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Abstract. In OBDA an ontology defines a high level global vocabulary for user
queries, and such vocabulary is mapped to (typically relational) databases. Ex-
tending this paradigm with rules, e.g., expressed in SWRL or RIF, boosts the
expressivity of the model and the reasoning ability to take into account features
such as recursion and n-ary predicates. We consider evaluation of SPARQL queries
under rules with linear recursion, which in principle is carried out by a 2-phase
translation to SQL: (1) The SPARQL query, together with the RIF/SWRL rules,
and the mappings is translated to a Datalog program, possibly with linear recursion;
(2) The Datalog program is converted to SQL by using recursive common table
expressions. Since a naive implementation of this translation generates inefficient
SQL code, we propose several optimisations to make the approach scalable. We
implement and evaluate the techniques presented here in the Ontop system. To
the best of our knowledge, this results in the first system supporting all of the
following W3C standards: the OWL 2 QL ontology language, R2RML mappings,
SWRL rules with linear recursion, and SPARQL queries. The preliminary but
encouraging experimental results on the NPD benchmark show that our approach
is scalable, provided optimisations are applied.

1 Introduction

In Ontology Based Data Access (OBDA) [5], the objective is to access data trough a
conceptual layer. Usually, this conceptual layer is expressed in the form of an OWL
or RDFS ontology, and the data is stored in relational databases. The terms in the
conceptual layer are mapped to the data layer using so-called globas-as-view (GAV)
mappings, associating to each element of the conceptual layer a (possibly complex)
query over the data sources. GAV mappings have been described as Datalog rules in
the literature [17] and formalized in the R2RML W3C standard [8]. Independently of
the mapping language, these rules entail a virtual RDF graph that uses the ontology
vocabulary. This virtual graph can then be queried using an RDF query language such as
SPARQL.

There are several approaches for query answering in the context of OBDA, and a
number of techniques have been proposed [17,16,13,21,9,3]. One of such techniques,
and the focus of this paper, is query answering by query rewriting. That is, answer
the queries posed by the user (e.g., SPARQL queries) by translating them into queries
over the database (e.g., SQL). This kind of technique has several desirable features;
notably, since all data remains in the original source there is no redundancy, the system
immediately reflects any changes in the data, well-known optimizations for relational



databases can be used, etc. It has been shown that through this technique one can obtain
performance comparable or sometimes superior to other approaches when the ontology
language is restricted to OWL 2 QL [22]. While the OWL 2 QL specification (which
subsumes RDFS in expressive power) offers a good balance between expressivity and
performance, there are many scenarios where this expressive power is not enough.

As a motivating example and to illustrate the main concepts in this paper, suppose
we have a (virtual) RDF graph over a database with information about direct flights
between locations and their respective cost. Suppose we have a flight relation in the
database, and we want to find out all the possible (direct and non-direct) routes between
two locations such that the total cost is less than 100 Euros. This problem is a particular
instance of the well-known reachability problem, where we need to be able to compute
the transitive closure over the flight relation respecting the constraint on the flight
cost. While SPARQL 1.1 provides path expressions that can be used to express the
transitive closure of a property, it may be cumbersome and prone to errors, especially in
the presence of path constraints such as the cost in our example.

Computational complexity results show that unless we limit the form of the allowed
rules, on-the-fly query answering by rewriting into SQL Select-Project-Join (SPJ) queries
is not possible [6,2]. However, as target language for query rewriting, typically only a
fragment of the expressive power of SQL99 has been considered, namely unions of SPJ
SQL queries. We propose here to go beyond this expressive power, and we advocate the
use of SQL99’s Common Table Expressions (CTEs) to obtain a form of linear recursion
in the rewriting target language. In this way, we can deal with recursive rules at the
level of the ontology, and can reuse existing query rewriting optimisations developed for
OBDA to provide efficient query rewriting into SQL99. The languages that we target
are those that are used more extensively in the context of OBDA for Semantic Web
application, i.e., RIF and SWRL as rule language, SPARQL 1.0 as query language, and
R2RML as relational databases to RDF mapping language.

The contributions of this paper can be summarized as follows: (i) We provide
translations from SWRL, R2RML, and SPARQL into relational algebra extended with
a fixed-point operator that can be expressed in SQL99’s Common Table Expressions
(CTEs); (ii) We show how to extend existing OBDA optimisation techniques that have
been proven effective in the OWL 2 QL setting to this new context. In particular, we show
that so called T-mappings for recursive programs exist and how to construct them. (iii) We
provide an implementation of such technique in the open source OBDA system Ontop ,
making it the first system of its kind to support all the following W3C recommendations:
OWL 2 QL, R2RML, SPARQL, and SWRL; (iv) We provide a preliminary evaluation
of the techniques using an extension of the NPD benchmark (a recently developed
OWL 2 QL benchmark) with rules, and show that the proposed solution competes and
sometimes outperforms existing triple stores.

2 Preliminaries

2.1 RDF

The Resource Description Framework (RDF) is a standard model for data interchange
on the Web [15]. The language of RDF contains the following pairwise disjoint and



countably infinite sets of symbols: I for IRIs, L for RDF literals, and B for blank nodes.
RDF terms are elements of the set T = I ∪ B ∪ L. An RDF knowledge base (also called
RDF graph) is a collection of triples of the form (s, p, o), where s ∈ I, p ∈ I ∪ B, and
o ∈ T. A triple (s, p, o) intuitively expresses that s and o are related by p; when p is the
special role rdf:type, the triple (s, rdf:type, o) means that s is an instance of o.

It is sometimes convenient to define conversions between RDF graphs and sets of
(Datalog) facts. Thus, given an RDF graph G, the corresponding set of Datalog facts is:

A(G) = {o(s) | (s, rdf:type, o) ∈ G} ∪ {p(s, o) | (s, p, o) ∈ G, p 6= rdf:type}

And given a set A of facts, the corresponding RDF graph is:

G(A) = {(s, rdf:type, o) | o(s) ∈ A} ∪ {(s, p, o) | p(s, o) ∈ A}

Note that G(A) discards the facts that are not unary or binary.

2.2 SPARQL

SPARQL is the standard RDF query language. For formal purposes we will use the alge-
braic syntax of SPARQL similar to the one in [18] and defined in the standard1. However,
to ease the understanding, we will often use graph patterns (the usual SPARQL syntax) in
the examples. The SPARQL language that we consider shares with RDF the set of sym-
bols: constants, blank nodes, IRIs, and literals. In addition, it adds a countably infinite
set V of variables. The SPARQL algebra is constituted by the following graph pattern
operators (written using prefix notation): BGP (basic graph pattern), Join , LeftJoin ,
Filter , and Union . A basic graph pattern is a statement of the form:BGP(s, p, o). In the
standard, a BGP can contain several triples, but since we include here the join operator,
it suffices to view BGPs as the result of Join of its constituent triple patterns. Observe
that the only difference between blank nodes and variables in BGPs, is that the former
do not occur in solutions. So, to ease the presentation, we assume that BGPs contain no
blank nodes. Algebra operators can be nested freely. Each of these operators returns the
result of the sub-query it describes.

Definition 1 (SPARQL Query). A SPARQL query is a pair (V, P ), where V is a set
of variables, and P is a SPARQL algebra expression in which all variables of V occur.

We will often omit V when it is understood from the context . A substitution, θ, is a
partial function θ : V 7→ T. The domain of θ, denoted by dom(θ), is the subset of V
where θ is defined. Here we write substitutions using postfix notation. When a query
(V, P ) is evaluated, the result is a set of substitutions whose domain is contained in
V . For space reasons, we omit the semantics of SPARQL, and refer to [11] for the
specification of how to compute the answer of a query Q over an RDF graph G, which
we denote as JQKG.

Example 1 (Flights, continued). Consider the flight example in the introduction. The
low cost flights from Bolzano can be retrieved by the query:

1 http://www.w3.org/TR/rdf-sparql-query/#sparqlAlgebra

http://www.w3.org/TR/rdf-sparql-query/#sparqlAlgebra


Select ?x Where {
?x :tripPlanFrom :Bolzano . ?x :tripPlanTo ?y .
?x :tripPlanPrice ?z . Filter(?z < 100)

}

The corresponding SPARQL algebra expression is as follows:

Filter (?z < 100)(
Join(BGP(?x :tripPlanFrom :Bolzano .)
Join(BGP(?x :tripPlanTo ?y .) BGP(?x :tripPlanPrice ?z .))))

2.3 Rules: RIF and SWRL

We describe now two important rule languages, SWRL and RIF, and the semantics of
their combination with RDF graphs.

The Semantic Web Rule Language (SWRL) is a widely used Semantic Web language
combining a DL ontology component with rules2. Notice that the SWRL language allows
only for the use of unary and binary predicates. SWRL is implemented in many systems,
such as, Pellet, Stardog, and HermiT.

The Rule Interchange Format (RIF) is a W3C recommendation [12] defining a
language for expressing rules. The standard RIF dialects are Core, BLD, and PRD. RIF-
Core provides “safe” positive Datalog with built-ins; RIF-BLD (Basic Logic Dialect) is
positive Horn logic, with equality and built-ins; RIF-PRD (Production Rules Dialect)
adds a notion of forward-chaining rules, where a rule fires and then performs some action.
In this paper we focus on RIF-Core [4], which is equivalent to Datalog without negation,
but supports an F-Logic style frame-like syntax: s[p1 → o1, p2 → o2, . . . , pn → on]
is a shorthand for the conjunction of atoms

∧
pi=rdf:type oi(s) ∧

∧
pi 6=rdf:type pi(s, oi).

Observe that the RIF language allows for additional n-ary Datalog predicates besides
the unary concept names and binary role names from the RDF vocabulary. In this paper,
we make the restriction that variables cannot be used in the place of the predicates. For
instance, neither s[?p→ o] nor s[rdf:type→?o] are allowed.

For the sake of simplicity, in the following we will use Datalog notation, where
(SWRL or RIF) rules are simply written as

l0 :- l1, . . . , lm

where each li is an atom. Therefore we refer to a set of rules as Datalog rules. Recall that
a Datalog program Π that does not contain negation has a unique minimal model, which
can be computed via a repeated exhaustive application of the rules in it in a bottom-up
fashion [14]. We denote such model, MM(Π).

An RDF-rule combination is a pair (G,Π), where G is an RDF graph and Π is a set
of Datalog rules.

Definition 2. The RDF graph induced by an RDF-rule combination (G,Π) is defined
as G(MM(A(G) ∪Π)).

2 http://www.w3.org/Submission/SWRL/

http://www.w3.org/Submission/SWRL/


Example 2 (Example 1, continued). The following rules model the predicates plan,
representing the transitive closure of flights, including the total price of the trip, and
tripPlanFrom/To/Price, which project plan into triples:

plan(from, to, price, plan url) :- flightFrom(fid, from), flightTo(fid, to),
flightPrice(fid, price),
plan url = CONCAT("http://flight/",fid)

plan(from, to, price, plan url) :- plan(from, to1 , price1 , plan url1 ),
flightFrom(fid , to1 ), flightTo(fid , to),
flightPrice(fid , price2 ),
price = price1 + price2 ,
plan url = CONCACT(plan url1 ,"/", fid)

tripPlanFrom(plan url, from) :- plan(from, to, price, plan url)
tripPlanTo(plan url, to) :- plan(from, to, price, plan url)
tripPlanPrice(plan url, price) :- plan(from, to, price, plan url)

Observe that rules not only boost the modelling capabilities by adding recursion,
but also allow for a more elegant and succinct representation of the domain using n-ary
predicates.

2.4 SPARQL and Rules: Entailment Regime

The RIF entailment regime specifies how RIF entailment can be used to redefine the
evaluation of basic graph patterns. The evaluation of complex clauses is computed by
combining already computed solutions in the usual way. Therefore, in this section we
can restrict the attention to queries that consist of a single BGP.

The semantics provided in [10] is defined in terms of pairs of RIF and RDF interpre-
tations. These models are then used to define satisfiability and entailment in the usual
way. Combined entailment extends both entailment in RIF and entailment in RDF. To
ease the presentation, we will present a simplified version of such semantics based on
Datalog models seen as RDF graphs (c.f. Section 2.1).

Definition 3. Let Q be a BGP, G an RDF graph, and Π a set of rules. The evaluation
of Q over G and Π , denoted JQKG,Π , is defined as the evaluation of Q over the induced
RDF graph of (G,Π), that is

JQKG,Π = JQKG(MM(A(G)∪Π)).

Example 3 (Example 2, continued). Suppose we have the following triples in our RDF
graph:

AF22 :flightFrom :Bolzano . AF23 :flightTo :Dublin .
AF22 :flightTo :Milano . AF22 :flightPrice 45 .
AF23 :flightFrom :Milano . AF23 :flightPrice 45 .

It is easy to see that these triples, together with the rules in Example 2 “extend” the
original RDF with the following triples:

http://flight/AF22/AF23 :tripPlanFrom :Bolzano .
http://flight/AF22/AF23 :tripPlanTo :Dublin .
http://flight/AF22/AF23 :tripPlanPrice 90 .
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Fig. 1. A well formed R2RML mapping node

This implies that we get the following two substitutions by evaluating the query in
Example 1: {x 7→ http://flight/AF22}, {x 7→ http://flight/AF22/AF23}.

2.5 R2RML: Mapping Databases to RDF

R2RML is a W3C standard [8] defining a language for mapping relational databases into
RDF data. Such mappings expose the relational data as RDF triples, using a structure
and vocabulary chosen by the mapping author.

An R2RML mapping is expressed as an RDF graph (in Turtle syntax), where a
well-formed mapping consists of one or more trees called triple maps with a structure as
shown in Figure 1. Each tree has a root node, called triple map node, which is linked to
exactly one logical table node, one subject map node and one or more predicate object
map nodes. Intuitively, each triple map states how to construct a set of triples (subject,
predicate, object) using the information contained in the logical table (specified as an
SQL query).

The R2RML syntax is rather verbose, therefore, due to the space limitations, in this
paper we represent triple maps using standard Datalog rules of the form:

predicate(subject , object) :- body concept(subject) :- body

where body is a conjunction of atoms that refers to the database relations, possibly
making use of auxiliary relations representing the SQL query of the mapping, when the
semantics of such query cannot be captured in Datalog. For the formal translation from
R2RML to Datalog, we refer to [23].

Example 4 (Example 2, continued). We present the R2RML rules mapping a relational
database to the relations flightFrom and flightPrice. Recall that the relations
tripPlanFrom, tripPlanTo, etc. are defined by rules. Suppose we have a table flight
in the database, with attributes: id , departure, arrival , segment , and cost . Then the
mappings are as follows:

flightFrom(id, departure) :- flight(id, departure, arrival, cost)
flightPrice(id, cost) :- flight(id, departure, arrival, cost)

Next we define the RDF graph induced by a set of mapping rules and a database.



Definition 4 (Virtual RDF Graph via R2RML Mapping). LetM be a set of R2RML
mappings (represented in Datalog), and I a relational database instance. Then the
virtual RDF graphM(I) is defined as the RDF graph corresponding to the minimal
model ofM∪ I , i.e.,M(I) = G(MM(M∪ I)).

3 Answering SPARQL over Rules and Virtual RDF

In this section we describe how we translate SPARQL queries over a rule-enriched
vocabulary into SQL. The translation consists of two steps: (i) translation of the SPARQL
query and RIF rules into a recursive Datalog program, and (ii) generation of an SQL
query (with CTEs) from the Datalog program.

3.1 SPARQL to Recursive Datalog

The translation we present here extends the one described in [18,19,23], where the
authors define a translation function τ from SPARQL queries to non-recursive Datalog
programs with stratified negation. Due to space limitations, we do not provide the
details of the translation τ , but illustrate it with an example, and refer to [18,19] for
its correctness. Note, in this paper we only consider BGPs corresponding to atoms in
SWRL or RIF rules; in other words, triple patterns like (t1, ?x, t2) or (t, rdf:type, ?x)
are disallowed (cf. the restrictions on RIF in Section 2.3).

Example 5. Consider the query (V, P ) in Example 1, for which we report below the
algebra expression in which we have labeled each sub-expression Pi of P .

Filter (?z < 100)( # P1

Join( # P2

BGP(?x :tripPlanFrom :Bolzano .) # P3

Join( # P4

BGP(?x :tripPlanTo ?y .) # P5

BGP(?x :tripPrice ?z .)))) # P6

The Datalog translation contains one predicate ansi representing each algebra sub-
expression Pi. The Datalog program τ(V, P ) for this query is as follows:

ans1(x) :- ans2(x, y, z), Filter(z > 100)
ans2(x, y) :- ans3(x), ans4(x, y, z)
ans3(x) :- tripPlanFrom(x, :Bolzano)
ans4(x, y, z) :- ans5(x, y), ans6(x, z)
ans5(x, y) :- tripPlanTo(x, y)
ans6(x, z) :- tripPrice(x, z)

The overall translation of a SPARQL query and a set of rules to recursive Datalog is
defined as follows.

Definition 5. Let Q = (V, P ) be a SPARQL query and Π a set of rules. We define the
translation of Q and Π to Datalog as the Datalog program µ(Q,Π) = Π ∪ τ(V, P ).



Observe that while τ(V, P ) is not recursive, Π and therefore µ(Q,Π) might be so.

Proposition 1. Let (G,Π) be an RDF-rule combination, Q a SPARQL query, and θ a
solution mapping. Then

θ ∈ JQKG,Π if and only if µ(Q,Π) ∪ A(G) |= ansQ(θ)

where ansQ is the predicate in µ(Q,Π) corresponding to Q.

Proof. Let Q = (V, P ). By definition, τ(V, P ) is a stratified Datalog program and we
assume that it has a stratification (S0, . . . , Sn). As Π is a positive program, clearly
(Π ∪ A(G), S0, . . . , Sn) is a stratification of µ(Q,Π) ∪ A(G). Then the following
statements are equivalent:

– θ ∈ JQKG,Π = JQKG(MM(A(G)∪Π))

– (By the correctness of the translation τ(V, P ) [19])
ansQ(θ) ∈ MM(τ(V, P ) ∪MM(A(G) ∪Π))

– (By the definition of GL-reduction)
ansQ(θ) ∈ MM(τ(V, P )MM(A(G)∪Π))

– (By the definition of model of a stratified Datalog program)
ansQ(θ) ∈ MM(τ(V, P ) ∪ A(G) ∪Π) = MM(µ(Q,Π) ∪ A(G))

– µ(Q,Π) ∪ A(G) |= ansQ(θ) ut

Considering that R2RML mappings are represented in Datalog, we immediately
obtain the following result.

Corollary 1. Let Q = (V, P ) be a SPARQL query, Π a set of rules,M a set of R2RML
mappings, I a database instance, and θ a solution mapping. Then

θ ∈ JQKM(I),Π if and only if µ(Q,Π) ∪M∪ I |= ansQ(θ)

3.2 Recursive Datalog to Recursive SQL

In this section, we show how to translate to SQL the recursive Datalog program obtained
in the previous step. Note that translation from Datalog to SQL presented in [23] does
not consider recursive rules. Here we extend such translation to handle recursion by
making use of SQL common table expressions (CTEs). We assume that the extensional
database (EDB) predicates (i.e., those not appearing in the heads of Datalog rules) are
stored in the database.

Fixpoint Operator, Linear Recursive Query and CTE. We recall first how relational
algebra can be extended with a fixpoint operator [1]. Consider an equation of the form
R = f(R), where f(R) is a relational algebra expression over R. A least fixpoint of the
equation above, denoted LFP(R = f(R)), is a relation S such that

– S = f(S)
– if R is any relation such that R = f(R), then S ⊆ R.



In order to ensure the existence of a fixpoint (and hence of the least fixpoint), f must be
monotone.

Consider now the equation R = f(R1, . . . , Rn, R), making use of a relational
algebra expression over R and other relations. Such equation is a linear recursive
expression, if R occurs exactly once in the expression f . Then, we can split f into a non-
recursive part f1 not mentioning R, and a recursive part f2, i.e., f(R1, . . . , Rn, R) =
f1(R1, . . . , Rn) ∪ f2(R1, . . . , Rn, R). In this case, LFP(R = f(R1, . . . , Rn, R)) can
be expressed using a common table expression (CTE) of SQL99:

WITH RECURSIVE R AS {
[block for base case f1]

UNION
[block for recursive case f2]

}

We remark that CTEs are already implemented in most of the commercial databases,
e.g, Postgres, MS SQL Server, Oracle, DB2, H2, HSQL.

Example 6. Suppose we have the database relation Flight (f , for short), with attributes
id , source, destination , and cost (i, s, d, c, for short) and we want to compute all the
possible routes such that the total cost is less that 100. To express this relation plan we
can use the following equation with least fixpoint operator:

plan = LFP(f∗ = πvar1(f) ∪ πvar2(ρcount(σfil(f 1 f∗))))

where

var1 = f.s, f.d, f.c count = (f.c+ f∗.c)/c
var2 = f.s, f∗.d, c fil = f.c+ f∗.c < 100, f.s = f∗.d

It can be expressed as the following CTE:

WITH RECURSIVE plan AS (
SELECT f.s, f.d, f.c FROM f

UNION
SELECT plan.s, f.d, f.c + plan.c AS c
FROM f, plan
WHERE f.c + plan.c < 100 AND f.s = plan.d

)

Now we proceed to explain how to translate a recursive program into a fixpoint
relation algebra expression.

The dependency graph for a Datalog program is a directed graph representing the
relation between the predicate names in a program. The set of nodes are the relation
symbols in the program. There is an arc from a node a to a node b if and only if a appears
in the body of a rule in which b appears in the head. A program is recursive if there is a
cycle in the dependency graph.

We say that a Datalog program Π is SQL99 compatible if (i) there are no cycles in
the dependency graph of Π apart from self-loops; and (ii) the recursive predicates are



restricted to linear recursive ones. For the sake of simplicity, and ease the presentation,
we assume that non-recursive rules have the form

p(x) :- atom1(x1), . . . , atomn(xn), cond(z) (1)

where each atomi is a relational atom, and cond(z) is a conjunction of atoms over
built-in predicates. Moreover, for each recursive predicate p, there is a pair of rules
defining p of the form

p(x) :- atom0(x0), p(y), cond1(z1)
p(x) :- atom1(x1), . . . , atomn(xn), cond2(z2)

(2)

In addition, we assume that equalities between variables in the rules are made explicit in
atoms of the form x = y. Thus, there are no repeated variables in non-equality atoms.

The intuition behind the next definition is that for each predicate p of arity n in the
program, we create a relational algebra expression RA(p).

Definition 6. Let p be a predicate and Π a set of Datalog rules.

– If p is an extensional predicate, then

RA(p(x)) = p

– If p is a non-recursive intensional predicate, let Πp be the set of rules in Π defining
p. For such a rule r, which is of the form (1), let

RA(r) = σcond(RA(atom1(x1)) 1 · · · 1 RA(atomn(xn)))

where cond is the condition corresponding to the conjunction of atoms cond(z)
in (1). Then

RA(p(x)) =
⋃
r∈Πp

RA(r)
– If p is a recursive intensional predicate defined by a pair of rules of the form (2),

then

RA(p(x)) = LFP(p = σcond1
(RA(atom0(x0)) 1 p) ∪

σcond2
(RA(atom1(x1)) 1 · · · 1 RA(atomn(xn))))

where again cond1 and cond2 are the conditions corresponding to the conjunctions
of atoms cond1(z1) and cond2(z2) in the two rules defining p.

The next proposition shows that if the rule component of an RDF-rule combination
is SQL99 compatible, then the Datalog transformation of the combination is also SQL99
compatible.

Proposition 2. Let (G,Π) be an RDF-rule combination, Q = (V, P ) a SPARQL query,
M a set of R2RML mapping. If Π is SQL99 compatible, then µ(Q,Π) ∪M is also
SQL99 compatible.

Proof (Sketch). This can be easily verified by checking the layered structure of µ(Q,Π)∪
M = τ(V, P ) ∪Π ∪M. Observe that (1) τ(V, P ) andM are non-recursive Datalog
programs, and (2) there is no arc from the head predicates of Π (resp. τ(V, P )) to the
body predicates ofM (resp. Π) in the dependency graph of µ(Q,Π) ∪M. Therefore
no additional cycles in the dependency graph will be introduced except the ones already
in Π (if any).



4 Embedding Entailments in Mappings Rules

A first naive implementation of the technique described above was unable to generate
SQL queries, due to the blowup caused by the processing of mappings, i.e., by unfolding
the predicates defined in the heads of mapping rules with the corresponding queries in the
bodies. Thus, it was necessary to optimize the rules and the mappings before unfolding
the query. In this section, we present two optimizations based on the key observation
that we can optimize the rules together with R2RML mappings independently of the
SPARQL queries.

1. For the recursive rules, we can pre-compute the relational algebra expression (i.e.,
the recursive common table expressions (CTEs) in SQL).

2. For the non-recursive rules, we introduce a method to embed entailments into the
mapping rules.

4.1 Recursion Elimination

The presence of recursion in the Datalog representation of the SPARQL query gives rise
to a number of issues e.g., efficiently unfolding the program using SLD resolution, and
managing the different types of variables. For this reason, before generating SQL for the
whole set of rules, (i) we pre-compute CTEs for recursive predicates, making use of the
expressions in relational algebra extended with fixpoints provided in Definition 6, (ii) we
eliminate the recursive rules and replace the recursive predicates by fresh predicates;
these fresh predicates are defined by cached CTEs.

4.2 T-Mappings for SWRL Rules

We introduce now an extension of the notion of T-mappings [20] to cope with SWRL
rules. T-mappings have been introduced in the context of OBDA systems in which
queries posed over an OWL 2 QL ontology that is mapped to a relational database,
are rewritten in terms of the database relations only. They allow one to embed in the
mapping assertions entailments over the data that are caused by the ontology axioms,
and thus to obtain a more efficient Datalog program. In our setting, T-mappings extend
the set of mapping to embed entailments caused by (recursive) rules into the mapping
rules. Formally:

Definition 7 (SWRL T-Mappings). LetM be a set of mappings, I a database instance,
and Π a set of SWRL rules. A T-mapping for Π w.r.t.M is a setMΠ of mappings such
that: (i) every triple entailed byM(I) is also entailed byMΠ(I); and (ii) every fact
entailed by Π ∪ A(M(I)) is also entailed byMΠ(I).

A T-mapping for SWRL rules can be constructed iteratively, unlike OWL 2 QL-based
T-mappings, using existing mappings to generate new mappings that take into account
the implications of the rules3. In Algorithm 1, we describe the construction process
which is similar to the classical semi-naive evaluation for Datalog programs.

3 Recall that SWRL allows only for unary and binary predicates.



Algorithm 1: T-Mapping(Π ,M)
Input: a set Π of (SWRL) rules; a setM of R2RML mappings
Output: T-MappingMΠ ofM w.r.t. Π
∆M←M; MΠ ← ∅;
while ∆M 6= ∅ do
MΠ ←MΠ ∪∆M; ∆M′ ← ∅;
foreach mapping m ∈ ∆M do

foreach rule r ∈ Π do
if m and r resolves then

∆M′ ← ∆M′ ∪ res(m, r) ; � res(m, r) is a set of
mappings

∆M← ∆M′;

returnMΠ

Theorem 1. LetM be a set of mappings and Π a set of SWRL rules. Then there exists
always a T-mapping for Π w.r.t.M .

Proof (sketch). Let I be a database instance. The Datalog programM∪Π ∪ I does not
contain negation, therefore, it has a unique minimal model, which can be computed via
a repeated exhaustive application of the rules in it in a bottom-up fashion.

Since the rules inM act as links between the atoms in Π and the ground facts in
I , it is clear that if a predicate A in Π does not depend on an intensional predicate
inM, every rule containing A can be removed without affecting the minimal model
ofM∪Π ∪ I . Thus, we can safely assume that every predicate in Π depends on an
intensional predicate in M. Thus, if every predicate in a rule is defined (directly or
indirectly) by mappings inM, we can always replace the predicate by its definition,
leaving in this way rules whose body uses only database relations. ut

5 Implementation

The techniques presented here are implemented in the Ontop4 system. Ontop is an
open-source project released under the Apache License, developed at the Free University
of Bozen-Bolzano and part of the core of the EU project Optique5. Ontop is available as
a plugin for Protege 4, as a SPARQL end-point, and as OWLAPI and Sesame libraries.
To the best of our knowledge, Ontop is the first system supporting all the following W3C
recommendations: OWL 2 QL, R2RML, SPARQL, and SWRL6. Support for RIF and
integration of SWRL and OWL 2 QL ontologies will be implemented in the near future.

In Figure 2, we depict the new architecture that modifies and extends our previous
OBDA approach, by replacing OWL 2 QL with SWRL. First, during loading time, we
translate the SWRL rules and the R2RML mappings into a Datalog program. This set of

4 http://ontop.inf.unibz.it
5 http://www.optique-project.eu/
6 SWRL is a W3C submission, but not a W3C recommendation yet.

http://ontop.inf.unibz.it
http://www.optique-project.eu/
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rules is then optimised as described in Section 4. This process is query independent and is
performed only once when Ontop starts. Then the system translates the SPARQL query
provided by the user into another Datalog program. None of these Datalog programs
is meant to be executed. They are only a formal and succinct representation of the
rules, the mappings, and the query, in a single language. Given these two Datalog
programs, we unfold the query with respect to the rules and the mappings using SLD
resolution. Once the unfolding is ready, we obtain a program whose vocabulary is
contained in the vocabulary of the datasource, and therefore can be translated to SQL.
The technique is able to deal with all aspects of the translation, including URI and
RDF Literal construction, RDF typing, and SQL optimisation. However, the current
implementation supports only a restricted form of queries involving recursion: SPARQL
queries with recursion must consist of a single triple involving the recursive predicate.
This preliminary implementation is meant to test performance and scalability.

6 Evaluation

To evaluate the performance and scalability of Ontop with SWRL ontologies, we adapted
the NPD benchmark. The NPD benchmark [7] is based on the Norwegian Petroleum
Directorate7 Fact Pages, which contains information regarding the petroleum activities
on the Norwegian continental shelf. We used PostgreSQL as the underlying relational
database system. The hardware consisted of an HP Proliant server with 24 Intel Xeon
X5690 CPUs (144 cores @3.47GHz), 106GB of RAM and a 1TB 15K RPM HD. The
OS is Ubuntu 12.04 LTS.

The original benchmark comes with an OWL ontology8. In order to test our tech-
niques, we translated a fragment of this ontology into SWRL rules by (i) converting the
OWL axioms into rules whenever possible; and (ii) manually adding linear recursive
rules. The resulting SWRL ontology contains 343 concepts, 142 object properties, 238
data properties, 1428 non-recursive SWRL rules, and 1 recursive rule. The R2RML file

7 http://www.npd.no/en/
8 http://sws.ifi.uio.no/project/npd-v2/

http://www.npd.no/en/
http://sws.ifi.uio.no/project/npd-v2/


Table 1. Evaluation of Ontop on NPD benchmark

Load q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 r1

NPD Ontop 16.6 0.1 0.09 0.03 0.2 0.02 1.7 0.1 0.07 5.6 0.1 1.4 2.8 0.25
Stardog - 2.06 0.65 0.29 1.26 0.20 0.34 1.54 0.70 0.06 0.07 0.11 0.15 -

NPD Ontop 17.1 0.12 0.13 0.10 0.25 0.02 3.0 0.2 0.2 5.7 0.3 6.7 8.3 27.8
(×2) Stardog - 5.60 1.23 0.85 1.89 0.39 2.29 2.41 1.47 0.34 0.36 1.78 1.52 -

NPD Ontop 16.7 0.2 0.3 0.17 0.67 0.05 18.08 0.74 0.35 6.91 0.55 162.3 455.4 237.6
(×10) Stardog - 8.89 1.43 1.17 2.04 0.51 4.12 5.84 5.30 0.42 0.72 3.03 3.86 –

includes 1190 mappings. The NPD query set contains 12 queries obtained by interview-
ing users of the NPD data.

We compared Ontop with the only other system (to the best of our knowledge)
offering SWRL reasoning over on-disk RDF/OWL storage : Stardog 2.1.3. Stardog9

is a commercial RDF database developed by Clark&Parsia that supports SPARQL 1.1
queries and OWL 2/SWRL for reasoning. Since Stardog is a triple store, we needed to
materialize the virtual RDF graph exposed by the mappings and the database using Ontop .
In order to test the scalability w.r.t. the growth of the database, we used the data generator
described in [7] and produced several databases, the largest being approximately 10
times bigger than the original NPD database. The materialization of NPD (x2) produced
8,485,491 RDF triples and the materialization of NPD (x10) produced 60,803,757 RDF
triples. The loading of the last set of triples took around one hour.

The results of the evaluation (in seconds) are shown in Table 1. For queries q1 to q12,
we only used the non-recursive rules and compared the performance with Stardog. For
the second group (r1), we included recursive rules, which can only be handled by Ontop .

Discussion. The experiments show that the performance obtained with Ontop is com-
parable with that of Stardog and in most queries Ontop is faster. There are 4 queries
where Ontop performs poorly compared to Stardog. Due to space limitations, we will
analyze only one of these 4; however, the reason is the same in each case. Consider
query 12, which is a complex query that produces an SQL query with 48 unions. The
explosion in the size of the query is produced by interaction of long hierarchies below
the concepts used in the query and multiple mappings for each of these concepts. For
instance npdv:Wellbore has 24 subclasses, and npdv:name has 27 mappings defining
it. Usually just a join between these two should generate a union of 24×27 = 648 SQL
queries. Ontop manages to optimize this down to 48 unions but more work needs to be
done to get better performance. This problem is not a consequence of the presence of
rules, but is in the very nature of the OBDA approach, and is one of the main issues to
be studied in the future. For Stardog, the situation is slightly easier as it works on the
RDF triples directly and does not need to consider mappings.

9 http://stardog.com/

http://stardog.com/


7 Conclusion

In this paper we have studied the problem of SPARQL query answering in OBDA in
the presence of rule-based ontologies. We tackle the problem by rewriting the SPARQL
queries into recursive SQLs. To this end we provided a translation from SWRL rules into
relational algebra extended with fixed-point operators that can be expressed in SQL99’s
Common Table Expressions (CTEs). We extended the existing T-mapping optimisation
technique in OBDA, proved that for every non-recursive SWRL program there is a
T-mapping, and showed how to construct it. The techniques presented in this paper
were implemented in the system Ontop . We evaluated its scalability and compared the
performance with the commercial triple store Stardog. Result shows that most of the
SQL queries produced by Ontop are of high quality, allowing fast query answering even
in the presence of big data sets and complex queries.
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project (IP) Optique (Scalable End-user Access to Big Data), grant agreement n. FP7-
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