satisfy requirements Q1, Q2, S1.

The Mappings. The R2RML mapping consists of 1190 assertions mapping a total of 464
among classes, objects properties, and data properties. The SQL queries in the mappings
count an average of 2.6 unions of select-project-join queries (SPJ), with 1.7 joins per
SPJ. We observe that the mappings have not been optimized to take full advantage of an
OBDA framework, e.g., by trying to minimize the number of mappings that refer to the
same ontology class or property, so as to reduce the size of the SQL query generated
by unfolding the mapping. This gives the opportunity to the OBDA system to apply
different optimization on the mappings at loading time.
From the previous facts, it follows that the mappings satisfies requirements M1, M2, S1.

4.1 VIG: The Data Generator.
Next we present the Virtual Instances Generator (VIG) that we implemented in the

NPD Benchmark. VIG produces a virtual instance by inserting data into the original
database. The generator is general in the sense that, although it currently works with the
NPD database, it can produce data also starting from instances different than NPD. The
algorithm can be divided into two main phases, namely (i) an analysis phase, where

8 http://www.w3.org/TR/owl2-profiles/#OWL_2_QL

The NPD Benchmark for OBDA Systems 11

statistics for relevant measures on the real-world data are identified; (ii) a generation
phase, where data is produced according to the statistics identified in the analysis phase.

VIG starts from a non-empty database D. Given a growth factor g, VIG generates a
new database D′ such that |T ′| = |T | · (1+ g), for each table T of D (where |T | denotes
the number of tuples of T). This first approach assumes that each table in the database
should grow linearly with respect to the growth factor, which is not true in general, but it
holds for NPD. In addition, VIG approximates the measures described Table 5 as shown
below.
Measures (D), (Intra-D). We compute (an approximation for) these measures by Du-
plicate Values Discovery. For each column T.C of a table T ∈ D, VIG discovers the
duplicate ratio for values contained in that column. The duplicate ratio is the ratio
(||T.C|| − |T.C|)/||T.C||, where ||T.C|| denotes the number of values in the column T.C,
and |T.C| denotes the number distinct of values in T.C. A duplicate ratio “close to 1”
indicates that the content of the column is essentially independent from the size of the
database, and it should not be increased by the data generator.
Measures (Intra-C), (Inter-C), (Inter-D). Instead of computing (an approximation for)
these measures, VIG identifies the domain of each attribute. That is, for each non-fixed
domain column T.C in a table T , VIG analyzes the content of T.C in order to decide the
range of values from which fresh non-duplicate values can be chosen. More specifically,
if the domain of T.C is a string or unordered (e.g., polygons), then simply a random value
is generated. Instead, if the domain is a total order, then fresh values can be chosen from
the non-duplicate values in the interval [min(T.C),max(T.C)] or in the range of values
adjacent to it. Observe that this helps in maintaining the domain of a column similar to
the original one, and this in turn helps in maintaining intra- and inter-table correlations.
VIG also preserves standard database constraints, like primary keys, foreign keys, and
datatypes, that during the generation phase will help in preserving the IGA correlations.
For instance, VIG analyses the loops in foreign key dependencies in the database. Let
T1 → T2 denote the presence of a foreign key from table T1 to table T2. In case of a
cycle T1 → T2 → · · · → Tk → T1, inserting a tuple in T1 could potentially trigger an
infinite number of insertions. VIG performs an analysis on the values contained in the
columns involved by the dependencies and discovers the maximum number of insertions
that can be performed in the generation phase.

Next we describe the generation phase, and how it meets some of the requirements given
in Section 5.

Duplicate Values Generation. VIG inserts duplicates in each column according to the
duplicate ratio discovered in the analysis phase. Each duplicate is chosen with a uniform
probability distribution. This ensures, for those concepts that are not dependent from
other concepts and whose individual are “constructed” from a single database column, a
growth that is equal to the growth factor. In addition, it prevents intrinsically constant
concepts from being increased (by never picking a fresh value in those columns where
the duplicates ratio is close to 1). Finally, it helps keeping the sizes for join result sets
“realistic” [23]. This is true in particular for the NPD database, where almost every join
is realized by a single equality on two columns.
Requirement: Physically/Virtually Sound.

12 Davide Lanti, Martin Rezk, Mindaugas Slusnys, Guohui Xiao, and Diego Calvanese

Fresh Values Generation. For each column, VIG picks fresh non-duplicate values from
the interval discovered during the analysis phase. If the number of values to insert
exceeds the number of different fresh values that can be chosen from the interval I , then
values outside the interval are allowed. The choices for the generation of new value
guarantee that columns always contain values “close” to the ones already present in the
column. This ensures that the number of individual for concepts based on comparisons
grows accordingly to the growth factor.
Requirement: Physically/Virtually Sound.

Metadata Constraints VIG generates values that do not violate the constraints of the
underlying database, like primary keys, foreign keys, or type constraints. The NPD
database makes use of geometric datatypes available in MYSQL. Some of them come
with constraints, e.g., a polygon is a closed non-intersecting line composed of a finite
number of straight lines. For each geometric column in the database, VIG first identifies
the minimal rectangular region of space enclosing all the values in the column, and
then it generates values in that region. This ensures that artificially generated geometric
values will fall in the result sets of selection queries.
Requirement: Database Compliant/Virtually Sound.

Length of Chase Cycles. In case a cycle of foreign key dependencies was identified
during the analysis phase, then VIG stops the chain of insertions according to the
boundaries identified in the analysis phase, while ensuring that no foreign key constraint
is violated. This is done by inserting either a duplicate or a null in those columns that
have a foreign key dependency.
Requirement: Database Compliant.

Furthermore, VIG allows the user to tune the growth factor, and the generation
process is considerably fast, for instance, it takes ≈10hrs to generate 130 Gb of data.

5 Validation of the Data Generator

In this section we perform a qualitative analysis of the virtual instances obtained
using VIG. We focus our analysis on those concepts and properties that either are
supposed to grow linearly w.r.t. the growth factor or are supposed not to grow. These are
138 concepts, 28 object properties, and 226 data properties.

We report in Table 7 the growth of the ontology elements w.r.t. the growth of
databases produced by VIG and by a purely random generator. The first column indicates
the type of ontology elements being analyzed, and the growth factor g (e.g., “class npd2”
refers to the population of classes for the database incremented with a growth factor
g = 2). The columns “avg dev” show the average deviation of the actual growth from the
expected growth, in terms of percentage of the expected growth. The remaining columns
report the number and percentage of concepts (resp., object/data properties) for which
the deviation was greater than 50%.

Concerning concepts, VIG behaves close to optimally. For properties, the difference
between the expected virtual growth and the actual virtual growth is more evident.
However, it is orders of magnitude better than the random generator. We shall see how
this difference strongly affects the results of the benchmark (Section 6).

The NPD Benchmark for OBDA Systems 13

Table 7: Comparison between VIG and a random data generator
avg dev err≥50% (absolute) err≥50% (relative)

type db heuristic random heuristic random heuristic random

class npd2 3.24% 370.08% 2 67 1.45% 48.55%
class npd10 6.19% 505.02% 3 67 2.17% 48.55%
obj npd2 87.48% 648.22% 8 12 28.57% 42.86%
obj npd10 90.19% 883.92% 8 12 28.57% 42.86%
data npd2 39.38% 96.30% 20 46 8.85% 20.35%
data npd10 53.49% 131.17% 28 50 12.39% 22.12%

Table 8: Tractable queries (time in ms)
db avg(ex time) avg(out time) avg(res size) qmpH #(triples)

NPD 62 113 16766 1507.85 ≈2M
NPD2 116 232 35991 896.55 ≈6M
NPD5 246 410 70411 554.35 ≈12M
NPD10 408 736 124253 305.46 ≈25M
NPD50 2138 3208 539461 66.82 ≈116M
NPD100 5292 6727 1160972 29.12 ≈220M
NPD500 37382 48512 7511516 4.22 ≈1.3B
NPD1500 132155 148495 23655243 1.27 ≈4B

Virtual Correlation. From our experiments we witnessed that the virtual correlation is
preserved for the 28 object properties that are generated from a single table. That is,
the correlation remains constant and it grows only in the case of cartesian products on
columns with high duplicate ratio and that together form a primary key. More results can
be found in the benchmark page.

6 Benchmark Results
We ran the benchmark on the Ontop system9 [21], which, to the best of our knowl-

edge, is the only fully implemented OBDA system that is freely available. In addition, we
compared Ontop with Stardog 2.1.3. Stardog10 is a commercial RDF database developed
by Clark&Parsia that supports SPARQL 1.1 queries and OWL 2 for reasoning. Since
Stardog is a triple store, we needed to materialize the virtual RDF graph exposed by the
mappings and the database using Ontop .

MYSQL was used as underlying relational database system. The hardware consisted
of an HP Proliant server with 24 Intel Xeon X5690 CPUs (144 cores @3.47GHz),
160GB of RAM and a 1TB 15K RPM HD. The OS is Ubuntu 12.04 LTS. Due to space

9 http://ontop.inf.unibz.it/
10 http://stardog.com/

Table 9: Hard Queries Rewriting And Unfolding
Ext. Reasoning OFF Ext. Reasoning ON

query #rw #un rw time un time #rw #un rw time un time
sec. sec. sec. sec.

q6 — 48 — 0.1 73 1740 1.8 1.3
q9 — 570 — 0.1 1 150 0 0.03
q10 — 24 — 0.9 1 24 0 0.01
q11 — 1 — 0.1 73 870 0.03 0.7
q12 — 1 — 0.2 10658 5220 525 139

14 Davide Lanti, Martin Rezk, Mindaugas Slusnys, Guohui Xiao, and Diego Calvanese

constraints, we present the results for only one running client. We obtained results with
the existential reasoning on and off.

In order to test the scalability of the systems w.r.t. the growth of the database, we
used the data generator described in Section 4.1 and produced several databases, the
largest being approximately 1500 times bigger than the original one (“NPD1500” in
Table 8, ≈ 117 GB of size on disk (≈ 6 Bn triples)).

Table 8 shows the 9 easiest queries from the initial query set, for which the unfolding
produces a single select-project-join SQL query. These results were obtained in Ontop .
The query mix of 9 queries was executed 10 times, each time with different filter
conditions so that the effect of caching is minimized, and statistics were collected in
each execution. We measure the sum of the query execution time (avg(ex time)), the
time spent by the system to display the results to the user (avg(out time)), the number
of results (avg(res size)), and the query mixes per hour (qmpH), that is, the number of
times that the 9 queries can be answered in one hour.

Table 9 contains results showing the number of unions of SPJ queries generated
after rewriting (#rw) and after unfolding (#un) for the 5 hardest queries. In addition, it
shows the time spent by Ontop on rewriting and unfolding. Here we can observe how
existential reasoning can produce a noticeable performance overhead, by producing
queries consisting of unions of more than 5000 sub-queries (c.f., q12). This blow-up is
due to the combination of rich hierarchies, existentials, and mappings. These queries are
meant to be used in future research on query optimization in OBDA.

Table 10 contains results for the 5 hardest queries in Ontop. Each query was run
once, since qmpH is not so informative in this case. Observe that the response time
tends to grow faster than the growth of the underlying database. This follows from the
complexity of the queries produced by the unfolding step, which usually contain several
joins (remember that the worst case cardinality of a result set produced by a join is
quadratic in the size of the original tables). Column NPD10 RAND witnesses how using
a purely random data generator gives rise to datasets for which the queries are much
simpler to evaluate. This is mainly due to the fact that a random generation of values
tends to decrease the ratio of duplicates inside columns, resulting in smaller join results
over the tables [23]. Hence, purely randomly generated datasets are not appropriate for
benchmarking.

Table 11 shows the 6 queries where the performance difference is bigger. As expected,
the 3 queries with worst performance in OBDA are those that were affected by the blow-
up shown in Table 9. On the other hand, the 3 queries that perform the best are those
where the different optimization led to a simple SPJ SQL query. Note how in these 3
queries, in Ontop , the overhead caused by the increment of dataset size is minimum.

7 Conclusions and Future Work
The benchmark proposed in this work is the first one that thoroughly analyzes a

complete OBDA system in all significant components. So far, little or no work has
been done in this direction, as pointed out in [18], since the research community has
mostly focused on rewriting engines. Thanks to our work, we have gained a better
understanding of the current state of the art for OBDA systems: first, we confirm [11]
that the unfolding phase is the real bottleneck of modern OBDA systems; second, more
research work is needed in order to understand how to improve the design of mappings,

The NPD Benchmark for OBDA Systems 15

Table 10: Hard queries
query NPD NPD2 NPD5 NPD10 NPD10 RAND

rp t/weight R+U rp t/weight R+U rp t/weight R+U rp t/weight R+U rp t/weight R+U
(sec./ratio) (sec./ratio) (sec./ratio) (sec./ratio) (sec./ratio)

No Existentials Reasoning
q6 1.5/0.07 8.2/0.02 23/<0.01 51/<0.01 54/<0.01
q9 0.6/0.17 2.3/0.03 4/0.03 50/<0.01 51/<0.01
q10 0.07/0.14 0.1/0.1 0.16/0.06 0.2/0.05 0.3/0.03
q11 0.9/0.1 36/<0.01 198/<0.01 1670/<0.01 70/<0.01
q12 0.8/0.16 41/<0.01 275/<0.01 1998/<0.01 598/<0.01

Existentials Reasoning
q6 8.5/0.35 18/0.19 36/0.09 85/0.04 88/0.03
q9 0.2/0.2 0.2/0.2 0.2/0.2 0.2/0.2 0.2/0.2
q10 0.1/0.2 0.1/0.2 0.3/0.07 0.7/0.03 1.8/0.01
q11 3/0.2 25/0.03 980/<0.01 980/<0.01 41/0.02
q12 686/0.97 733/0.91 868/0.74 2650/0.24 880/0.74

Table 11: Query executions in Stardog and Ontop (Time in sec.)
Query NPD1 NPD2 NPD5 NPD10

Stardog Ontop Stardog Ontop Stardog Ontop Stardog Ontop
q1 1.56 0.597 1.616 0.463 1.852 0.683 6.184 0.571
q7 1.585 0.021 2.223 0.041 3.714 0.108 5.199 0.204
q8 0.865 0.08 1.561 0.192 2.504 0.526 6.492 0.669
q6 0.486 1.593 1.592 21.217 2.678 23.272 4.285 88.979
q11 0.394 0.974 1.412 25.693 2.138 197.786 2.584 978.465
q12 0.425 0.934 1.649 275.548 2.65 1396.185 3.464 3292.464
Mater. 54.75s 2m58.014s 9m58.509s 41m23s
Load 60.935s 4m42.849s 12m8.565s 57m18.297s

avoiding the use of mappings that give rise to huge queries after unfolding. We conclude
by observing that for a better analysis it is crucial to refine the generator in such a way
that domain-specific information is taken into account, and a better approximation of
real-world data is produced.

References
1. Bail, S., Alkiviadous, S., Parsia, B., Workman, D., van Harmelen, M., Goncalves, R.S.,

Garilao, C.: FishMark: A linked data application benchmark. In: Proc. of the Joint Workshop
on Scalable and High-Performance Semantic Web Systems (SSWS+HPCSW 2012), vol. 943,
pp. 1–15. CEUR, ceur-ws.org (2012)

2. Bitton, D., Dewitt, D.J., Turbyfill, C.: Benchmarking database systems: A systematic approach.
In: Proc. of VLDB. pp. 8–19 (1983)

3. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. J. on Semantic Web and Informa-
tion Systems 5(2), 1–24 (2009)

4. Bruno, N., Chaudhuri, S.: Flexible database generators. In: Proc. of VLDB. pp. 1097–1107
(2005)

5. Bsche, K., Sellam, T., Pirk, H., Beier, R., Mieth, P., Manegold, S.: Scalable generation of
synthetic GPS traces with real-life data characteristics. In: Selected Topics in Performance
Evaluation and Benchmarking, LNCS, vol. 7755, pp. 140–155. Springer (2013)

6. Calvanese, D., Giese, M., Haase, P., Horrocks, I., Hubauer, T., Ioannidis, Y., Jiménez-Ruiz, E.,
Kharlamov, E., Kllapi, H., Klüwer, J., Koubarakis, M., Lamparter, S., Möller, R., Neuenstadt,
C., Nordtveit, T., Özcep, Ö., Rodriguez-Muro, M., Roshchin, M., Ruzzi, M., Savo, F., Schmidt,
M., Soylu, A., Waaler, A., Zheleznyakov, D.: The Optique project: Towards OBDA systems
for industry (Short paper). In: Proc. of OWLED. CEUR, ceur-ws.org, vol. 1080 (2013)

16 Davide Lanti, Martin Rezk, Mindaugas Slusnys, Guohui Xiao, and Diego Calvanese

7. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodrı́guez-Muro, M.,
Rosati, R.: Ontologies and databases: The DL-Lite approach. In: Tessaris, S., Franconi, E.
(eds.) RW Tutorial Lectures, LNCS, vol. 5689, pp. 255–356. Springer (2009)

8. Cosmadakis, S.S., Papadimitriou, C.H.: Updates of relational views. JACM 31(4), 742–760
(1984)

9. Crolotte, A., Ghazal, A.: Introducing skew into the TPC-H Benchmark. In: Topics in Per-
formance Evaluation, Measurement and Characterization, LNCS, vol. 7144, pp. 137–145.
Springer (2012)

10. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language. W3C Recom-
mendation, W3C (Sep 2012), available at http://www.w3.org/TR/r2rml/

11. Di Pinto, F., Lembo, D., Lenzerini, M., Mancini, R., Poggi, A., Rosati, R., Ruzzi, M., Savo,
D.F.: Optimizing query rewriting in ontology-based data access. In: Proc. of EDBT. pp.
561–572. ACM Press (2013)

12. Franconi, E., Guagliardo, P.: The view update problem revisited. CoRR Technical Report
arXiv:1211.3016, arXiv.org e-Print archive (2012), available at http://arxiv.org/
abs/1211.3016

13. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. J. of
Web Semantics 3(2–3), 158–182 (2005)

14. Guo, Y., Qasem, A., Pan, Z., Heflin, J.: A requirements driven framework for benchmarking
semantic web knowledge base systems. IEEE TKDE 19(2), 297–309 (2007)

15. Keet, C.M., Alberts, R., Gerber, A., Chimamiwa, G.: Enhancing web portals with Ontology-
Based Data Access: the case study of South Africa’s Accessibility Portal for people with
disabilities. In: Proc. of OWLED. CEUR, ceur-ws.org, vol. 432 (2008)

16. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach
to query answering in DL-Lite. In: Proc. of KR. pp. 247–257 (2010)

17. LePendu, P., Noy, N.F., Jonquet, C., Alexander, P.R., Shah, N.H., Musen, M.A.: Optimize
first, buy later: Analyzing metrics to ramp-up very large knowledge bases. In: Proc. of ISWC.
LNCS, vol. 6496, pp. 486–501. Springer (2010)

18. Mora, J., Corcho, O.: Towards a systematic benchmarking of ontology-based query rewriting
systems. In: Proc. of ISWC. LNCS, vol. 8218, pp. 369–384. Springer (2013)

19. Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.C.: DBpedia SPARQL Benchmark –
Performance assessment with real queries on real data. In: Proc. of ISWC, Volume 1. LNCS,
vol. 7031, pp. 454–469. Springer (2011)

20. Rodrı́guez-Muro, M., Calvanese, D.: Dependencies: Making ontology based data access work
in practice. In: Proc. of AMW. CEUR, ceur-ws.org, vol. 749 (2011)

21. Rodriguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Ontology-based data access: Ontop
of databases. In: Proc. of ISWC. LNCS, vol. 8218, pp. 558–573. Springer (2013)

22. Skjæveland, M.G., Lian, E.H.: Benefits of publishing the Norwegian Petroleum Directorate’s
FactPages as Linked Open Data. In: Proc. of Norsk informatikkonferanse (NIK 2013). Tapir
(2013)

23. Swami, A., Schiefer, K.B.: On the estimation of join result sizes. In: Proc. of EDBT. LNCS,
vol. 779, pp. 287–300. Springer (1994)

24. Venetis, T., Stoilos, G., Stamou, G.B.: Query extensions and incremental query rewriting for
OWL 2 QL ontologies. J. on Data Semantics 3(1), 1–23 (2014)

25. Wang, S.Y., Guo, Y., Qasem, A., Heflin, J.: Rapid benchmarking for semantic web knowledge
base systems. In: Proc. of ISWC. LNCS, vol. 3729, pp. 758–772. Springer (2005)

