
Inline Evaluation of Hybrid Knowledge Bases

Guohui Xiao

Vienna PhD School of Informatics
Institute of Information Systems
Vienna University of Technology

January 23, 2014

1/71

Inline Evaluation of Hybrid KBs

Hybrid Knowledge Bases

Hybrid Knowledge Bases: combining KBs formulated in different
logics

In the context of Semantic Web: OWL Ontologies + Rules

In this thesis: dl-Programs – loose coupling ontologies and rules

G. Xiao / TU Wien 23/01/2014 2/71

Inline Evaluation of Hybrid KBs

Inline Evaluation

// max of integers x and y
inline int max(int x, int y){
return x > y ? x : y; }

// max of an integer array of size n
int max_array(int array[], int n) {
int result = INT_MIN;
for (int i = 0; i < n; i++) {
result = max(result, array[i]);

}
return result;

}

G. Xiao / TU Wien 23/01/2014 3/71

Inline Evaluation of Hybrid KBs

Inline Evaluation

// max of integers x and y
inline int max(int x, int y){
return x > y ? x : y; }

// max of an integer array of size n
int max_array(int array[], int n) {
int result = INT_MIN;
for (int i = 0; i < n; i++) {
//result = max(result, array[i]);
result = result > array[i] ? result :

array[i];
}
return result;

}

G. Xiao / TU Wien 23/01/2014 4/71

Inline Evaluation of Hybrid KBs

Outline

1. Logics, Knowledges and the Semantic Web

2. Hybrid Knowledge Bases

3. Inline Evaluation

4. Datalog-Rewritable DLs

5. Implemenation and Evaluation

6. Summary and Outlook

G. Xiao / TU Wien 23/01/2014 5/71

Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web

Rules and the Semantic Web
http://www.w3.org/2007/03/layerCake.png

Issue: Combining rules and ontologies (logic framework)

Rules and ontology formalisms like RDF/s, OWL resp. Description Logics
have related yet different underlying settings

Combination is nontrivial (at the heart, the difference is between LP and
classical logic)

G. Xiao / TU Wien 23/01/2014 6/71

http://www.w3.org/2007/03/layerCake.png

Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.1 DLs and OWL

OWL Ontologies and Description Logics

Knowledge about concepts, individuals, their properties and relationships

W3C Recommendation (2004): Web Ontology Language (OWL)

OWL2 (2009): tractable profiles OWL2 EL, OWL2 QL, OWL2 RL

OWL syntax is based on RDF

OWL semantics is based on Description logics

G. Xiao / TU Wien 23/01/2014 7/71

Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.1 DLs and OWL

Description Logics (DLs)

Description Logics are fragments of First-order Logics

The vocabulary of basic DLs comprises:

• Concepts (e.g., Wine, WhiteWine)
• Roles (e.g., hasMaker, madeFromGrape)
• Individuals (e.g., SelaksIceWine, TaylorPort)

Statements relate individuals and their properties using

• logical connectives (u, t, ¬, v, etc), and
• quantifiers (∃, ∀, ≤k, ≥k, etc)

A DL knowledge base L = (T ,A) (ontology) usually comprises

• a TBox T (terminology, conceptualization), and
• an ABox A (assertions, extensional knowledge)

DLs are tailored for decidable reasoning (key task: satisfiability)

G. Xiao / TU Wien 23/01/2014 8/71

Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.1 DLs and OWL

Example: Wine Ontology

Available at http://www.w3.org/TR/owl-guide/wine.rdf
Some axioms from the TBox

Wine v PotableLiquid u =1hasMaker u ∀hasMaker.Winery;

∃hasColor−.Wine v {”White”, ”Rose”, ”Red”};
WhiteWine ≡ Wine u ∀hasColor.{”White”}.

• A wine is a potable liquid, having exactly one maker, who is a
member of the class “Winery”.

• Wines have colors “White”, “Rose”, or “Red”.

• A WhiteWine is a wine with exclusive color “White”.

The ABox contains, e.g.,

WhiteWine(”StGenevieveTexasWhite”), hasMaker(”TaylorPort”, ”Taylor”)

G. Xiao / TU Wien 23/01/2014 9/71

http://www.w3.org/TR/owl-guide/wine.rdf

Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.1 DLs and OWL

Formal OWL / DL Semantics

The semantics of core DLs is given by a mapping to first-order logic

In essence, DLs are “FO logic in disguise”

OWL property axioms as RDF Triples DL syntax FOL short representation
〈P rdfs:domain C〉 > v ∀P−.C ∀x, y.P(x, y) ⊃ C(x)
〈P rdfs:range C〉 > v ∀P.C ∀x, y.P(x, y) ⊃ C(y)
〈P owl:inverseOf P0〉 P ≡ P−0 ∀x, y.P(x, y) ≡ P0(y, x)
〈P rdf:type owl:SymmetricProperty 〉 P ≡ P− ∀x, y.P(x, y) ≡ P(y, x)
〈P rdf:type owl:FunctionalProperty 〉 > v6 1P ∀x, y1, y2.P(x, y1)∧P(x, y2)⊃ y1=y2
〈P rdf:type owl:TransitiveProperty 〉 P+ v P ∀x, y, z.P(x, y) ∧ P(y, z) ⊃ P(x, z)

OWL complex class descriptions DL syntax FOL short representation
owl:Thing > x = x
owl:Nothing ⊥ ¬x = x
owl:intersectionOf (C1 . . . Cn) C1 u . . . u Cn

∧
Ci(x)

owl:unionOf (C1 . . . Cn) C1 t . . . t Cn
∨

Ci(x)
owl:complementOf (C) ¬C ¬C(x)
owl:oneOf (o1 . . . on) {o1 . . . on}

∨
x = oi

owl:restriction (P owl:someValuesFrom (C)) ∃P.C ∃y.P(x, y) ∧ C(y)
owl:restriction (P owl:allValuesFrom (C)) ∀P.C ∀y.P(x, y) ⊃ C(y)
owl:restriction (P owl:value (o)) ∃P.{o} P(x, o)
owl:restriction (P owl:minCardinality (n)) >n P ∃n

i=1yi.
∧n

j=1 P(x, yj)∧
∧

i6=j yi 6=yj

G. Xiao / TU Wien 23/01/2014 10/71

Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.1 DLs and OWL

Formal OWL / DL Semantics

The semantics of core DLs is given by a mapping to first-order logic

In essence, DLs are “FO logic in disguise”

OWL property axioms as RDF Triples DL syntax FOL short representation
〈P rdfs:domain C〉 > v ∀P−.C ∀x, y.P(x, y) ⊃ C(x)
〈P rdfs:range C〉 > v ∀P.C ∀x, y.P(x, y) ⊃ C(y)
〈P owl:inverseOf P0〉 P ≡ P−0 ∀x, y.P(x, y) ≡ P0(y, x)
〈P rdf:type owl:SymmetricProperty 〉 P ≡ P− ∀x, y.P(x, y) ≡ P(y, x)
〈P rdf:type owl:FunctionalProperty 〉 > v6 1P ∀x, y1, y2.P(x, y1)∧P(x, y2)⊃ y1=y2
〈P rdf:type owl:TransitiveProperty 〉 P+ v P ∀x, y, z.P(x, y) ∧ P(y, z) ⊃ P(x, z)

OWL complex class descriptions DL syntax FOL short representation
owl:Thing > x = x
owl:Nothing ⊥ ¬x = x
owl:intersectionOf (C1 . . . Cn) C1 u . . . u Cn

∧
Ci(x)

owl:unionOf (C1 . . . Cn) C1 t . . . t Cn
∨

Ci(x)
owl:complementOf (C) ¬C ¬C(x)
owl:oneOf (o1 . . . on) {o1 . . . on}

∨
x = oi

owl:restriction (P owl:someValuesFrom (C)) ∃P.C ∃y.P(x, y) ∧ C(y)
owl:restriction (P owl:allValuesFrom (C)) ∀P.C ∀y.P(x, y) ⊃ C(y)
owl:restriction (P owl:value (o)) ∃P.{o} P(x, o)
owl:restriction (P owl:minCardinality (n)) >n P ∃n

i=1yi.
∧n

j=1 P(x, yj)∧
∧

i6=j yi 6=yj

G. Xiao / TU Wien 23/01/2014 10/71

Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.1 DLs and OWL

Systems

Java API: OWL-API

Ontology Editor: Protege

Reasoners
• OWL(2): Pellet, RacerPro, KAON2, HermiT
• OWL2 RL: Jena, Base VISor
• OWL2 EL: CEL, ELK
• OWL2 QL: QuOnto, OWLGres, Requiem, Ontop

G. Xiao / TU Wien 23/01/2014 11/71

Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.2 LP/ASP Introduction

Normal Logic Programs

Normal Logic Program

A normal logic program is a set of rules of the form

a← b1, . . . , bm, not c1, . . . , not cn (n,m ≥ 0) (1)

where a and all bi, cj are atoms in a first-order language L.

not is called “negation as failure”, “default negation”, or “weak negation”

Example

man(dilbert).

single(X)←man(X), not husband(X).

husband(X)←man(X), not single(X).

G. Xiao / TU Wien 23/01/2014 12/71

Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.2 LP/ASP Introduction

Semantics of Logic Programs

“War of Semantics” in Logic Programming (1980/90ies):

Meaning of programs like the Dilbert example above

Great Schism: Single model vs. multiple model semantics

To date:

• Answer Set (alias Stable Model) Semantics by Gelfond and Lifschitz
[1988,1991].

Alternative models: M1 = {man(dilbert), single(dilbert)},
M2 = {man(dilbert), husband(dilbert)}.

• Well-Founded Semantics [van Gelder et al., 1991]

Partial model: man(dilbert) is true,
single(dilbert), husband(dilbert) are unknown

Agreement for so-called “stratified programs” (acyclic negation)

Different selection principles for non-stratified programs

G. Xiao / TU Wien 23/01/2014 13/71

Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.2 LP/ASP Introduction

Semantics of Logic Programs

“War of Semantics” in Logic Programming (1980/90ies):

Meaning of programs like the Dilbert example above

Great Schism: Single model vs. multiple model semantics

To date:

• Answer Set (alias Stable Model) Semantics by Gelfond and Lifschitz
[1988,1991].

Alternative models: M1 = {man(dilbert), single(dilbert)},
M2 = {man(dilbert), husband(dilbert)}.

• Well-Founded Semantics [van Gelder et al., 1991]

Partial model: man(dilbert) is true,
single(dilbert), husband(dilbert) are unknown

Agreement for so-called “stratified programs” (acyclic negation)

Different selection principles for non-stratified programs

G. Xiao / TU Wien 23/01/2014 13/71

Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.2 LP/ASP Introduction

Semantics of Logic Programs

“War of Semantics” in Logic Programming (1980/90ies):

Meaning of programs like the Dilbert example above

Great Schism: Single model vs. multiple model semantics

To date:

• Answer Set (alias Stable Model) Semantics by Gelfond and Lifschitz
[1988,1991].

Alternative models: M1 = {man(dilbert), single(dilbert)},
M2 = {man(dilbert), husband(dilbert)}.

• Well-Founded Semantics [van Gelder et al., 1991]

Partial model: man(dilbert) is true,
single(dilbert), husband(dilbert) are unknown

Agreement for so-called “stratified programs” (acyclic negation)

Different selection principles for non-stratified programs

G. Xiao / TU Wien 23/01/2014 13/71

Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.2 LP/ASP Introduction

Semantics of Logic Programs

“War of Semantics” in Logic Programming (1980/90ies):

Meaning of programs like the Dilbert example above

Great Schism: Single model vs. multiple model semantics

To date:

• Answer Set (alias Stable Model) Semantics by Gelfond and Lifschitz
[1988,1991].

Alternative models: M1 = {man(dilbert), single(dilbert)},
M2 = {man(dilbert), husband(dilbert)}.

• Well-Founded Semantics [van Gelder et al., 1991]

Partial model: man(dilbert) is true,
single(dilbert), husband(dilbert) are unknown

Agreement for so-called “stratified programs” (acyclic negation)

Different selection principles for non-stratified programs

G. Xiao / TU Wien 23/01/2014 13/71

Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.2 LP/ASP Introduction

Semantics of Logic Programs

“War of Semantics” in Logic Programming (1980/90ies):

Meaning of programs like the Dilbert example above

Great Schism: Single model vs. multiple model semantics

To date:

• Answer Set (alias Stable Model) Semantics by Gelfond and Lifschitz
[1988,1991].

Alternative models: M1 = {man(dilbert), single(dilbert)},
M2 = {man(dilbert), husband(dilbert)}.

• Well-Founded Semantics [van Gelder et al., 1991]

Partial model: man(dilbert) is true,
single(dilbert), husband(dilbert) are unknown

Agreement for so-called “stratified programs” (acyclic negation)

Different selection principles for non-stratified programs

G. Xiao / TU Wien 23/01/2014 13/71

Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.2 LP/ASP Introduction

Practical Considerations

Standards
• W3C recommedation RIF: RID-Core, RIF-BLD, RIF-PRD
• ASP-Core-2 (2013)

ASP Standardization Working Group
Partially for ASP Competition

Systems
• LParse
• Smodels
• ASSAT
• Patassco (Gringo, Clasp, Clingo)
• DLV

G. Xiao / TU Wien 23/01/2014 14/71

Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.3 OWL vs Rules

Main Differences OWL vs. Rules?

not in rule paradigms is different from negation (e.g., ComplementOf) in
OWL:
• ¬: Classical negation! Open world assumption! Monotonicity!
• not: Different purpose! Closed world assumption! Non-monotonicity!

Publication v Paper
¬Publication v Unpublished
paper1 ∈ Paper.

in DL: 6|= paper1 ∈ Unpublished

Paper(X)← Publication(X)
Unpublished(X)← not Publication(X)
Paper(paper1)←

Does infer in LP: Unpublished(paper1).

Also strong negation in LP (“−”, sometimes “¬”) is not completely the
same as classical negation in DLs, e.g.

Publication v Paper
a ∈ ¬Paper.

in DL: |= a ∈ ¬Publication

Paper(X)← Publication(X)
¬Paper(a)

Does not automatically infer in LP:
¬Publication(a).

G. Xiao / TU Wien 23/01/2014 15/71

Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.3 OWL vs Rules

Main Differences OWL vs. Rules?

not in rule paradigms is different from negation (e.g., ComplementOf) in
OWL:
• ¬: Classical negation! Open world assumption! Monotonicity!
• not: Different purpose! Closed world assumption! Non-monotonicity!

Publication v Paper
¬Publication v Unpublished
paper1 ∈ Paper.

in DL: 6|= paper1 ∈ Unpublished

Paper(X)← Publication(X)
Unpublished(X)← not Publication(X)
Paper(paper1)←

Does infer in LP: Unpublished(paper1).

Also strong negation in LP (“−”, sometimes “¬”) is not completely the
same as classical negation in DLs, e.g.

Publication v Paper
a ∈ ¬Paper.

in DL: |= a ∈ ¬Publication

Paper(X)← Publication(X)
¬Paper(a)

Does not automatically infer in LP:
¬Publication(a).

G. Xiao / TU Wien 23/01/2014 15/71

Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.3 OWL vs Rules

Main Differences OWL vs. Rules?

LPs are strong in query answering, but subsumption checking as in
DLs is infeasible (undecidable even for positive function-free
programs).

OWL DL allows complex statements in the “head” (rhs of v), while
use of variables in LP rule bodies is more flexible

DLs are stronger in type inference, while LPs are stronger in type
checking:

Person v ∃hasName.xs:string
john ∈ Person

is consistent in DL and infers
john ∈ ∃hasName

← Person(X), not hasName(X, Y)
Person(john)

is inconsistent, since there is no
known name for john

G. Xiao / TU Wien 23/01/2014 16/71

Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.3 OWL vs Rules

Main Differences OWL vs. Rules?

LPs are strong in query answering, but subsumption checking as in
DLs is infeasible (undecidable even for positive function-free
programs).

OWL DL allows complex statements in the “head” (rhs of v), while
use of variables in LP rule bodies is more flexible

DLs are stronger in type inference, while LPs are stronger in type
checking:

Person v ∃hasName.xs:string
john ∈ Person

is consistent in DL and infers
john ∈ ∃hasName

← Person(X), not hasName(X, Y)
Person(john)

is inconsistent, since there is no
known name for john

G. Xiao / TU Wien 23/01/2014 16/71

Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.3 OWL vs Rules

Main Differences OWL vs. Rules?

LPs are strong in query answering, but subsumption checking as in
DLs is infeasible (undecidable even for positive function-free
programs).

OWL DL allows complex statements in the “head” (rhs of v), while
use of variables in LP rule bodies is more flexible

DLs are stronger in type inference, while LPs are stronger in type
checking:

Person v ∃hasName.xs:string
john ∈ Person

is consistent in DL and infers
john ∈ ∃hasName

← Person(X), not hasName(X, Y)
Person(john)

is inconsistent, since there is no
known name for john

G. Xiao / TU Wien 23/01/2014 16/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.1 Approaches on Combining Ontologies and Rules

Marrying Rules and Ontologies

Hybrid knowledge base: KB = (O,P)
• O is an ontology

Father ≡ Man u ∃hasChild.Human

• P is the rules part (program)

rich(X)← famous(X), not scientist(X)

• Description Logic Programs [Grosof et al., 2003]
• DL-safe rules [Motik et al., 2005]
• r-hybrid KBs [Rosati, 2005]
• hybrid MKNF KBs [Motik and Rosati, 2010]
• Description Logic Rules [Krötzsch et al., 2008a]
• ELP [Krötzsch et al., 2008b]
• DL+log [Rosati, 2006]
• SWRL [Horrocks et al., 2004]
• dl-programs [E_ et al., 2008]
• . . .

G. Xiao / TU Wien 23/01/2014 17/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.1 Approaches on Combining Ontologies and Rules

Semantics

Different ways to give semantics to K = (O,P)
overviews e.g. [Motik and Rosati, 2010], [de Bruijn et al., 2009]

• Tight semantic integration
• Full integration

• Strict semantic separation (loose coupling)

Nonmonotonic semantics:

• answer sets
• well-founded semantics
• ...

G. Xiao / TU Wien 23/01/2014 18/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.1 Approaches on Combining Ontologies and Rules

Tight Semantic Integration

Rules
(RIF)

Ontologies
(OWL)

RDFS

Integrate FOL statements and the logic program to a large extent,
but keep predicates of ΣO and ΣP separate.

Build an integrated model M as the “union” of a model MO of the FO
theory O and a model MP of P with the same domain.

Ensure “safe interaction” between MO and MP.

Examples

CARIN [Levy and Rousset, 1998], DLP (≈ OWL 2 RL) [Grosof et al., 2003],
dl-safe rules [Motik et al., 2005], R-hybrid KBs [Rosati, 2005]
DL+LOG [Rosati, 2006]

G. Xiao / TU Wien 23/01/2014 19/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.1 Approaches on Combining Ontologies and Rules

Full Integration

RDFS

Ontologies
(OWL)

Rules
(RIF)

Unifiying Logic

No fundamental separation between ΣO, ΣP (but special axioms)

Examples

• Hybrid MKNF knowledge bases [Motik and Rosati, 2010;
Knorr et al., 2008]

• FO-Autoepistemic Logic [de Bruijn et al., 2007a]

• Quantified Equilibrium Logic [de Bruijn et al., 2007b]
(use special axioms)

G. Xiao / TU Wien 23/01/2014 20/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.1 Approaches on Combining Ontologies and Rules

Loose Coupling

Strict semantic separation between rules / ontology

RDFS

Ontologies
(OWL)

Rules
(RIF)

• View rule base P and FO theory O as separate, independent
components. ΣO and ΣP do (a priori) not share meaning.

• They are connected through a minimal “safe interface” for exchanging
knowledge (formulas, usually ground atoms).

Well-suited for implementation on top of LP & DL reasoners.

Examples

nonmonotonic dl-programs [E_ et al., 2008], [E_ et al., 2011]
defeasible logic+DLs [Wang et al., 2004]

G. Xiao / TU Wien 23/01/2014 21/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.1 Approaches on Combining Ontologies and Rules

dl-Programs

An extension of answer set programs with queries to DL knowledge
bases (DL KBs)

Queries can temporarily update the DL KB

bidirectional flow of information, with clean technical separation of
DL engine and ASP solver (“loose coupling”)

DL EngineASP Solver ?

Use dl-programs as “glue” for combining inferences on a DL KB.

G. Xiao / TU Wien 23/01/2014 22/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.2 dl-Programs

dl-Programs

dl-programs are hybrid KBs with dl-atoms in rules

dl-Program

A dl-program is a pair Π = (O,P) where

O is a DL knowledge base (“ontology”)

P consists of dl-rules

a← b1, . . . , bk, not bk+1, . . . , not bm, (1)

where
• not is default negation (“unless derivable”),
• a1, . . . , an are atoms,
• b1, . . . , bm, m ≥ 0, are atoms or dl-atoms (no function symbols).

G. Xiao / TU Wien 23/01/2014 23/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.2 dl-Programs

dl-Atoms

Basic Idea:

Query the DL KB O using the query interface of the DL engine

Query Q may be concept/role instance C(X) / R(X,Y); subsumption
test C v D; etc (recent extension: conjunctive queries)

Important: Possible to modify the extensional part (ABox) of O, by
adding positive (]) or negative (−∪, −∩) assertions, before querying

Q evaluates to true iff the modified O proves Q.

G. Xiao / TU Wien 23/01/2014 24/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.2 dl-Programs

dl-Atoms: Syntax

dl-atom

A dl-atom has the form
DL[S1]p1, . . . , Sm] pm; Q](t) , m ≥ 0,

where

each Si is either a concept or a role

Intuitively] increases Si by pi

pi is a unary resp. binary predicate (input predicate),
Q(t) is a dl-query (t contains variables and/or constants), which is
one of

(a) C(t), for a concept C and term t, or
(b) R(t1, t2), for a role R and terms t1, t2.

G. Xiao / TU Wien 23/01/2014 25/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.2 dl-Programs

dl-Atoms: Syntax

dl-atom

A dl-atom has the form
DL[S1]p1, . . . , Sm] pm; Q](t) , m ≥ 0,

where

each Si is either a concept or a role

Intuitively] increases Si by pi

pi is a unary resp. binary predicate (input predicate),
Q(t) is a dl-query (t contains variables and/or constants), which is
one of

(a) C(t), for a concept C and term t, or
(b) R(t1, t2), for a role R and terms t1, t2.

G. Xiao / TU Wien 23/01/2014 25/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.2 dl-Programs

dl-Atoms: Syntax

dl-atom

A dl-atom has the form
DL[S1]p1, . . . , Sm] pm; Q](t) , m ≥ 0,

where

each Si is either a concept or a role

Intuitively] increases Si by pi

pi is a unary resp. binary predicate (input predicate),
Q(t) is a dl-query (t contains variables and/or constants), which is
one of

(a) C(t), for a concept C and term t, or
(b) R(t1, t2), for a role R and terms t1, t2.

G. Xiao / TU Wien 23/01/2014 25/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.2 dl-Programs

dl-Atoms: Syntax

dl-atom

A dl-atom has the form
DL[S1]p1, . . . , Sm] pm; Q](t) , m ≥ 0,

where

each Si is either a concept or a role

Intuitively] increases Si by pi

pi is a unary resp. binary predicate (input predicate),

Q(t) is a dl-query (t contains variables and/or constants), which is
one of

(a) C(t), for a concept C and term t, or
(b) R(t1, t2), for a role R and terms t1, t2.

G. Xiao / TU Wien 23/01/2014 25/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.2 dl-Programs

dl-Atoms: Syntax

dl-atom

A dl-atom has the form
DL[S1]p1, . . . , Sm] pm; Q](t) , m ≥ 0,

where

each Si is either a concept or a role

Intuitively] increases Si by pi

pi is a unary resp. binary predicate (input predicate),
Q(t) is a dl-query (t contains variables and/or constants), which is
one of

(a) C(t), for a concept C and term t, or
(b) R(t1, t2), for a role R and terms t1, t2.

G. Xiao / TU Wien 23/01/2014 25/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.2 dl-Programs

dl-Atoms: Syntax

dl-atom

A dl-atom has the form
DL[S1]p1, . . . , Sm] pm; Q](t) , m ≥ 0,

where

each Si is either a concept or a role

Intuitively] increases Si by pi

pi is a unary resp. binary predicate (input predicate),
Q(t) is a dl-query (t contains variables and/or constants), which is
one of

(a) C(t), for a concept C and term t, or
(b) R(t1, t2), for a role R and terms t1, t2.

Shorthand: λ = S1op1p1, . . . , Smopmpm

G. Xiao / TU Wien 23/01/2014 25/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.2 dl-Programs

Example: Network Connections

Π = (O,P) Ontology O :

n1

n2

n3

n4

n5

≥ 1.wired v Node > v ∀wired.Node

wired = wired−;

n1 6= n2 6= n3 6= n4 6= n5

wired(n1, n2) wired(n2, n3) wired(n2, n4)

wired(n2, n5) wired(n3, n4) wired(n3, n5).

G. Xiao / TU Wien 23/01/2014 26/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.2 dl-Programs

Example: Network Connections

Π = (O,P) Ontology O :

n1

n2

n3

n4

n5

≥ 1.wired v Node > v ∀wired.Node

wired = wired−;

n1 6= n2 6= n3 6= n4 6= n5

wired(n1, n2) wired(n2, n3) wired(n2, n4)

wired(n2, n5) wired(n3, n4) wired(n3, n5).

≥ 4.wired v HighTrafficNode

G. Xiao / TU Wien 23/01/2014 26/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.2 dl-Programs

Example: Network Connections

Π = (O,P) Ontology O :

n1

n2

n3

n4

n5

x1?

x2?

≥ 1.wired v Node > v ∀wired.Node

wired = wired−;

n1 6= n2 6= n3 6= n4 6= n5

wired(n1, n2) wired(n2, n3) wired(n2, n4)

wired(n2, n5) wired(n3, n4) wired(n3, n5).

≥ 4.wired v HighTrafficNode

Rules P newnode(x1). newnode(x2).

G. Xiao / TU Wien 23/01/2014 26/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.2 dl-Programs

Example: Network Connections

Π = (O,P) Ontology O :

n1

n2

n3

n4

n5

x1?

x2?

≥ 1.wired v Node > v ∀wired.Node

wired = wired−;

n1 6= n2 6= n3 6= n4 6= n5

wired(n1, n2) wired(n2, n3) wired(n2, n4)

wired(n2, n5) wired(n3, n4) wired(n3, n5).

≥ 4.wired v HighTrafficNode

Rules P newnode(x1). newnode(x2).

overloaded(X)← DL[wired] connect;HighTrafficNode](X).

DL atom: DL[wired] connect; HighTrafficNode](X).

Intuition: extend role wired by connect, then query
HighTrafficNode

• E.g. Suppose {connect(x1, n3), connect(x2, n3)} ⊆ I
• Then I |= DL[wired] connect; HighTrafficNode](n3)

• Thus I |= overloaded(n3)G. Xiao / TU Wien 23/01/2014 26/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.2 dl-Programs

Example: Network Connections

Π = (O,P) Ontology O :

n1

n2

n3

n4

n5

x1?

x2?

≥ 1.wired v Node > v ∀wired.Node

wired = wired−;

n1 6= n2 6= n3 6= n4 6= n5

wired(n1, n2) wired(n2, n3) wired(n2, n4)

wired(n2, n5) wired(n3, n4) wired(n3, n5).

≥ 4.wired v HighTrafficNode

Rules P newnode(x1). newnode(x2).

overloaded(X)← DL[wired] connect;HighTrafficNode](X).

connect(X, Y)← newnode(X),DL[Node](Y),
not overloaded(Y), not excl(X, Y).

G. Xiao / TU Wien 23/01/2014 26/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.2 dl-Programs

Example: Network Connections

Π = (O,P) Ontology O :

n1

n2

n3

n4

n5

x1?

x2?

≥ 1.wired v Node > v ∀wired.Node

wired = wired−;

n1 6= n2 6= n3 6= n4 6= n5

wired(n1, n2) wired(n2, n3) wired(n2, n4)

wired(n2, n5) wired(n3, n4) wired(n3, n5).

≥ 4.wired v HighTrafficNode

Rules P newnode(x1). newnode(x2).

overloaded(X)← DL[wired] connect;HighTrafficNode](X).

connect(X, Y)← newnode(X),DL[Node](Y),
not overloaded(Y), not excl(X, Y).

excl(X, Y)← connect(X, Z),DL[Node](Y), Y 6= Z.

G. Xiao / TU Wien 23/01/2014 26/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.2 dl-Programs

Example: Network Connections

Π = (O,P) Ontology O :

n1

n2

n3

n4

n5

x1?

x2?

≥ 1.wired v Node > v ∀wired.Node

wired = wired−;

n1 6= n2 6= n3 6= n4 6= n5

wired(n1, n2) wired(n2, n3) wired(n2, n4)

wired(n2, n5) wired(n3, n4) wired(n3, n5).

≥ 4.wired v HighTrafficNode

Rules P newnode(x1). newnode(x2).

overloaded(X)← DL[wired] connect;HighTrafficNode](X).

connect(X, Y)← newnode(X),DL[Node](Y),
not overloaded(Y), not excl(X, Y).

excl(X, Y)← connect(X, Z),DL[Node](Y), Y 6= Z.

excl(X, Y)← connect(Z, Y), newnode(Z), newnode(X), Z 6= X.

G. Xiao / TU Wien 23/01/2014 26/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.2 dl-Programs

Example: Network Connections

Π = (O,P) Ontology O :

n1

n2

n3

n4

n5

x1?

x2?

X

≥ 1.wired v Node > v ∀wired.Node

wired = wired−;

n1 6= n2 6= n3 6= n4 6= n5

wired(n1, n2) wired(n2, n3) wired(n2, n4)

wired(n2, n5) wired(n3, n4) wired(n3, n5).

≥ 4.wired v HighTrafficNode

Rules P newnode(x1). newnode(x2).

overloaded(X)← DL[wired] connect;HighTrafficNode](X).

connect(X, Y)← newnode(X),DL[Node](Y),
not overloaded(Y), not excl(X, Y).

excl(X, Y)← connect(X, Z),DL[Node](Y), Y 6= Z.

excl(X, Y)← connect(Z, Y), newnode(Z), newnode(X), Z 6= X.

excl(x1, n4).

G. Xiao / TU Wien 23/01/2014 26/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.2 dl-Programs

Semantics

Satisfaction (I |=O a)

I satisfies a classical ground atom a iff a ∈ I;

I satisfies a ground dl-atom a = DL[λ; Q](c) iff
O ∪

⋃m
i=1 Ai(I) |= Q(c), where Ai(I) = {Si(e) | pi(e) ∈ I},

The semantics of Logic Programmings can be extended to
dl-Programs

Answer set semantics

Well-founded semantics

G. Xiao / TU Wien 23/01/2014 27/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.2 dl-Programs

Network Example: Answer Sets

n1

n2

n3

n4

n5

x1?

x2?

X

newnode(x1). newnode(x2).

overloaded(X)← DL[wired] connect; HighTrafficNode](X).

connect(X, Y)← newnode(X),DL[Node](Y),
notoverloaded(Y), notexcl(X, Y).

excl(X, Y)← connect(X, Z),DL[Node](Y), Y 6= Z.

excl(X, Y)← connect(Z, Y), newnode(Z), newnode(X), Z 6= X.

excl(x1, n4).

M1 = {connect(x1, n1), connect(x2, n4), . . .},
M2 = {connect(x1, n1), connect(x2, n5), . . .},
M3 = {connect(x1, n5), connect(x2, n1), . . .},
M4 = {connect(x1, n5), connect(x2, n4), . . .}.

G. Xiao / TU Wien 23/01/2014 28/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.2 dl-Programs

Network Example: Answer Sets

n1

n2

n3

n4

n5

x1?

x2?

X

newnode(x1). newnode(x2).

overloaded(X)← DL[wired] connect; HighTrafficNode](X).

connect(X, Y)← newnode(X),DL[Node](Y),
notoverloaded(Y), notexcl(X, Y).

excl(X, Y)← connect(X, Z),DL[Node](Y), Y 6= Z.

excl(X, Y)← connect(Z, Y), newnode(Z), newnode(X), Z 6= X.

excl(x1, n4).

M1 = {connect(x1, n1), connect(x2, n4), . . .},

M2 = {connect(x1, n1), connect(x2, n5), . . .},
M3 = {connect(x1, n5), connect(x2, n1), . . .},
M4 = {connect(x1, n5), connect(x2, n4), . . .}.

G. Xiao / TU Wien 23/01/2014 28/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.2 dl-Programs

Network Example: Answer Sets

n1

n2

n3

n4

n5

x1?

x2?

X

newnode(x1). newnode(x2).

overloaded(X)← DL[wired] connect; HighTrafficNode](X).

connect(X, Y)← newnode(X),DL[Node](Y),
notoverloaded(Y), notexcl(X, Y).

excl(X, Y)← connect(X, Z),DL[Node](Y), Y 6= Z.

excl(X, Y)← connect(Z, Y), newnode(Z), newnode(X), Z 6= X.

excl(x1, n4).

M1 = {connect(x1, n1), connect(x2, n4), . . .},
M2 = {connect(x1, n1), connect(x2, n5), . . .},

M3 = {connect(x1, n5), connect(x2, n1), . . .},
M4 = {connect(x1, n5), connect(x2, n4), . . .}.

G. Xiao / TU Wien 23/01/2014 28/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.2 dl-Programs

Network Example: Answer Sets

n1

n2

n3

n4

n5

x1?

x2?

X

newnode(x1). newnode(x2).

overloaded(X)← DL[wired] connect; HighTrafficNode](X).

connect(X, Y)← newnode(X),DL[Node](Y),
notoverloaded(Y), notexcl(X, Y).

excl(X, Y)← connect(X, Z),DL[Node](Y), Y 6= Z.

excl(X, Y)← connect(Z, Y), newnode(Z), newnode(X), Z 6= X.

excl(x1, n4).

M1 = {connect(x1, n1), connect(x2, n4), . . .},
M2 = {connect(x1, n1), connect(x2, n5), . . .},
M3 = {connect(x1, n5), connect(x2, n1), . . .},

M4 = {connect(x1, n5), connect(x2, n4), . . .}.

G. Xiao / TU Wien 23/01/2014 28/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.2 dl-Programs

Network Example: Answer Sets

n1

n2

n3

n4

n5

x1?

x2?

X

newnode(x1). newnode(x2).

overloaded(X)← DL[wired] connect; HighTrafficNode](X).

connect(X, Y)← newnode(X),DL[Node](Y),
notoverloaded(Y), notexcl(X, Y).

excl(X, Y)← connect(X, Z),DL[Node](Y), Y 6= Z.

excl(X, Y)← connect(Z, Y), newnode(Z), newnode(X), Z 6= X.

excl(x1, n4).

M1 = {connect(x1, n1), connect(x2, n4), . . .},
M2 = {connect(x1, n1), connect(x2, n5), . . .},
M3 = {connect(x1, n5), connect(x2, n1), . . .},
M4 = {connect(x1, n5), connect(x2, n4), . . .}.

G. Xiao / TU Wien 23/01/2014 28/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.2 dl-Programs

Network Example: Well-founded Semantics

n1

n2

n3

n4

n5

x1?

x2?

X

newnode(x1). newnode(x2).

overloaded(X)← DL[wired] connect; HighTrafficNode](X).

connect(X, Y)← newnode(X),DL[Node](Y),
notoverloaded(Y), notexcl(X, Y).

excl(X, Y)← connect(X, Z),DL[Node](Y), Y 6= Z.

excl(X, Y)← connect(Z, Y), newnode(Z), newnode(X), Z 6= X.

excl(x1, n4).

WFS(Π) = {overloaded(n2), . . .}
Π |=wf ¬connect(x1, n4), ...

WFM(Π) = {overloaded(n2),¬connect(x1, n4), . . .}

G. Xiao / TU Wien 23/01/2014 29/71

Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.2 dl-Programs

System for dl-Programs

NLP-DL
• https://www.mat.unical.it/ianni/swlp/

• First Experimental prototype
• DL Engine: RacerPro
• ASP Solver: DLV
• PHP

dlvhex DL Plugin
• www.kr.tuwien.ac.at/research/systems/dlvhex/dlplugin.html

• DL Engine: RacerPro
• ASP Solver: DLV or Clingo
• C++

G. Xiao / TU Wien 23/01/2014 30/71

https://www.mat.unical.it/ianni/swlp/
www.kr.tuwien.ac.at/research/systems/dlvhex/dlplugin.html

Inline Evaluation of Hybrid KBs 3. Inline Evaluation 3.1 Inline Evaluation Framework

Problem Statement

Loose Coupling - revisited

Advantage:

• clean semantics, can use legacy systems
• fairly easy to incorporate further knowledge formats

(e.g. RDF)
• supportive to privacy, information hiding

Rules

Ontology

dl-atom 1

dl-atom 2

Rule
Reasoner

Ontology
Reasoner

Hybrid Reasoner

Drawback: impedance mismatch, performance

• dl-program evaluation needs multiple calls of a
dl-reasoner

• Calls are expensive
∗ optimizations (caching, pruning ...)

• exponentially many calls may be unavoidable
• Even polynomially many calls might be too costly

G. Xiao / TU Wien 23/01/2014 31/71

Inline Evaluation of Hybrid KBs 3. Inline Evaluation 3.1 Inline Evaluation Framework

Problem Statement

Loose Coupling - revisited

Advantage:

• clean semantics, can use legacy systems
• fairly easy to incorporate further knowledge formats

(e.g. RDF)
• supportive to privacy, information hiding

Rules

Ontology

dl-atom 1

dl-atom 2

Rule
Reasoner

Ontology
Reasoner

Hybrid Reasoner

Drawback: impedance mismatch, performance

• dl-program evaluation needs multiple calls of a
dl-reasoner

• Calls are expensive
∗ optimizations (caching, pruning ...)

• exponentially many calls may be unavoidable
• Even polynomially many calls might be too costly

G. Xiao / TU Wien 23/01/2014 31/71

Inline Evaluation of Hybrid KBs 3. Inline Evaluation 3.1 Inline Evaluation Framework

Motivation

Goal
Improving the efficiency of reasoning over dl-Programs

Approach

Converting the evaluation problem into one for a single reasoning engine

L-formulas Logic L
Reasoner

Transform dl-program Π into an (equivalent) knowledge base in formalism
L for evaluation (uniform evaluation)

• L = FO Logic (SQL): MOR; acyclic Π over DL-Lite, using an RDBMS

• L = Datalog¬ (ASP)

G. Xiao / TU Wien 23/01/2014 32/71

Inline Evaluation of Hybrid KBs 3. Inline Evaluation 3.1 Inline Evaluation Framework

Questions arising from Datalog¬ rewritings of dl-Progmas

Possibility of transformation?
• Is there a general framework?
• Which DLs can be transformed?

Suitable for implementation?
• Can we reuse existing tools?

Performance?
• Benchmarks?
• How to evaluate?

G. Xiao / TU Wien 23/01/2014 33/71

Inline Evaluation of Hybrid KBs 3. Inline Evaluation 3.2 Reasoning via Datalog Rewriting

Inline Evaluation of dl-Programs by Datalog rewriting

Idea:

for Datalog-rewritable ontologies, we may replace dl-atoms
DL[λ; Q](~c) with Datalog programs evaluating the atoms

the result is computed in an atom Qλ(~c)

rewrite the dl-rules to ordinary rules, by replacing dl-atoms

evaluate the resulting logic program using a Datalog engine / ASP
solver

Demonstrate the method on the Network example

G. Xiao / TU Wien 23/01/2014 34/71

Inline Evaluation of Hybrid KBs 3. Inline Evaluation 3.2 Reasoning via Datalog Rewriting

Network Example

Π = (O,P) Ontology O :

n1

n2

n3

n4

n5

x1?

x2?

X

≥ 1.wired v Node > v ∀wired.Node

wired = wired−;

n1 6= n2 6= n3 6= n4 6= n5

wired(n1, n2) wired(n2, n3) wired(n2, n4)

wired(n2, n5) wired(n3, n4) wired(n3, n5).

≥ 4.wired v HighTrafficNode

Rules P newnode(x1). newnode(x2).

overloaded(X)← DL[wired] connect;HighTrafficNode](X).

connect(X, Y)← newnode(X),DL[Node](Y),
not overloaded(Y), not excl(X, Y).

excl(X, Y)← connect(X, Z),DL[Node](Y), Y 6= Z.

excl(X, Y)← connect(Z, Y), newnode(Z), newnode(X), Z 6= X.

excl(x1, n4).

G. Xiao / TU Wien 23/01/2014 35/71

Inline Evaluation of Hybrid KBs 3. Inline Evaluation 3.2 Reasoning via Datalog Rewriting

Network Example, cont’d
1. Rewriting the ontology

The DL component O is in OWL 2 RL resp. LDL+, which is
Datalog-rewritable (LDL+ will be introduced later).

We transform O to the Datalog program ΦLDL+(O):

wired−(Y,X)← wired(X, Y) wired(Y,X)← wired−(X, Y)
>(X)← wired(X, Y) >(Y)← wired(X, Y)
>(X)← wired−(X, Y) >(Y)← wired−(X, Y)

%axiom ≥ 1.wired v Node
Node(Y)← wired(X, Y)

%axiom > v ∀wired.Node
Node(Y)← wired(X, Y),>(X)

%axiom ≥ 4.wired v HighTrafficNode
HighTrafficNode(X)← wired(X, Y1),wired(X, Y2),wired(X, Y3),wired(X, Y4),

Y1 6= Y2, Y1 6= Y3, . . . , Y3 6= Y4.

wired(n1, n2) wired(n2, n3) wired(n2, n4),wired(n2, n5). wired(n3, n4). wired(n3, n5).

G. Xiao / TU Wien 23/01/2014 36/71

Inline Evaluation of Hybrid KBs 3. Inline Evaluation 3.2 Reasoning via Datalog Rewriting

Network Example, cont’d
2. Duplicating for dl-inputs

dl-atoms in Π:
DL[Node](Y), DL[wired] connect; HighTrafficNode](X)

the dl-queries in are just instance queries, so given by Node(Y)
resp. HighTrafficNode(X)

Each DL-atom sends up a different input λ to O and so entailments
for the λ’s might be different.

To this purpose, we copy ΦLDL+(O) to new disjoint equivalent
versions for each DL-input λ

For the set ΛP = {λ1 = ε, λ2 = wired] connect}, we have

• ΦLDL+,λ1
(O) = {Nodeλ1(X)← wiredλ1(X,Y), . . .} and

• ΦLDL+,λ2
(O) = {Nodeλ2(X)← wiredλ2(X,Y), . . .}

G. Xiao / TU Wien 23/01/2014 37/71

Inline Evaluation of Hybrid KBs 3. Inline Evaluation 3.2 Reasoning via Datalog Rewriting

Network Example, cont’d
3. Rewriting dl-rules to ordinary rules

To rewrite DL-rules P into ordinary rules Pord, we simply replace
each DL-atom DL[λ; Q](~t) by a new atom Qλ(~t).

Pord

newnode(x1). newnode(x2).

overloaded(X)← HighTrafficNodeλ2
(X).

connect(X, Y)← newnode(X),Nodeλ1(Y),
not overloaded(Y), not excl(X, Y).

excl(X, Y)← connect(X, Z),Nodeλ1(Y), Y 6= Z.

excl(X, Y)← connect(Z, Y), newnode(Z), newnode(X), Z 6= X.

excl(x1, n4).

G. Xiao / TU Wien 23/01/2014 38/71

Inline Evaluation of Hybrid KBs 3. Inline Evaluation 3.2 Reasoning via Datalog Rewriting

Network Example, cont’d
3. Rewriting dl-rules to ordinary rules

To rewrite DL-rules P into ordinary rules Pord, we simply replace
each DL-atom DL[λ; Q](~t) by a new atom Qλ(~t).

Pord

newnode(x1). newnode(x2).

overloaded(X)← HighTrafficNodeλ2
(X).

connect(X, Y)← newnode(X),Nodeλ1(Y),
not overloaded(Y), not excl(X, Y).

excl(X, Y)← connect(X, Z),Nodeλ1(Y), Y 6= Z.

excl(X, Y)← connect(Z, Y), newnode(Z), newnode(X), Z 6= X.

excl(x1, n4).

G. Xiao / TU Wien 23/01/2014 38/71

Inline Evaluation of Hybrid KBs 3. Inline Evaluation 3.2 Reasoning via Datalog Rewriting

Network Example, cont’d
4. Rewriting dl-atom Input to Datalog rules

The inputs λ for the copies ΦLDL+,λ can be transferred by rules:

• λ1 = ε (no input); no rule needed

• λ2 = wired] connect:

wiredλ2(X,Y)← connect(X,Y).

G. Xiao / TU Wien 23/01/2014 39/71

Inline Evaluation of Hybrid KBs 3. Inline Evaluation 3.2 Reasoning via Datalog Rewriting

Network Example, cont’d
5. Calling the Datalog reasoner

Now we have transformed all the components into a Datalog¬

program

ΨLDL+(Π) = ΦLDL+,λ1
(Σ)∪ΦLDL+,λ2

(Σ)∪Pord ∪P(ΛP).

We can send it to a datalog engine, e.g. DLV, and compute its
answer set or the well-founded model

The answer sets of ΨLDL+(Π), filtered to connect, overloaded,
newnode, excl, are the (strong) answer sets of Π

ΨLDL+(Π) |=wf p(a) iff Π |=wf p(a) for ground atom

Example: ΨLDL+(Π) |=wf overloaded(n2)

G. Xiao / TU Wien 23/01/2014 40/71

Inline Evaluation of Hybrid KBs 3. Inline Evaluation 3.3 dl-program Transformation

dl-program Transformation (General Case)

DL: Datalog-rewritable Description Logic

Π = (O,P): a dl-program with dl-atoms DL[λi; Qi](~ti), 1 ≤ i ≤ n, where

λi = Si,1] pi,1, . . . , Si,mi] pi,mi , and

Qi is an instance query.

Let ΛP = {λ1, . . . , λn} and define

ΨDL(Π) :=
⋃
λi∈ΛP

ΦDL,λi(O) ∪ Pord ∪ ρ(ΛP) ∪ TP

where

ΦDL,λi(O) is a copy of ΦDL(O) with all predicates subscripted with
λi

ρ(ΛP) consists of rules Si,j,λ(~Xi,j)← pi,j(~Xi,j), for all λi ∈ ΛP

Pord is P with each DL[λi; Qi](~ti) replaced by a new atom Qλi(~ti)

TP = {>(a),>2(a, b) | a, b occur in P }

G. Xiao / TU Wien 23/01/2014 41/71

Inline Evaluation of Hybrid KBs 3. Inline Evaluation 3.3 dl-program Transformation

dl-program Transformation (General Case)

Theorem

Let Π = (O,P) be a dl-program over Datalog-rewritable DL. Then

(1) for every a ∈ HBP, Π |=wf a iff ΨDL(Π) |=wf a;
(2) the answer sets of Π correspond 1-1 to the answer sets of Ψ(Π), s.t.

(i) every answer set of Π is expendable to an answer set of Ψ(Π); and
(ii) for every answer set J of Ψ(Π), its restriction I = J |HBP to HBP is an

answer set of Π.

G. Xiao / TU Wien 23/01/2014 42/71

Inline Evaluation of Hybrid KBs 4. Datalog-Rewritable DLs

Datalog-Rewritable DLs

Definition (Datalog-rewritable)

A DL DL is Datalog-rewritable if there exists a transformation ΦDL from
DL KBs to Datalog programs such that, for any DL KB O,

1 O |= Q(o) iff ΦDL(O) |= Q(o) for any concept or role name Q from
O, and individuals o from O;

2 ΦDL is modular, i.e., for O = 〈T ,A〉 where T is a TBox and A an
ABox, ΦDL(O) = ΦDL(T) ∪ A;

Further properties: A DL DL is

polynomial Datalog-rewritable, if DL is Datalog-rewritable and
ΦDL(O) is computable in polynomial time;

non-uniform Datalog-rewritable, if only condition (1) of
Datalog-rewritability holds for DL.

G. Xiao / TU Wien 23/01/2014 43/71

Inline Evaluation of Hybrid KBs 4. Datalog-Rewritable DLs

Example Datalog-Rewritable DLs

LDL+ [Heymans et al., 2010]:
lightweight ontology language, extending in essence core OWL 2 RL
with singleton nominals, role conjunctions, and transitive closure

SROEL(u,×) [Krötzsch, 2010]:
superset of OWL 2 EL [Motik et al., 2008] resp. EL++
• disregarding datatypes
• adding (restricted) conjunction of roles (R u S), local reflexivity (Self),

concept production (C × D v T, R v C × D)

SROEL(×) [Krötzsch, 2011]

Horn-SHIQ [Ortiz et al., 2010]:
Horn fragment of SHIQ

SROIQ-RL [Bozzato and Serafini, 2013]:
restriction of SROIQ for OWL 2 RL

G. Xiao / TU Wien 23/01/2014 44/71

Inline Evaluation of Hybrid KBs 4. Datalog-Rewritable DLs 4.1 Query Answering in LDL+

LDL+

LDL+ forbids in axioms X v Y

• disjunction C t D in Y
• existentials ∃R in Y

Viewing X v Y as rule Y ← X, it distinguishes head (h) and body (b)
concepts/roles, for occurrence in Y resp. X

LDL+ shares properties with datalog programs:

• It can express transitive closure (via an operator +)
• An LDL+ ontology O has a least model in each domain
• For query answering, we can exclude unnamed individuals (i.e., use

the active domain of individuals occurring in O

graph part

G. Xiao / TU Wien 23/01/2014 45/71

Inline Evaluation of Hybrid KBs 4. Datalog-Rewritable DLs 4.1 Query Answering in LDL+

Syntax of LDL+– Roles

head (h-) and body (b-) restrictions on roles in LDL+ axioms

h-roles (h for head) S,T are
(i) role names R,
(ii) role inverses S−,
(iii) role conjunctions S u T, and
(iv) role top >2;

b-roles (b for body) S,T are the same as h-roles, plus
(v) role disjunctions S t T,
(vi) role sequences S ◦ T,
(vii) transitive closures S+, and
(viii) role nominals {(o1, o2)}, where o1, o2 are individuals.

G. Xiao / TU Wien 23/01/2014 46/71

Inline Evaluation of Hybrid KBs 4. Datalog-Rewritable DLs 4.1 Query Answering in LDL+

Syntax of LDL+– Concepts

head (h-) and body (b-) restrictions on concepts in LDL+ axioms

basic concepts C,D are concept names A, >, and conjunctions
C u D;
h-concepts are

(i) basic concepts B, and
(ii) value restrictions ∀S.B where S is a b-role;

b-concepts C,D are
(i) basic concepts B,
(ii) disjunctions C t D,
(iii) exists restrictions ∃S.C,
(iv) atleast restrictions ≥ nS.C, and
(v) nominals {o}, where S is a b-role, and o is an individual.

G. Xiao / TU Wien 23/01/2014 47/71

Inline Evaluation of Hybrid KBs 4. Datalog-Rewritable DLs 4.1 Query Answering in LDL+

Transformation of LDL+ to Datalog

The transformation ΦLDL+(O) of an LDL+ ontology O to Datalog
contains the following elements:

transformation of the LDL+ axioms in O;

transformation of the closure of O.

Definition (closure)

The closure of an LDL+ knowledge base O, denoted clos(O), as the
smallest set containing

all subexpressions that occur in O (both roles and concepts) except
value restrictions, and

for each role name occurring in O, its inverse.

G. Xiao / TU Wien 23/01/2014 48/71

Inline Evaluation of Hybrid KBs 4. Datalog-Rewritable DLs 4.1 Query Answering in LDL+

Transformation Rules
Axiom translation:

B v H H(X)←B(X)
B v ∀E.A A(Y)←B(X),E(X, Y).
S v T T(X, Y)← S(X, Y)

closure translation:
role name P P(X, Y)←P−(Y,X)
concept name A >(X)←A(X)
role name (R) >(X)←R(X, Y) >(Y)←R(X, Y)

> >2(X, Y)←>(X),>(Y).
D = {o} D(o)←
D = D1 uD2 D(X)←D1(X),D2(X)
D = D1 tD2 D(X)←D1(X) D(X)←D2(X)
D = ∃E.D1 D(X)←E(X, Y),D1(Y)
D = ≥n E.D1 D(X)←E(X, Y1),D(Y1), . . . ,E(X, Yn),D(Yn),

Y1 6= Y2, . . . , Yi 6= Yj, . . . , Yn−1 6= Yn
E = {(o1, o2)} E(o1, o2)←
E = F− E(X, Y)←F(Y,X)
E = E1 u E2 E(X, Y)←E1(X, Y),E2(X, Y)
E = E1 t E2 E(X, Y)←E1(X, Y) E(X, Y)←E2(X, Y)
E = E1 ◦ E2 E(X, Y)←E1(X, Z),E2(Z, Y)
E = F+ E(X, Y)←F(X, Y) E(X, Y)←F(X, Z),E(Z, Y)

G. Xiao / TU Wien 23/01/2014 49/71

Inline Evaluation of Hybrid KBs 4. Datalog-Rewritable DLs 4.1 Query Answering in LDL+

Formal Properties

Theorem

For every LDL+ ontology O,

(i) O |= C(a) iff ΦLDL+(O) |= C(a)

(ii) O |= R(a, b) iff ΦLDL+(O) |= R(a, b).

Notes:

ΦLDL+(O) can be constructed in polynomial time from O (unary
encoding of counting ≥ n R)

can be evaluted in polynomial time (rule matching is polynomial)

the above result extends to CQs and UCQs Q(~X):

~c ∈ ans(Q,O) iff ΦLDL+(O) ∪ Q(~X) |= q(~c)

G. Xiao / TU Wien 23/01/2014 50/71

Inline Evaluation of Hybrid KBs 4. Datalog-Rewritable DLs 4.1 Query Answering in LDL+

SROEL(u,×)

SROEL(u,×) is in essence a superset of OWL 2 EL
Differences:
• disregards datatypes
• adding conjunction of roles (R u S), local reflexivity (Self), concept

production (C × D v T, R v C × D)
• restrictions on role occurrences in a KB (simplicity, range restrictions),

but not role regularities

SROEL(u,×) has polynomial complexity (sat, instance checking)

[Krötzsch, 2010] describes a proof system for instance checking
over a SROEL(u,×) ontology

This proof system can be naturally encoded in a logic program,
viewing axioms α as facts and inference rules α1,...,αn

α as rules
α←α1, . . . , αn

A universal (schematic) encoding in Datalog is possible

G. Xiao / TU Wien 23/01/2014 51/71

Inline Evaluation of Hybrid KBs 4. Datalog-Rewritable DLs 4.1 Query Answering in LDL+

Transformation of SROEL(u,×) to Datalog
SROEL(u,×) proof system for O:
• the axioms C v D, C(a) etc of O can be understood as facts

E.g., C v D viewed as v(C,D) (infix)

• view the inference rules α
α1,...,αn

as LP rules α←α1, . . . , αn

E.g., CvD, C(a)
D(a) can be viewed as rule D(a)← v(C,D),C(a)

Use reification to obtain a Datalog representation

ΦEL(O) = Iinst(O) ∪ Pinst

where Iinst(O) encodes O and Pinst is a fixed set of rules (schemata)
• names: C ; cls(C); R ; rol(R); a ; nom(a)
• assertions: e.g C(a) ; isa(a,C); R(a, b) ; triple(a,R, b)
• axioms: e.g. A v C ; subClass(A,C),

Make reified rules generic using variables

E.g. isa(a,D)← subClass(C,D), isa(a,C) gets
isa(X,Z)← subClass(Y,Z), isa(X,Y)

G. Xiao / TU Wien 23/01/2014 52/71

Inline Evaluation of Hybrid KBs 4. Datalog-Rewritable DLs 4.1 Query Answering in LDL+

Transformation of SROEL(u,×) to Datalog
SROEL(u,×) proof system for O:
• the axioms C v D, C(a) etc of O can be understood as facts

E.g., C v D viewed as v(C,D) (infix)
• view the inference rules α

α1,...,αn
as LP rules α←α1, . . . , αn

E.g., CvD, C(a)
D(a) can be viewed as rule D(a)← v(C,D),C(a)

Use reification to obtain a Datalog representation

ΦEL(O) = Iinst(O) ∪ Pinst

where Iinst(O) encodes O and Pinst is a fixed set of rules (schemata)
• names: C ; cls(C); R ; rol(R); a ; nom(a)
• assertions: e.g C(a) ; isa(a,C); R(a, b) ; triple(a,R, b)
• axioms: e.g. A v C ; subClass(A,C),

Make reified rules generic using variables

E.g. isa(a,D)← subClass(C,D), isa(a,C) gets
isa(X,Z)← subClass(Y,Z), isa(X,Y)

G. Xiao / TU Wien 23/01/2014 52/71

Inline Evaluation of Hybrid KBs 4. Datalog-Rewritable DLs 4.1 Query Answering in LDL+

Transformation of SROEL(u,×) to Datalog
SROEL(u,×) proof system for O:
• the axioms C v D, C(a) etc of O can be understood as facts

E.g., C v D viewed as v(C,D) (infix)
• view the inference rules α

α1,...,αn
as LP rules α←α1, . . . , αn

E.g., CvD, C(a)
D(a) can be viewed as rule D(a)← v(C,D),C(a)

Use reification to obtain a Datalog representation

ΦEL(O) = Iinst(O) ∪ Pinst

where Iinst(O) encodes O and Pinst is a fixed set of rules (schemata)
• names: C ; cls(C); R ; rol(R); a ; nom(a)
• assertions: e.g C(a) ; isa(a,C); R(a, b) ; triple(a,R, b)
• axioms: e.g. A v C ; subClass(A,C),

Make reified rules generic using variables

E.g. isa(a,D)← subClass(C,D), isa(a,C) gets
isa(X,Z)← subClass(Y,Z), isa(X,Y)

G. Xiao / TU Wien 23/01/2014 52/71

Inline Evaluation of Hybrid KBs 4. Datalog-Rewritable DLs 4.1 Query Answering in LDL+

Transformation of SROEL(u,×) to Datalog
SROEL(u,×) proof system for O:
• the axioms C v D, C(a) etc of O can be understood as facts

E.g., C v D viewed as v(C,D) (infix)
• view the inference rules α

α1,...,αn
as LP rules α←α1, . . . , αn

E.g., CvD, C(a)
D(a) can be viewed as rule D(a)← v(C,D),C(a)

Use reification to obtain a Datalog representation

ΦEL(O) = Iinst(O) ∪ Pinst

where Iinst(O) encodes O and Pinst is a fixed set of rules (schemata)
• names: C ; cls(C); R ; rol(R); a ; nom(a)
• assertions: e.g C(a) ; isa(a,C); R(a, b) ; triple(a,R, b)
• axioms: e.g. A v C ; subClass(A,C),

Make reified rules generic using variables

E.g. isa(a,D)← subClass(C,D), isa(a,C) gets
isa(X,Z)← subClass(Y,Z), isa(X,Y)

G. Xiao / TU Wien 23/01/2014 52/71

Inline Evaluation of Hybrid KBs 4. Datalog-Rewritable DLs 4.1 Query Answering in LDL+

Rewrtings of LDL+ vs SROEL(u,×)

LDL+

• TBox assertions ; Rules
• Direct rewrting

SROEL(u,×)
• TBox assertions ; Facts
• Fixed set of rules
• Reification based rewriting
• The resulting program is always recursive

G. Xiao / TU Wien 23/01/2014 53/71

Inline Evaluation of Hybrid KBs 5. Implemenation and Evaluation 5.1 DReW

DReW Reasoner

DReW prototype: uniform dl-program evaluation in Datalog¬

http://www.kr.tuwien.ac.at/research/systems/drew/
at GitHub: https://github.com/ghxiao/drew

written in Java

ontology parser: OWL-API

Datalog reasoner: DLV (inside DReW); Clingo may be used as well
(compute rewriting, via command line)

Features in DReW v0.3
ontology component
• OWL 2 RL (LDL+)
• OWL 2 EL (SROEL(u,×))

rule formalism
• dl-Programs (answer sets, well founded semantics)
• CQs under DL-safeness
• Terminological Default Reasoning (frontend)

G. Xiao / TU Wien 23/01/2014 54/71

http://www.kr.tuwien.ac.at/research/systems/drew/
https://github.com/ghxiao/drew

Inline Evaluation of Hybrid KBs 5. Implemenation and Evaluation 5.1 DReW

System Architecture (Core)

OWL Ontology L DL-Rules P

Ontology
Parser

DL-Rules
Parser

DL RewriterDL Profile
DL-Atom
Extractor

DL-Rules
Rewriter

Duplicator
DL-Atom
Rewriter

Datalog
Generator

DL-Program
Rewriter

Model
Builder

Results

Datalog¬

Engine
data flow

conrol flow

G. Xiao / TU Wien 23/01/2014 55/71

Inline Evaluation of Hybrid KBs 5. Implemenation and Evaluation 5.1 DReW

Example Usage

Example with Network dl-Program under ASP semantics:

$./drew -rl -ontology sample_data/network.owl \
-dlp sample_data/network.dlp \
-filter connect -dlv $HOME/bin/dlv

{ connect(x1, n1) connect(x2, n5) }

{ connect(x1, n5) connect(x2, n1) }

{ connect(x1, n5) connect(x2, n4) }

{ connect(x1, n1) connect(x2, n4) }

G. Xiao / TU Wien 23/01/2014 56/71

Inline Evaluation of Hybrid KBs 5. Implemenation and Evaluation 5.1 DReW

Example Usage, cont’d

Example with network dl-Programs under well-founded semantics

./drew -rl -ontology sample_data/network.owl \
-dlp sample_data/network.dlp \
-filter overloaded -wf -dlv ./dlv-wf

{ overloaded(n2) }

G. Xiao / TU Wien 23/01/2014 57/71

Inline Evaluation of Hybrid KBs 5. Implemenation and Evaluation 5.2 Evaluation

Benchmark Scenarios

Graph
• Ontologies derived from Random Graph Generator
• Programs for computing the transitive closure

University
• Ontologies from LUBM and ModLUBM
• DL-Programs for computing e.g. co-author relations

GeoData
• TBox from MyITS Project; ABox from Open Street Map
• semantically enriched spatial queries

EDI (Electronic data interchange)
• TBox from EDIMine project; ABox from EDI messages
• Rule-based reasoning over Business ontologies

Policy
• EL ontoloigy
• Default Rules modeling Role Based Access Control

G. Xiao / TU Wien 23/01/2014 58/71

Inline Evaluation of Hybrid KBs 5. Implemenation and Evaluation 5.2 Evaluation

Platform

Ubuntu 12.04 Linux Server

DReW 0.3
• Java: Oracle JDK 1.7.0_21, JVM memory 6G
• DLV 2012-12-17

dlvhex 1.7.2
• RacerPro 1.9.2 beta (released on 2007-10-25)
• DLV 2012-12-17

HTCondor for scheduling the runs

G. Xiao / TU Wien 23/01/2014 59/71

Inline Evaluation of Hybrid KBs 5. Implemenation and Evaluation 5.2 Evaluation

Graph Benchmark Suite

TBox: Empty

ABox: Generated by a random graph generator

DL-Programs for Computing transitive closure

tc2 extracts the arc relations from the ontology and computes the
closure by linear recursion
edge(X, Y) :- DL[arc](X, Y).

tc(X, Y) :- edge(X, Y).
tc(X, Y) :- edge(X, Z), tc(Z, Y).

tc3 extracts the arc relations from the ontology and computes the
closure by recursion while feeding back the arc relations

tc(X, Y) :- DL[arc](X, Y).
tc(X, Y) :- DL[arc] tc; arc](X, Z), tc(Z, Y).

G. Xiao / TU Wien 23/01/2014 60/71

Inline Evaluation of Hybrid KBs 5. Implemenation and Evaluation 5.2 Evaluation

Graph Benchmark Suite Evaluation

0 100 200 300 400 500 600 700 800 900
nodes

0

100

200

300

400

500

600

ti
m

e
 (

s)

Evaluation results on the Graph Benchmark Suite

tc3/DLVHEX
tc3/DReW[RL]
tc3/DReW[EL]
tc2/DLVHEX
tc2/DReW[RL]
tc2/DReW[EL]

G. Xiao / TU Wien 23/01/2014 61/71

Inline Evaluation of Hybrid KBs 5. Implemenation and Evaluation 5.2 Evaluation

GeoData Benchmark Suite

TBox
• Ontology developed in the MyITS Project
• GeoConceptsMyITS-v0.9-Lite1

ABox
• Features derived from Open Street Map
• Geo Relations (next, within) computed by our scripts
• Four Areas: Vienna, Salzburg, Austria, Upper Bavaria

Programs
• Geo Relation enriched Queries

#IND #CA #OPA #DPA #next #within File Size
Salzburg 12971 13037 539 19513 79615 455 11M
Vienna 33405 33531 1303 50520 292985 2610 36M
Austria 150911 151616 5326 222189 893438 6712 133M

Upper Bavaria 70837 71201 2182 106140 414512 3772 55M

Table: ABox Sizes of the GeoData benchmark suite

1http://www.kr.tuwien.ac.at/staff/patrik/GeoConceptsMyITS-v0.9-Lite.owl
G. Xiao / TU Wien 23/01/2014 62/71

Inline Evaluation of Hybrid KBs 5. Implemenation and Evaluation 5.2 Evaluation

GeoData Benchmark Suite – Example Program

P5: List all the Italian restaurants next to a subway station which
can be reached from “Karlsplatz” by one change.

q(YN, ZN, L1, L2) :- metro_connect_1(L1,L2,“Karlsplatz”, YN),
DL[SubwayStation](Y),
DL[featurename](Y, YN), DL[Restaurant](Z),
DL[next](Y, Z), DL[featurename](Z, ZN),
DL[hasCuisine](Z, “ItalianCuisine”).

metro_next(Line, Stop1, Stop2) :- metro_next(Line, Stop2, Stop1).
metro_connect_0(L, Stop1, Stop2) :- metro_next(L, Stop1, Stop2).
metro_connect_0(L, Stop1, Stop2) :- metro_connect_0(L, Stop1, Stop3),

metro_connect_0(L, Stop3, Stop2).
metro_connect_1(L1, L2, Stop1, Stop2) :- metro_connect_0(L1, Stop1, Stop3),

metro_connect_0(L2, Stop3, Stop2), L1 != L2.
% and the facts of the subway lines
metro_next(“U1”,“Reumannplatz” , “Keplerplatz”).
metro_next(“U1” , “Keplerplatz” , “Suedtiroler Platz”).
. . .
metro_next(“U6”, “Handelskai”, “Neue Donau”).
metro_next(“U6”, “Neue Donau”, “Floridsdorf”).

G. Xiao / TU Wien 23/01/2014 63/71

Inline Evaluation of Hybrid KBs 5. Implemenation and Evaluation 5.2 Evaluation

GeoData Benchmark Suite – Example Program

P6: Select restaurants next to “Karlsplatz” with preference:
ChineseCuisine > AsianCuisine > Other.

restaurant(X) :- DL[Restaurant](X), DL[next](X,Y),
DL[SubwayStation](Y), DL[featurename](Y, “Karlsplatz”).

chinese_restaurant(X) :- restaurant(X), DL[hasCuisine](X, “ChineseCuisine”).
asian_restaurant(X) :- restaurant(X), DL[hasCuisine](X, “AsianCuisine”).

exists_chinese_restaurant :- chinese_restaurant(X), restaurant(X).
exists_asian_restaurant :- asian_restaurant(X), restaurant(X).

sel(X) :- chinese_restaurant(X), exists_chinese_restaurant.
sel(X) :- asian_restaurant(X), not exists_chinese_restaurant,

exists_asian_restaurant.
sel(X) :- restaurant(X), not exists_asian_restaurant,

not exists_chinese_asian_restaurant.
q(XN) :- sel(X), DL[featurename](X, XN).

G. Xiao / TU Wien 23/01/2014 64/71

Inline Evaluation of Hybrid KBs 5. Implemenation and Evaluation 5.2 Evaluation

Graph Benchmark Suite Evaluation

Vienna Salzburg Austria Upper Bavaria
Area

0

20

40

60

80

100

120

140

160

180

ti
m

e
 (

s)

Evaluation results on the GeoData Benchmark Suite

p5/DReW[RL]
p5/DReW[EL]
p6/DReW[RL]
p6/DReW[EL]

Note: dlvhex [DL, RacerPro] does not terminate in 20mins

G. Xiao / TU Wien 23/01/2014 65/71

Inline Evaluation of Hybrid KBs 5. Implemenation and Evaluation 5.2 Evaluation

Policy Benchmark

Terminological default KB ∆ = 〈L,D〉, where the the TBox of L and the
defaults D are shown bellow:

T =


Staff v User, Blacklisted v Staff , Deny u Grant v ⊥,
UserRequest ≡ ∃hasAction.Action u ∃hasSubject.User u ∃hasTarget.Project,
StaffRequest ≡ ∃hasAction.Action u ∃hasSubject.Staff u ∃hasTarget.Project,
BlacklistedStaffRequest ≡ StaffRequest u ∃hasSubject.Blacklisted


D =

 UserRequest(X) : Deny(X)/Deny(X),
StaffRequest(X) : ¬BlacklistedStaffRequest(X)/Grant(X),
BlacklistedStaffRequest(X) : >/Deny(X)


Informally, D expresses that

users normally are denied access to files,

staff is normally granted access to files,

while to blacklisted staff any access is denied.

G. Xiao / TU Wien 23/01/2014 66/71

Inline Evaluation of Hybrid KBs 5. Implemenation and Evaluation 5.2 Evaluation

Policy Benchmark Suite – dl-Programs

The default theory D is equivalent to the following highly recursive dl-Programs

Deny+(X)← DL[λ; UserRequest](X), not DL[λ′;¬Deny](X)

Grant+(X)← DL[λ; StaffRequest](X), not DL[λ′; BlacklistedStaffRequest](X)

Deny+(X)← DL[λ; BlacklistedStaffRequest](X).

in_Deny(X)← not out_Deny(X)

out_Grant(X)← not in_Grant(X)

fail← DL[λ′; Deny](X), out_Deny(X), not fail

fail← DL[λ; Deny](X), in_Deny(X), not fail

fail← DL[λ; Deny](X), out_Deny(X), not fail

fail← DL[λ′; Grant](X), out_Grant(X), not fail

fail← DL[λ; Grant](X), in_Grant(X), not fail

fail← DL[λ; Grant](X), out_Grant(X), not fail

where λ′ = {Deny]in_Deny,Grant]in_Grant}, and
λ = {Deny]Deny+,Grant]Grant+}.
G. Xiao / TU Wien 23/01/2014 67/71

Inline Evaluation of Hybrid KBs 5. Implemenation and Evaluation 5.2 Evaluation

0 5000 10000 15000 20000 25000
requests

0

5

10

15

20

25

30

35

40

ti
m

e
 (

s)
Evaluation results on the Policy Benchmark Suite

DReW[EL]/DLV
DReW[EL]/Clingo

dlvhex with DF-front end can only handle up to 5 requests in almost 3
mins.

G. Xiao / TU Wien 23/01/2014 68/71

Inline Evaluation of Hybrid KBs 5. Implemenation and Evaluation 5.2 Evaluation

Observations from the Evaluation

dl-Programs are exprssive and useful as a query language

the DReW system outperforms dlvhex [DL, RacerPro] in general,
especially for dl-Programs of complex structure or dl-programs with
large instances

DReW scales polynomially on large ABoxes in general

In most of the evaluations, the direct rewriting approach (RL) is
faster than the reification-based rewriting (EL)

G. Xiao / TU Wien 23/01/2014 69/71

Inline Evaluation of Hybrid KBs 6. Summary and Outlook

Summary

dl-Programs: Loose coupling ontologies and rule

current systems are not very efficient due to the overhead of calling
external DL reasoners

Contributions

Theoretical Contributions
• A framework of inline evaluation of dl-Programs by Datalog¬ rewriting
• Identifying a class of Datalog-rewritable DLs

Practical Contributions
• DReW reasoner for Datalog-rewritable dl-Programs
• Extensive evaluations on novel benchmark suites with promising

results

G. Xiao / TU Wien 23/01/2014 70/71

Inline Evaluation of Hybrid KBs 6. Summary and Outlook

Ongoing / Future Work

Optimization of the DReW system

Experiments with other Backend Engines (e.g., RDBMS and DLV∃)

More reasoning paradigm support, e.g. Closed World Assumption

Supporting W3C standard OWL-RIF

Further update operators (−∩) and semantics

G. Xiao / TU Wien 23/01/2014 71/71

Inline Evaluation of Hybrid KBs 7. References

Relevant Publications

G. Xiao, T. Eiter, and S. Heymans, “The DReW system for nonmonotonic DL-Programs”, in
SWWS 2012, Shenzhen City, China, November 2012.

T. Eiter, T. Krennwallner, P. Schneider, and G. Xiao, “Uniform evaluation of nonmonotonic
DL-Programs”, in FoIKS 2012, Springer, March 2012.

T. Eiter, M. Ortiz, M. Simkus, T.-K. Tran, and G. Xiao, “Query rewriting for Horn-SHIQ plus
rules”, in AAAI 2012 , AAAI Press, 2012.

G. Xiao and T. Eiter, “Inline evaluation of hybrid knowledge bases – PhD description”, in RR
2011, Springer, 2011.

S. Heymans, T. Eiter, and G. Xiao, “Tractable reasoning with DL-Programs over
datalog-rewritable description logics”, in ECAI 2010, IOS Press, 2010.

T. Eiter, M. Ortiz, M. Simkus, T.-K. Tran, and G. Xiao, “Towards practical query answering for
Horn-SHIQ”, in DL-2012, CEUR-WS.org, 2012.

G. Xiao, S. Heymans, and T. Eiter, “DReW: a reasoner for datalog-rewritable description
logics and DL-programs”, in Informal Proc. 1st Int’l Workshop on Business Models, Business
Rules and Ontologies (BuRO 2010), 2010.

G. Xiao / TU Wien 23/01/2014 72/71

References I

Jos de Bruijn, Thomas Eiter, Axel Florian Polleres, and Hans Tompits.
Embedding non-ground logic programs into autoepistemic logic for knowledge base
combination.
In Manuela Veloso, editor, Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI-07), pages 304–309. AAAI Press/IJCAI, 2007.
Extended paper to appear in ACM Trans. Computational Logic.

Jos de Bruijn, David Pearce, Axel Polleres, and Agustín Valverde.
Quantified equilibrium logic and hybrid rules.
In RR, pages 58–72, 2007.

Jos de Bruijn, Philippe Bonnard, Hugues Citeau, Sylvain Dehors, Stijn Heymans, Jörg Pührer,
and Thomas Eiter.
Combinations of rules and ontologies: State-of-the-art survey of issues.
Technical Report Ontorule D3.1, Ontorule Project Consortium, June 2009.
http://ontorule-project.eu/.

T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits.
Combining answer set programming with description logics for the Semantic Web.
Artificial Intelligence, 172(12-13):1495–1539, 2008.

T. Eiter, G. Ianni, T. Lukasiewicz, and R. Schindlauer.
Well-founded semantics for description logic programs in the Semantic Web.
ACM Trans. Comput. Log., 12(2):11, 2011.

http://ontorule-project.eu/

References II

M. Gelfond and V. Lifschitz.
The Stable Model Semantics for Logic Programming.
In Logic Programming: Proceedings Fifth Intl Conference and Symposium, pages 1070–1080,
Cambridge, Mass., 1988. MIT Press.

M. Gelfond and V. Lifschitz.
Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing, 9:365–385, 1991.

B. N. Grosof, I. Horrocks, R. Volz, and S. Decker.
Description logic programs: Combining logic programs with description logics.
In Proceedings of the 12th International World Wide Web Conference (WWW’03), pages
48–57. ACM Press, 2003.

I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.
SWRL: A semantic web rule language combining OWL and RuleML.
W3C Member Submission, World Wide Web Consortium, 2004.

M. Kifer, G. Lausen, and J. Wu.
Logical foundations of object-oriented and frame-based languages.
Journal of the ACM, 42(4):740–843, 1995.

References III

M. Knorr, J.J. Alferes, and P. Hitzler.
A coherent well-founded model for hybrid MKNF knowledge bases.
In ECAI, volume 178 of Frontiers in Artificial Intelligence and Applications, pages 99–103. IOS
Press, 2008.

M. Krötzsch, S. Rudolph, and P. Hitzler.
Description logic rules.
In Proc. ECAI, pages 80–84. IOS Press, 2008.

M. Krötzsch, S. Rudolph, and P. Hitzler.
ELP: Tractable rules for OWL 2.
In Proc. ISWC 2008, pages 649–664, 2008.

Alon Y. Levy and Marie-Christine Rousset.
Combining horn rules and description logics in CARIN.
Artificial Intelligence, 104:165 – 209, 1998.

Boris Motik and Riccardo Rosati.
Reconciling description logics and rules.
Journal of the ACM, 2010.
To appear.

Boris Motik, Ulrike Sattler, and Rudi Studer.
Query answering for OWL-DL with rules.
J. Web Sem., 3(1):41–60, 2005.

References IV

Riccardo Rosati.
On the decidability and complexity of integrating ontologies and rules.
Journal of Web Semantics, 3(1):61–73, 2005.

Riccardo Rosati.
DL+log: Tight Integration of Description Logics and Disjunctive Datalog.
In Proceedings of the Tenth International Conference on Principles of Knowledge
Representation and Reasoning (KR 2006), pages 68–78. AAAI Press, 2006.

A. van Gelder, K.A. Ross, and J.S. Schlipf.
The Well-Founded Semantics for General Logic Programs.
Journal of the ACM, 38(3):620–650, 1991.

Kewen Wang, David Billington, Jeff Blee, and Grigoris Antoniou.
Combining description logic and defeasible logic for the semantic web.
In Grigoris Antoniou and Harold Boley, editors, RuleML, volume 3323 of Lecture Notes in
Computer Science, pages 170–181. Springer, 2004.

Meghyn Bienvenu, Magdalena Ortiz, Mantas Simkus, and Guohui Xiao.
Tractable queries for lightweight description logics.
In Francesca Rossi, editor, IJCAI. IJCAI/AAAI, 2013.

References V

Loris Bozzato and Luciano Serafini.
Materialization calculus for contexts in the semantic web.
In Thomas Eiter, Birte Glimm, Yevgeny Kazakov, and Markus Krötzsch, editors, Description
Logics, volume 1014 of CEUR Workshop Proceedings, pages 552–572. CEUR-WS.org, 2013.

Diego Calvanese, Thomas Eiter, and Magdalena Ortiz.
Answering regular path queries in expressive description logics: An automata-theoretic
approach.
In Proc. of the 22nd Nat. Conf. on Artificial Intelligence (AAAI 2007), pages 391–396, 2007.

Diego Calvanese, Thomas Eiter, and Magdalena Ortiz.
Regular path queries in expressive description logics with nominals.
In C. Boutilier, editor, Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI-09), pages 714–720. AAAI Press/IJCAI, 2009.

Thomas Eiter, Georg Gottlob, Magdalena Ortiz, and Mantas Šimkus.
Query answering in the description logic Horn-SHIQ.
In S. Hölldobler, C. Lutz, and H. Wansing, editors, Proceedings 11th European Conference on
Logics in Artificial Intelligence (JELIA 2008), number 5293 in LNCS, pages 166–179. Springer,
2008.
doi:10.1007/978-3-540-87803-2_15.

doi:10.1007/978-3-540-87803-2_15

References VI

Thomas Eiter, Carsten Lutz, Magdalena Ortiz, and Mantas Šimkus.
Query answering in description logics with transitive roles.
In C. Boutilier, editor, Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI-09), pages 759–764. AAAI Press/IJCAI, 2009.

Thomas Eiter, Magdalena Ortiz, Mantas Šimkus, Kien Trung-Tran, and Guohui Xiao.
Query rewriting for Horn-SHIQ plus rules.
In Proceedings 26th Conference on Artificial Intelligence (AAAI ’12), July 22-26, 2012,
Toronto. AAAI Press, 2012.

Thomas Eiter, Magdalena Ortiz, Mantas Šimkus, Kien Trung-Tran, and Guohui Xiao.
Towards practical query answering for Horn-SHIQ.
In Yevgeny Kazakov, Domenico Lembo, and Frank Wolter, editors, Proceedings of the 25th
International Workshop on Description Logics (DL2012), June -9, Rome, Italy, volume 846 of
CEUR Workshop Proceedings. CEUR-WS.org, 2012.
11 pp. http://ceur-ws.org/Vol-846.

Georg Gottlob and Thomas Schwentick.
Rewriting ontological queries into small nonrecursive datalog programs.
In Rosati et al. [2011].

http://ceur-ws.org/Vol-846

References VII

Stijn Heymans, Thomas Eiter, and Guohui Xiao.
Tractable reasoning with DL-programs over Datalog-rewritable description logics.
In M. Wooldridge et al., editor, Proceedings of the 19th Eureopean Conference on Artificial
Intelligence, ECAI’2010, Lisbon, Portugal, August 16-20, 2010, pages 35–40. IOS Press,
2010.

Ullrich Hustadt, Boris Motik, and Ulrike Sattler.
A decomposition rule for decision procedures by resolution-based calculi.
In F. Baader and A. Voronkov, editors, Proceedings 12th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning (LPAR 2004), number 3452 in LNCS,
pages 21–35. Springer, 2005.

Y. Kazakov.
Consequence-driven reasoning for Horn SHIQ ontologies.
In Craig Boutilier, editor, IJCAI, pages 2040–2045, 2009.

Stanislav Kikot, Roman Kontchakov, and Michael Zakharyaschev.
On (in)tractability of OBDA with OWL 2 QL.
In Rosati et al. [2011].

Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and Michael Zakharyaschev.
The combined approach to query answering in dl-lite.
In KR, 2010.

References VIII

Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler.
Complexity boundaries for Horn description logics.
In AAAI’07, pages 452–457. AAAI Press, 2007.

Markus Krötzsch.
Efficient inferencing for OWL EL.
In Tomi Janhunen and Ilkka Niemelä, editors, JELIA, volume 6341 of Lecture Notes in
Computer Science, pages 234–246. Springer, 2010.

Markus Krötzsch.
Efficient rule-based inferencing for OWL EL.
In Toby Walsh, editor, IJCAI 2011, Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages 2668–2673.
IJCAI/AAAI, 2011.

Alon Y. Levy and Marie-Christine Rousset.
Combining Horn rules and description logics in CARIN.
Artificial Intelligence, 104(1–2):165–209, 1998.

Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and Carsten Lutz.
OWL 2 Web Ontology Language: Profiles.
W3C Working Draft, World Wide Web Consortium,
http://www.w3.org/TR/2008/WD-owl2-profiles-20081008/, 2008.

References IX

Magdalena Ortiz, Diego Calvanese, and Thomas Eiter.
Data complexity of query answering in expressive description logics via tableaux.
Journal of Automated Reasoning, 41(1):61–98, 2008.

Magdalena Ortiz, Mantas Šimkus, and Thomas Eiter.
Worst-case optimal conjunctive query answering for an expressive description logic without
inverses.
In Proceedings 23rd Conference on Artificial Intelligence (AAAI ’08), July 13-17, 2008,
Chicago, pages 504–510. AAAI Press, 2008.

Magdalena Ortiz, Sebastian Rudolph, and Mantas Simkus.
Worst-case optimal reasoning for the horn-DL fragments of OWL 1 and 2.
In Fangzhen Lin, Ulrike Sattler, and Miroslaw Truszczyński, editors, KR. AAAI Press, 2010.

Riccardo Rosati, Sebastian Rudolph, and Michael Zakharyaschev, editors.
Proceedings of the 24th International Workshop on Description Logics (DL 2011), Barcelona,
Spain, July 13-16, 2011, volume 745 of CEUR Workshop Proceedings. CEUR-WS.org, 2011.

Inline Evaluation of Hybrid KBs 7. 7.1 Query Answering in SROEL(u,×)

SROEL(u,×)

SROEL(u,×) is in essence a superset of OWL 2 EL
Differences:
• disregards datatypes
• adding conjunction of roles (R u S), local reflexivity (Self), concept

production (C × D v T, R v C × D)
• restrictions on role occurrences in a KB (simplicity, range restrictions),

but not role regularities

SROEL(u,×) has polynomial complexity (sat, instance checking)

[Krötzsch, 2010] describes a proof system for instance checking
over a SROEL(u,×) ontology

This proof system can be naturally encoded in a logic program,
viewing axioms α as facts and inference rules α1,...,αn

α as rules
α←α1, . . . , αn

A universal (schematic) encoding in Datalog is possible

G. Xiao / TU Wien 23/01/2014 72/71

Inline Evaluation of Hybrid KBs 7. 7.1 Query Answering in SROEL(u,×)

SROEL(u,×), cont’d

Key aspects:
It is suffcient to generate a small part of a canonical forest-shaped
model

graph part

depth 1 trees

More precisely, only new elements directly connected to some
individual, due to existenial axioms A v ∃R.B

For uniform (ABox independent) encoding, share new elements

B B B

R R R
R

a bA A a bA A

G. Xiao / TU Wien 23/01/2014 73/71

Inline Evaluation of Hybrid KBs 7. 7.1 Query Answering in SROEL(u,×)

Transformation of SROEL(u,×) to Datalog
SROEL(u,×) proof system for O:
• the axioms C v D, C(a) etc of O can be understood as facts

E.g., C v D viewed as v(C,D) (infix)

• view the inference rules α
α1,...,αn

as LP rules α←α1, . . . , αn

E.g., CvD, C(a)
D(a) can be viewed as rule D(a)← v(C,D),C(a)

Use reification to obtain a Datalog representation

ΦEL(O) = Iinst(O) ∪ Pinst

where Oinst encodes O and Pinst is a fixed set of rules (schemata)
• names: C ; cls(C); R ; rol(R); a ; nom(a)
• assertions: e.g C(a) ; isa(a,C); R(a, b) ; triple(a,R, b)
• axioms: e.g. A v C ; subClass(A,C),

Make reified rules generic using variables

E.g. isa(a,D)← subClass(C,D), isa(a,C) gets
isa(X,Z)← subClass(Y,Z), isa(X,Y)

G. Xiao / TU Wien 23/01/2014 74/71

Inline Evaluation of Hybrid KBs 7. 7.1 Query Answering in SROEL(u,×)

Transformation of SROEL(u,×) to Datalog
SROEL(u,×) proof system for O:
• the axioms C v D, C(a) etc of O can be understood as facts

E.g., C v D viewed as v(C,D) (infix)
• view the inference rules α

α1,...,αn
as LP rules α←α1, . . . , αn

E.g., CvD, C(a)
D(a) can be viewed as rule D(a)← v(C,D),C(a)

Use reification to obtain a Datalog representation

ΦEL(O) = Iinst(O) ∪ Pinst

where Oinst encodes O and Pinst is a fixed set of rules (schemata)
• names: C ; cls(C); R ; rol(R); a ; nom(a)
• assertions: e.g C(a) ; isa(a,C); R(a, b) ; triple(a,R, b)
• axioms: e.g. A v C ; subClass(A,C),

Make reified rules generic using variables

E.g. isa(a,D)← subClass(C,D), isa(a,C) gets
isa(X,Z)← subClass(Y,Z), isa(X,Y)

G. Xiao / TU Wien 23/01/2014 74/71

Inline Evaluation of Hybrid KBs 7. 7.1 Query Answering in SROEL(u,×)

Transformation of SROEL(u,×) to Datalog
SROEL(u,×) proof system for O:
• the axioms C v D, C(a) etc of O can be understood as facts

E.g., C v D viewed as v(C,D) (infix)
• view the inference rules α

α1,...,αn
as LP rules α←α1, . . . , αn

E.g., CvD, C(a)
D(a) can be viewed as rule D(a)← v(C,D),C(a)

Use reification to obtain a Datalog representation

ΦEL(O) = Iinst(O) ∪ Pinst

where Oinst encodes O and Pinst is a fixed set of rules (schemata)
• names: C ; cls(C); R ; rol(R); a ; nom(a)
• assertions: e.g C(a) ; isa(a,C); R(a, b) ; triple(a,R, b)
• axioms: e.g. A v C ; subClass(A,C),

Make reified rules generic using variables

E.g. isa(a,D)← subClass(C,D), isa(a,C) gets
isa(X,Z)← subClass(Y,Z), isa(X,Y)

G. Xiao / TU Wien 23/01/2014 74/71

Inline Evaluation of Hybrid KBs 7. 7.1 Query Answering in SROEL(u,×)

Transformation of SROEL(u,×) to Datalog
SROEL(u,×) proof system for O:
• the axioms C v D, C(a) etc of O can be understood as facts

E.g., C v D viewed as v(C,D) (infix)
• view the inference rules α

α1,...,αn
as LP rules α←α1, . . . , αn

E.g., CvD, C(a)
D(a) can be viewed as rule D(a)← v(C,D),C(a)

Use reification to obtain a Datalog representation

ΦEL(O) = Iinst(O) ∪ Pinst

where Oinst encodes O and Pinst is a fixed set of rules (schemata)
• names: C ; cls(C); R ; rol(R); a ; nom(a)
• assertions: e.g C(a) ; isa(a,C); R(a, b) ; triple(a,R, b)
• axioms: e.g. A v C ; subClass(A,C),

Make reified rules generic using variables

E.g. isa(a,D)← subClass(C,D), isa(a,C) gets
isa(X,Z)← subClass(Y,Z), isa(X,Y)

G. Xiao / TU Wien 23/01/2014 74/71

Inline Evaluation of Hybrid KBs 7. 7.1 Query Answering in SROEL(u,×)

Encoding Iinst(O)

C(a) ; isa(a,C) R(a, b) ; triple(a,R, b) a ∈ NI ; nom(a)
> v C ; top(C) A v ⊥; bot(A) A ∈ NC ; cls(A)
{a} v C ; subClass(a,C) A v {c}; subClass(A, c) R ∈ NR ; rol(R)

A v C ; subClass(A,C) A u B v C ; subConj(A,B,C)
∃R.Self v C ; subSelf (R,C) A v ∃R.Self ; supSelf (A,R)
∃R.A v C ; subEx(R,A,C) A v ∃R.B ; supEx(A,R,B, eAv∃R.B)

R v T ; subRole(R, T) R ◦ S v T ; subRChain(R, S, T)
R v C × D ; supProd(R,C,D) A× B v R ; subProd(A,B,R)
R u S v T ; subRConj(R, S, T)

Encode axiom α; Iinst(α)

Encode individual s ; Iinst(s)
Iinst(O) = {Iinst(α) | α ∈ L} ∪ {Iinst(s) | s ∈ NI ∪ NC ∪ NR}

• use constants eAv∃R.B for elements enforced by existential axioms
A v ∃R.B

• encode in supEx(A,R,B, eAv∃R.B) the pattern
A◦ R−→B◦

• “share” eAv∃R.B for individuals a, b belonging to A

G. Xiao / TU Wien 23/01/2014 75/71

Inline Evaluation of Hybrid KBs 7. 7.1 Query Answering in SROEL(u,×)

Encoding Iinst(O)

C(a) ; isa(a,C) R(a, b) ; triple(a,R, b) a ∈ NI ; nom(a)
> v C ; top(C) A v ⊥; bot(A) A ∈ NC ; cls(A)
{a} v C ; subClass(a,C) A v {c}; subClass(A, c) R ∈ NR ; rol(R)

A v C ; subClass(A,C) A u B v C ; subConj(A,B,C)
∃R.Self v C ; subSelf (R,C) A v ∃R.Self ; supSelf (A,R)
∃R.A v C ; subEx(R,A,C) A v ∃R.B ; supEx(A,R,B, eAv∃R.B)

R v T ; subRole(R, T) R ◦ S v T ; subRChain(R, S, T)
R v C × D ; supProd(R,C,D) A× B v R ; subProd(A,B,R)
R u S v T ; subRConj(R, S, T)

Encode axiom α; Iinst(α)

Encode individual s ; Iinst(s)
Iinst(O) = {Iinst(α) | α ∈ L} ∪ {Iinst(s) | s ∈ NI ∪ NC ∪ NR}
• use constants eAv∃R.B for elements enforced by existential axioms

A v ∃R.B
• encode in supEx(A,R,B, eAv∃R.B) the pattern

A◦ R−→B◦
• “share” eAv∃R.B for individuals a, b belonging to A

G. Xiao / TU Wien 23/01/2014 75/71

Inline Evaluation of Hybrid KBs 7. 7.1 Query Answering in SROEL(u,×)

Example

Consider

O = {A(a), A v ∃R.B, B v C, ∃R.C v D}

O is translated to

Iinst(O) =
{

isa(a,A), supEx(A,R,B, eAv∃R.B), subClass(B,C),
subEx(R,C,D), nom(a), cls(A), cls(B), cls(C), cls(D), rol(R)

}
.

G. Xiao / TU Wien 23/01/2014 76/71

Inline Evaluation of Hybrid KBs 7. 7.1 Query Answering in SROEL(u,×)

Inference Rules (Datalog Encoding)

Datalog program Pinst: instance inference

isa(X, Z)← top(Z), isa(X, Z′)

isa(X, Y)← bot(Z), isa(U, Z), isa(X, Z′), cls(Y)

isa(X, Z)← subClass(Y, Z), isa(X, Y)

isa(X, Z)← subConj(Y1, Y2, Z), isa(X, Y1), isa(X, Y2)

isa(X, Z)← subEx(V, Y, Z), triple(X,V,X′), isa(X′, Y)

isa(X, Z)← subEx(V, Y, Z), self (X,V), isa(X, Y)

isa(X′, Z)← supEx(Y,V, Z,X′), isa(X, Y)

isa(X, Z)← subSelf (V, Z), self (X,V)

isa(X, Z1)← supProd(V, Z1, Z2), triple(X,V,X′)

isa(X, Z1)← supProd(V, Z1, Z2), self (X,V)

isa(X′, Z2)← supProd(V, Z1, Z2), triple(X,V,X′)

isa(X, Z2)← supProd(V, Z1, Z2), self (X,V)

isa(X,X)← nom(X)

isa(Y, Z)← isa(X, Y), nom(Y), isa(X, Z)

isa(X, Z)← isa(X, Y), nom(Y), isa(Y, Z)

G. Xiao / TU Wien 23/01/2014 77/71

Inline Evaluation of Hybrid KBs 7. 7.1 Query Answering in SROEL(u,×)

Inference Rules (Datalog Encoding), cont’d

Datalog program Pinst: role and Self inference

triple(X,W,X′)← subRole(V,W), triple(X,V,X′)

triple(X,W,X′′)← subRChain(U,V,W), triple(X,U,X′), triple(X′,V,X′′)

triple(X,W,X′)← subRChain(U,V,W), self (X,U), triple(X,V,X′)

triple(X,W,X′)← subRChain(U,V,W), triple(X,U,X′), self (X′,V)

triple(X,W,X)← subRChain(U,V,W), self (X,U), self (X,V)

triple(X,W,X′)← subRConj(V1,V2,W), triple(X,V1,X′), triple(X,V2,X′)

triple(Z,U, Y)← isa(X, Y), nom(Y), triple(Z,U,X)

triple(X,V,X′)← supEx(Y,V, Z,X′), isa(X, Y)

triple(X,W,X′)← subProd(Y1, Y2,W), isa(X, Y1), isa(X′, Y2)

self (X,V)← nom(X), triple(X,V,X)

self (X,W)← subRole(V,W), self (X,V)

self (X,W)← subRConj(V1,V2,W), self (X,V1), self (X,V2)

self (X,W)← subProd(Y1, Y2,W), isa(X, Y1), isa(X, Y2)

self (X,V)← supSelf (Y,V), isa(X, Y)

G. Xiao / TU Wien 23/01/2014 78/71

Inline Evaluation of Hybrid KBs 7. 7.1 Query Answering in SROEL(u,×)

Instance Queries

ΦEL(O) = Pinst ∪ Iinst(O) can be used to decide satisfiability

ΦEL(O) can be used to answer instance queries

Theorem

For every SROEL(u,×) ontology O and a, b ∈ NI

(i) O |= C(a) iff ΦEL(O) |= isa(a,C)

(ii) O |= R(a, b) iff ΦEL(O) |= triple(a,R, b).

G. Xiao / TU Wien 23/01/2014 79/71

Inline Evaluation of Hybrid KBs 7. 7.1 Query Answering in SROEL(u,×)

Example, cont’d

Consider O = { A(a), A v ∃R.B, B v C, ∃R.C v D }

Iinst(O) =
{

isa(a,A), supEx(A,R,B, eAv∃R.B), subClass(B,C),
subEx(R,C,D), nom(a), cls(A), cls(B), cls(C), cls(D), rol(R)

}
.

We have O |= D(a)

From ΦEL(O) we can derive Iinst(D(a)) = isa(a,D):

• apply isa(X′,Z)← supEx(Y,V,Z,X′), isa(X,Y):

isa(eAv∃R.B,B)

• apply isa(X,Z)← subClass(Y,Z), isa(X,Y):

isa(eAv∃R.B,C)

• apply triple(X,V,X′)← supEx(Y,V,Z,X′), isa(X,Y)

triple(a,R, eAv∃R.B)

• apply isa(X,Z)← subEx(V,Y,Z), triple(X,V,X′), isa(X′,Y)

isa(a,D)

G. Xiao / TU Wien 23/01/2014 80/71

Inline Evaluation of Hybrid KBs 7. 7.1 Query Answering in SROEL(u,×)

Example, cont’d

Consider O = { A(a), A v ∃R.B, B v C, ∃R.C v D }

Iinst(O) =
{

isa(a,A), supEx(A,R,B, eAv∃R.B), subClass(B,C),
subEx(R,C,D), nom(a), cls(A), cls(B), cls(C), cls(D), rol(R)

}
.

We have O |= D(a)

From ΦEL(O) we can derive Iinst(D(a)) = isa(a,D):

• apply isa(X′,Z)← supEx(Y,V,Z,X′), isa(X,Y):

isa(eAv∃R.B,B)

• apply isa(X,Z)← subClass(Y,Z), isa(X,Y):

isa(eAv∃R.B,C)

• apply triple(X,V,X′)← supEx(Y,V,Z,X′), isa(X,Y)

triple(a,R, eAv∃R.B)

• apply isa(X,Z)← subEx(V,Y,Z), triple(X,V,X′), isa(X′,Y)

isa(a,D)

G. Xiao / TU Wien 23/01/2014 80/71

Inline Evaluation of Hybrid KBs 7. 7.1 Query Answering in SROEL(u,×)

Example, cont’d

Consider O = { A(a), A v ∃R.B, B v C, ∃R.C v D }

Iinst(O) =
{

isa(a,A), supEx(A,R,B, eAv∃R.B), subClass(B,C),
subEx(R,C,D), nom(a), cls(A), cls(B), cls(C), cls(D), rol(R)

}
.

We have O |= D(a)

From ΦEL(O) we can derive Iinst(D(a)) = isa(a,D):

• apply isa(X′,Z)← supEx(Y,V,Z,X′), isa(X,Y):

isa(eAv∃R.B,B)

• apply isa(X,Z)← subClass(Y,Z), isa(X,Y):

isa(eAv∃R.B,C)

• apply triple(X,V,X′)← supEx(Y,V,Z,X′), isa(X,Y)

triple(a,R, eAv∃R.B)

• apply isa(X,Z)← subEx(V,Y,Z), triple(X,V,X′), isa(X′,Y)

isa(a,D)

G. Xiao / TU Wien 23/01/2014 80/71

Inline Evaluation of Hybrid KBs 7. 7.1 Query Answering in SROEL(u,×)

Example, cont’d

Consider O = { A(a), A v ∃R.B, B v C, ∃R.C v D }

Iinst(O) =
{

isa(a,A), supEx(A,R,B, eAv∃R.B), subClass(B,C),
subEx(R,C,D), nom(a), cls(A), cls(B), cls(C), cls(D), rol(R)

}
.

We have O |= D(a)

From ΦEL(O) we can derive Iinst(D(a)) = isa(a,D):

• apply isa(X′,Z)← supEx(Y,V,Z,X′), isa(X,Y):

isa(eAv∃R.B,B)

• apply isa(X,Z)← subClass(Y,Z), isa(X,Y):

isa(eAv∃R.B,C)

• apply triple(X,V,X′)← supEx(Y,V,Z,X′), isa(X,Y)

triple(a,R, eAv∃R.B)

• apply isa(X,Z)← subEx(V,Y,Z), triple(X,V,X′), isa(X′,Y)

isa(a,D)

G. Xiao / TU Wien 23/01/2014 80/71

Inline Evaluation of Hybrid KBs 7. 7.1 Query Answering in SROEL(u,×)

Example, cont’d

Consider O = { A(a), A v ∃R.B, B v C, ∃R.C v D }

Iinst(O) =
{

isa(a,A), supEx(A,R,B, eAv∃R.B), subClass(B,C),
subEx(R,C,D), nom(a), cls(A), cls(B), cls(C), cls(D), rol(R)

}
.

We have O |= D(a)

From ΦEL(O) we can derive Iinst(D(a)) = isa(a,D):

• apply isa(X′,Z)← supEx(Y,V,Z,X′), isa(X,Y):

isa(eAv∃R.B,B)

• apply isa(X,Z)← subClass(Y,Z), isa(X,Y):

isa(eAv∃R.B,C)

• apply triple(X,V,X′)← supEx(Y,V,Z,X′), isa(X,Y)

triple(a,R, eAv∃R.B)

• apply isa(X,Z)← subEx(V,Y,Z), triple(X,V,X′), isa(X′,Y)

isa(a,D)

G. Xiao / TU Wien 23/01/2014 80/71

Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.1 Horn-SHIQ

Query Answering in Horn-SHIQ

SHIQ is an expressive DL (cf. OWL Lite)
• transitive roles (S), role hierarchies (H), inverses (I)
• qualified number restrictions (Q)

Horn fragment (Horn-SHIQ): eliminate positive disjunction t on
right hand side
Horn-SHIQ has useful features missing in EL and DL-Lite

trans(isLocatedIn) countryv ∀hasCapital.city countryv 61 isLocatedIn−.capital

CQ Answering for Horn-SHIQ is tractable in data complexity
(PTIME-complete)

The combined complexity of CQs is not higher than for satisfiability
testing (EXPTIME-complete)

Its features make CQ answering for Horn-SHIQ significantly more
complex than for EL

G. Xiao / TU Wien 23/01/2014 81/71

Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.1 Horn-SHIQ

Issues

trees

graph part

Match the query Q partially between graph part and trees
(⇒ tree-shaped query parts)

Inverse roles allow to move up and down the tree
(⇒ connect different trees)

Transitive roles: how far to go for a match in a tree?

G. Xiao / TU Wien 23/01/2014 82/71

Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.2 Datalog transformation

Datalog Query Answering for Horn-SHIQ
Ortiz et al. [2010]: CQ rewriting to Datalog (big predicate arities; impractical)

E_ et al. [2012a,2012b]: better rewriting

Three components:

UOC rewriting: CQ Q ; UCQ rewT (Q) (depends on the TBox T)

TBox saturation: enrich T with relevant axioms for rewriting (Ξ(T))

ABox completion: T is rewritten into a set of Datalog rules cr(T) to
“complete” the graph part

Answering Q over (T ,A) amounts to evaluating the Datalog program

A ∪ cr(T) ∪ rewT (q)

One can evaluate rewT (Q) over the completion of A (with no additional
unnamed objects)

rewT (q) can be exponential, but has manageable size for real queries and
ontologies

G. Xiao / TU Wien 23/01/2014 83/71

Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.2 Datalog transformation

The rewriting algorithm

Main idea:

Eliminate query variables that can be matched at unnamed objects
• Query matches have tree-shaped parts

• We clip off the variables x that can be leaves

• Replace them by constraints D(y) on their parent variables y

• The added atoms D(y) ensure the existence of a match for x

In the resulting queries all variables are matched to named objects

A Horn-SHIQ TBox T is in normal form, if GCIs in T have the forms:
(F1) A1 u . . . u AnvB, (F3) A1v∀r.B,
(F2) A1v∃r.B, (F4) A1v61 r.B,

where A1, . . . ,An,B are concept names and r is a role.

Normalize T (efficiently doable, [Kazakov, 2009], [Krötzsch et al., 2007])

G. Xiao / TU Wien 23/01/2014 84/71

Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.2 Datalog transformation

The rewriting algorithm

Main idea:

Eliminate query variables that can be matched at unnamed objects
• Query matches have tree-shaped parts

• We clip off the variables x that can be leaves

• Replace them by constraints D(y) on their parent variables y

• The added atoms D(y) ensure the existence of a match for x

In the resulting queries all variables are matched to named objects

A Horn-SHIQ TBox T is in normal form, if GCIs in T have the forms:
(F1) A1 u . . . u AnvB, (F3) A1v∀r.B,
(F2) A1v∃r.B, (F4) A1v61 r.B,

where A1, . . . ,An,B are concept names and r is a role.

Normalize T (efficiently doable, [Kazakov, 2009], [Krötzsch et al., 2007])

G. Xiao / TU Wien 23/01/2014 84/71

Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.2 Datalog transformation

One Step of Query Rewriting

q(x1)← r(x1, x2), r(x1, x4), r(x2, x3), s(x3, x4),A(x1),B(x4),B′(x2),C(x3)

x1A

ρ

x4B

r

x2B′

r

x3C

rs

1 Select the non-distinguished variable x3

2 Ensure that x3 has only incoming edges
äreplace r(x, y) by r−(y, x) as needed

3 Merge the predecessors
äif x3 is a leaf of a tree, they must be mapped together

4 Find an axiom that enforces an (r u s−)-child that is C
äfail if T does not imply such an axiom

5 Drop x3 and add D(x2)

G. Xiao / TU Wien 23/01/2014 85/71

Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.2 Datalog transformation

One Step of Query Rewriting

x1A

ρ

x4B

r

x2B′

r

x3C

rs

x1A

ρ

x4B

r

x2B′

r

x3C

rs

1 Select the non-distinguished variable x3

2 Ensure that x3 has only incoming edges
äreplace r(x, y) by r−(y, x) as needed

3 Merge the predecessors
äif x3 is a leaf of a tree, they must be mapped together

4 Find an axiom that enforces an (r u s−)-child that is C
äfail if T does not imply such an axiom

5 Drop x3 and add D(x2)

G. Xiao / TU Wien 23/01/2014 85/71

Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.2 Datalog transformation

One Step of Query Rewriting

x1A

ρ

x4B

r

x2B′

r

x3C

rs

x1A

ρ

x4B

r

x2B′

r

x3C

rs−

1 Select the non-distinguished variable x3

2 Ensure that x3 has only incoming edges
äreplace r(x, y) by r−(y, x) as needed

3 Merge the predecessors
äif x3 is a leaf of a tree, they must be mapped together

4 Find an axiom that enforces an (r u s−)-child that is C
äfail if T does not imply such an axiom

5 Drop x3 and add D(x2)

G. Xiao / TU Wien 23/01/2014 85/71

Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.2 Datalog transformation

One Step of Query Rewriting

x1A

ρ

x4B

r

x2B′

r

x3C

rs

x1A

ρ

x3C

x2 B,B′

r

r, s−

1 Select the non-distinguished variable x3

2 Ensure that x3 has only incoming edges
äreplace r(x, y) by r−(y, x) as needed

3 Merge the predecessors
äif x3 is a leaf of a tree, they must be mapped together

4 Find an axiom that enforces an (r u s−)-child that is C
äfail if T does not imply such an axiom

5 Drop x3 and add D(x2)

G. Xiao / TU Wien 23/01/2014 85/71

Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.2 Datalog transformation

One Step of Query Rewriting

x1A

ρ

x4B

r

x2B′

r

x3C

rs

x1A

ρ

x3C

T |= Dv ∃(r u s−).C x2 B,B′

r

r, s−

1 Select the non-distinguished variable x3

2 Ensure that x3 has only incoming edges
äreplace r(x, y) by r−(y, x) as needed

3 Merge the predecessors
äif x3 is a leaf of a tree, they must be mapped together

4 Find an axiom that enforces an (r u s−)-child that is C
äfail if T does not imply such an axiom

5 Drop x3 and add D(x2)

G. Xiao / TU Wien 23/01/2014 85/71

Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.2 Datalog transformation

One Step of Query Rewriting

x1A

ρ

x4B

r

x2B′

r

x3C

rs

x1A

ρ

x3C

T |= Dv ∃(r u s−).C x2 B,B′,D

r

r, s−

1 Select the non-distinguished variable x3

2 Ensure that x3 has only incoming edges
äreplace r(x, y) by r−(y, x) as needed

3 Merge the predecessors
äif x3 is a leaf of a tree, they must be mapped together

4 Find an axiom that enforces an (r u s−)-child that is C
äfail if T does not imply such an axiom

5 Drop x3 and add D(x2)

G. Xiao / TU Wien 23/01/2014 85/71

Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.2 Datalog transformation

One Step of Query Rewriting

x1A

ρ

x4B

r

x2B′

r

x3C

rs

x1A

ρ

T |= Dv ∃(r u s−).C x2 B,B′,D

r

1 Select the non-distinguished variable x3

2 Ensure that x3 has only incoming edges
äreplace r(x, y) by r−(y, x) as needed

3 Merge the predecessors
äif x3 is a leaf of a tree, they must be mapped together

4 Find an axiom that enforces an (r u s−)-child that is C
äfail if T does not imply such an axiom

5 Drop x3 and add D(x2)

G. Xiao / TU Wien 23/01/2014 85/71

Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.2 Datalog transformation

Another Step of Query Rewriting

The query using the axiom is rewritten to

x1A1

x2A2

R1

x3A3

R2

x4A4

R3

Av ∃R2.A3

x1A1

x2A2,A

R1

x4A4

R3

G. Xiao / TU Wien 23/01/2014 86/71

Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.2 Datalog transformation

Transitive Roles

To handle transitive roles in the query Q:

introduce a new variable between eliminated variable and some of
its predecessors

eliminate sets of variables
variables connected in the query may be mapped to same element
(reach the element on paths of different length)

Note:

the number of variables in Q does not increase (reuse of variables
possible)

only an exponential number of queries are possible

the labels on edges of the query graph increase

Thus, rewriting terminates

G. Xiao / TU Wien 23/01/2014 87/71

Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.2 Datalog transformation

TBox Saturation

A set Ξ(T) of relevant axioms is computed in advance

• Tailored resolution calculus for Horn-ALCHIQu

• Adaptation of existing consequence driven procedures for
satisfiability [Kazakov, 2009], [Ortiz et al., 2010]

Example Rules (all: Appendix)

M v ∃S.(N u N′) N v A
M v ∃S.(N u N′ u A)

Rc
v

M v ∃(S u inv(r)).(N u A) Av ∀r.B
M v B

R−∀

The rewriting step simply searches for an axiom in Ξ(T)

G. Xiao / TU Wien 23/01/2014 88/71

Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.2 Datalog transformation

ABox Completion Rules

The completion rules cr(T) are straightforward:

B(y) ← A(x), r(x, y) for each Av ∀r.B ∈ T

B(x) ← A1(x), . . . ,An(x) for all A1u . . .uAnvB∈Ξ(T)

r(x, y) ← r1(x, y), . . . , rn(x, y) for all r1 u . . . u rn v r ∈ T

⊥(x) ← A(x), r(x, y1), r(x, y2),B(y1),B(y2), y1 6= y2

for each Av 61 r.B ∈ T

Γ ← A(x),A1(x), . . . ,An(x), r(x, y),B(y)

for all A1u . . .uAn v ∃(r1u . . .urm).B1u . . .uBk and
Av 61 r.B of Ξ(T) such that r=ri and B=Bj for some
i, j with Γ ∈ {B1(y), . . . ,Bk(y), r1(x, y), . . . , rk(x, y)}

G. Xiao / TU Wien 23/01/2014 89/71

Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.2 Datalog transformation

Query Answering Algorithm

Algorithm Horn-SHIQ-CQ:

Input: normal Horn-SHIQ KB O = (T ,A), conjunctive query Q
Output: query answers
Ξ(T)← Saturate(T);
rewT (Q)← Rewrite(Q,Ξ(T));
cr(T)← CompletionRules(T);
P← A∪ cr(T) ∪ rewT (Q);
ans← {~u | q(~u) ∈ Datalog-eval(P)}; � call Datalog reasoner

Theorem

For satisfiable Horn-SHIQ O in normal form and CQ Q, the algorithm
Horn-SHIQ-CQoutputs ans(Q,O). It runs (properly implemented)
polynomial in data complexity and exponential in combined complexity.

G. Xiao / TU Wien 23/01/2014 90/71

Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.2 Datalog transformation

Closed-world Assumption

Reiter’s well-known closed-world assumption (CWA) is
acknowledged as an important reasoning principle for inferring
negative information from a first-order theory T.

For a ground atom p(c), conclude ¬p(c) if T 6|= p(c). Any such atom
p(c) is also called free for negation.

The CWA of T , denoted CWA(T), is then the extension of T with all
literals ¬p(c) where p(c) is free for negation.

Using dl-Programs, the CWA may be intuitively expressed on top of
an external DL knowledge base, which can be queried through
suitable dl-atoms.

G. Xiao / TU Wien 23/01/2014 91/71

	Logics, Knowledges and the Semantic Web
	Description Logic Ontologies
	LP/ASP Introduction
	OWL vs Rules

	Hybrid Knowledge Bases
	Approaches on Combining Ontologies and Rules
	dl-Programs

	Inline Evaluation
	Inline Evaluation Framework
	Reasoning via Datalog Rewriting
	dl-program Transformation

	Datalog-Rewritable DLs
	Query Answering in LDL+

	Implemenation and Evaluation
	DReW
	Evaluation

	Summary and Outlook
	Query Answering in SROEL(,)

	Query Answering in Horn-SHIQ
	Horn-SHIQ
	Datalog transformation

