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Inline Evaluation of Hybrid KBs

Hybrid Knowledge Bases

Hybrid Knowledge Bases: combining KBs formulated in different
logics

In the context of Semantic Web: OWL Ontologies + Rules

In this thesis: dl-Programs – loose coupling ontologies and rules
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Inline Evaluation of Hybrid KBs

Inline Evaluation

// max of integers x and y
inline int max(int x, int y){
return x > y ? x : y; }

// max of an integer array of size n
int max_array(int array[], int n) {
int result = INT_MIN;
for (int i = 0; i < n; i++) {
result = max(result, array[i]);

}
return result;

}
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Outline
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Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web

Rules and the Semantic Web
http://www.w3.org/2007/03/layerCake.png

Issue: Combining rules and ontologies (logic framework)

Rules and ontology formalisms like RDF/s, OWL resp. Description Logics
have related yet different underlying settings

Combination is nontrivial (at the heart, the difference is between LP and
classical logic)
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Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.1 DLs and OWL

OWL Ontologies and Description Logics

Knowledge about concepts, individuals, their properties and relationships

W3C Recommendation (2004): Web Ontology Language (OWL)

OWL2 (2009): tractable profiles OWL2 EL, OWL2 QL, OWL2 RL

OWL syntax is based on RDF

OWL semantics is based on Description logics
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Description Logics (DLs)

Description Logics are fragments of First-order Logics

The vocabulary of basic DLs comprises:

• Concepts (e.g., Wine, WhiteWine)
• Roles (e.g., hasMaker, madeFromGrape)
• Individuals (e.g., SelaksIceWine, TaylorPort)

Statements relate individuals and their properties using

• logical connectives (u, t, ¬, v, etc), and
• quantifiers (∃, ∀, ≤k, ≥k, etc)

A DL knowledge base L = (T ,A) (ontology) usually comprises

• a TBox T (terminology, conceptualization), and
• an ABox A (assertions, extensional knowledge)

DLs are tailored for decidable reasoning (key task: satisfiability)
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Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.1 DLs and OWL

Example: Wine Ontology

Available at http://www.w3.org/TR/owl-guide/wine.rdf
Some axioms from the TBox

Wine v PotableLiquid u =1hasMaker u ∀hasMaker.Winery;

∃hasColor−.Wine v {”White”, ”Rose”, ”Red”};
WhiteWine ≡ Wine u ∀hasColor.{”White”}.

• A wine is a potable liquid, having exactly one maker, who is a
member of the class “Winery”.

• Wines have colors “White”, “Rose”, or “Red”.

• A WhiteWine is a wine with exclusive color “White”.

The ABox contains, e.g.,

WhiteWine(”StGenevieveTexasWhite”), hasMaker(”TaylorPort”, ”Taylor”)
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Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.1 DLs and OWL

Formal OWL / DL Semantics

The semantics of core DLs is given by a mapping to first-order logic

In essence, DLs are “FO logic in disguise”

OWL property axioms as RDF Triples DL syntax FOL short representation
〈P rdfs:domain C〉 > v ∀P−.C ∀x, y.P(x, y) ⊃ C(x)
〈P rdfs:range C〉 > v ∀P.C ∀x, y.P(x, y) ⊃ C(y)
〈P owl:inverseOf P0〉 P ≡ P−0 ∀x, y.P(x, y) ≡ P0(y, x)
〈P rdf:type owl:SymmetricProperty 〉 P ≡ P− ∀x, y.P(x, y) ≡ P(y, x)
〈P rdf:type owl:FunctionalProperty 〉 > v6 1P ∀x, y1, y2.P(x, y1)∧P(x, y2)⊃ y1=y2
〈P rdf:type owl:TransitiveProperty 〉 P+ v P ∀x, y, z.P(x, y) ∧ P(y, z) ⊃ P(x, z)

OWL complex class descriptions DL syntax FOL short representation
owl:Thing > x = x
owl:Nothing ⊥ ¬x = x
owl:intersectionOf (C1 . . . Cn) C1 u . . . u Cn

∧
Ci(x)

owl:unionOf (C1 . . . Cn) C1 t . . . t Cn
∨

Ci(x)
owl:complementOf (C) ¬C ¬C(x)
owl:oneOf (o1 . . . on) {o1 . . . on}

∨
x = oi

owl:restriction (P owl:someValuesFrom (C)) ∃P.C ∃y.P(x, y) ∧ C(y)
owl:restriction (P owl:allValuesFrom (C)) ∀P.C ∀y.P(x, y) ⊃ C(y)
owl:restriction (P owl:value (o)) ∃P.{o} P(x, o)
owl:restriction (P owl:minCardinality (n)) >n P ∃n

i=1yi.
∧n

j=1 P(x, yj)∧
∧

i6=j yi 6=yj
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Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.1 DLs and OWL

Systems

Java API: OWL-API

Ontology Editor: Protege

Reasoners
• OWL(2): Pellet, RacerPro, KAON2, HermiT
• OWL2 RL: Jena, Base VISor
• OWL2 EL: CEL, ELK
• OWL2 QL: QuOnto, OWLGres, Requiem, Ontop
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Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.2 LP/ASP Introduction

Normal Logic Programs

Normal Logic Program

A normal logic program is a set of rules of the form

a← b1, . . . , bm, not c1, . . . , not cn (n,m ≥ 0) (1)

where a and all bi, cj are atoms in a first-order language L.

not is called “negation as failure”, “default negation”, or “weak negation”

Example

man(dilbert).

single(X)←man(X), not husband(X).

husband(X)←man(X), not single(X).
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Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.2 LP/ASP Introduction

Semantics of Logic Programs

“War of Semantics” in Logic Programming (1980/90ies):

Meaning of programs like the Dilbert example above

Great Schism: Single model vs. multiple model semantics

To date:

• Answer Set (alias Stable Model) Semantics by Gelfond and Lifschitz
[1988,1991].

Alternative models: M1 = {man(dilbert), single(dilbert)},
M2 = {man(dilbert), husband(dilbert)}.

• Well-Founded Semantics [van Gelder et al., 1991]

Partial model: man(dilbert) is true,
single(dilbert), husband(dilbert) are unknown

Agreement for so-called “stratified programs” (acyclic negation)

Different selection principles for non-stratified programs
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Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.2 LP/ASP Introduction

Practical Considerations

Standards
• W3C recommedation RIF: RID-Core, RIF-BLD, RIF-PRD
• ASP-Core-2 (2013)

ASP Standardization Working Group
Partially for ASP Competition

Systems
• LParse
• Smodels
• ASSAT
• Patassco (Gringo, Clasp, Clingo)
• DLV
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Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.3 OWL vs Rules

Main Differences OWL vs. Rules?

not in rule paradigms is different from negation (e.g., ComplementOf) in
OWL:
• ¬: Classical negation! Open world assumption! Monotonicity!
• not: Different purpose! Closed world assumption! Non-monotonicity!

Publication v Paper
¬Publication v Unpublished
paper1 ∈ Paper.

in DL: 6|= paper1 ∈ Unpublished

Paper(X)← Publication(X)
Unpublished(X)← not Publication(X)
Paper(paper1)←

Does infer in LP: Unpublished(paper1).

Also strong negation in LP (“−”, sometimes “¬”) is not completely the
same as classical negation in DLs, e.g.

Publication v Paper
a ∈ ¬Paper.

in DL: |= a ∈ ¬Publication

Paper(X)← Publication(X)
¬Paper(a)

Does not automatically infer in LP:
¬Publication(a).
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Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.3 OWL vs Rules

Main Differences OWL vs. Rules?

LPs are strong in query answering, but subsumption checking as in
DLs is infeasible (undecidable even for positive function-free
programs).

OWL DL allows complex statements in the “head” (rhs of v), while
use of variables in LP rule bodies is more flexible

DLs are stronger in type inference, while LPs are stronger in type
checking:

Person v ∃hasName.xs:string
john ∈ Person

is consistent in DL and infers
john ∈ ∃hasName

← Person(X), not hasName(X, Y)
Person(john)

is inconsistent, since there is no
known name for john

G. Xiao / TU Wien 23/01/2014 16/71



Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.3 OWL vs Rules

Main Differences OWL vs. Rules?

LPs are strong in query answering, but subsumption checking as in
DLs is infeasible (undecidable even for positive function-free
programs).

OWL DL allows complex statements in the “head” (rhs of v), while
use of variables in LP rule bodies is more flexible

DLs are stronger in type inference, while LPs are stronger in type
checking:

Person v ∃hasName.xs:string
john ∈ Person

is consistent in DL and infers
john ∈ ∃hasName

← Person(X), not hasName(X, Y)
Person(john)

is inconsistent, since there is no
known name for john

G. Xiao / TU Wien 23/01/2014 16/71



Inline Evaluation of Hybrid KBs 1. Logics, Knowledges and the Semantic Web 1.3 OWL vs Rules

Main Differences OWL vs. Rules?

LPs are strong in query answering, but subsumption checking as in
DLs is infeasible (undecidable even for positive function-free
programs).

OWL DL allows complex statements in the “head” (rhs of v), while
use of variables in LP rule bodies is more flexible

DLs are stronger in type inference, while LPs are stronger in type
checking:

Person v ∃hasName.xs:string
john ∈ Person

is consistent in DL and infers
john ∈ ∃hasName

← Person(X), not hasName(X, Y)
Person(john)

is inconsistent, since there is no
known name for john

G. Xiao / TU Wien 23/01/2014 16/71



Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.1 Approaches on Combining Ontologies and Rules

Marrying Rules and Ontologies

Hybrid knowledge base: KB = (O,P)
• O is an ontology

Father ≡ Man u ∃hasChild.Human

• P is the rules part (program)

rich(X)← famous(X), not scientist(X)

• Description Logic Programs [Grosof et al., 2003]
• DL-safe rules [Motik et al., 2005]
• r-hybrid KBs [Rosati, 2005]
• hybrid MKNF KBs [Motik and Rosati, 2010]
• Description Logic Rules [Krötzsch et al., 2008a]
• ELP [Krötzsch et al., 2008b]
• DL+log [Rosati, 2006]
• SWRL [Horrocks et al., 2004]
• dl-programs [E_ et al., 2008]
• . . .
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Semantics

Different ways to give semantics to K = (O,P)
overviews e.g. [Motik and Rosati, 2010], [de Bruijn et al., 2009]

• Tight semantic integration
• Full integration

• Strict semantic separation (loose coupling)

Nonmonotonic semantics:

• answer sets
• well-founded semantics
• ...

G. Xiao / TU Wien 23/01/2014 18/71
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Tight Semantic Integration

Rules
(RIF)

Ontologies
(OWL)

RDFS

Integrate FOL statements and the logic program to a large extent,
but keep predicates of ΣO and ΣP separate.

Build an integrated model M as the “union” of a model MO of the FO
theory O and a model MP of P with the same domain.

Ensure “safe interaction” between MO and MP.

Examples

CARIN [Levy and Rousset, 1998], DLP (≈ OWL 2 RL) [Grosof et al., 2003],
dl-safe rules [Motik et al., 2005], R-hybrid KBs [Rosati, 2005]
DL+LOG [Rosati, 2006]
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Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.1 Approaches on Combining Ontologies and Rules

Full Integration

RDFS

Ontologies
(OWL)

Rules
(RIF)

Unifiying Logic

No fundamental separation between ΣO, ΣP (but special axioms)

Examples

• Hybrid MKNF knowledge bases [Motik and Rosati, 2010;
Knorr et al., 2008]

• FO-Autoepistemic Logic [de Bruijn et al., 2007a]

• Quantified Equilibrium Logic [de Bruijn et al., 2007b]
(use special axioms)
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Loose Coupling

Strict semantic separation between rules / ontology

RDFS

Ontologies 
(OWL)

Rules
(RIF)

• View rule base P and FO theory O as separate, independent
components. ΣO and ΣP do (a priori) not share meaning.

• They are connected through a minimal “safe interface” for exchanging
knowledge (formulas, usually ground atoms).

Well-suited for implementation on top of LP & DL reasoners.

Examples

nonmonotonic dl-programs [E_ et al., 2008], [E_ et al., 2011]
defeasible logic+DLs [Wang et al., 2004]
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dl-Programs

An extension of answer set programs with queries to DL knowledge
bases (DL KBs)

Queries can temporarily update the DL KB

bidirectional flow of information, with clean technical separation of
DL engine and ASP solver (“loose coupling”)

DL EngineASP Solver ?

Use dl-programs as “glue” for combining inferences on a DL KB.
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dl-Programs

dl-programs are hybrid KBs with dl-atoms in rules

dl-Program

A dl-program is a pair Π = (O,P) where

O is a DL knowledge base (“ontology”)

P consists of dl-rules

a← b1, . . . , bk, not bk+1, . . . , not bm, (1)

where
• not is default negation (“unless derivable”),
• a1, . . . , an are atoms,
• b1, . . . , bm, m ≥ 0, are atoms or dl-atoms (no function symbols).
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dl-Atoms

Basic Idea:

Query the DL KB O using the query interface of the DL engine

Query Q may be concept/role instance C(X) / R(X,Y); subsumption
test C v D; etc (recent extension: conjunctive queries)

Important: Possible to modify the extensional part (ABox) of O, by
adding positive (]) or negative (−∪, −∩) assertions, before querying

Q evaluates to true iff the modified O proves Q.
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Inline Evaluation of Hybrid KBs 2. Hybrid Knowledge Bases 2.2 dl-Programs

dl-Atoms: Syntax

dl-atom

A dl-atom has the form
DL[S1]p1, . . . , Sm] pm; Q](t) , m ≥ 0,

where

each Si is either a concept or a role

Intuitively ] increases Si by pi

pi is a unary resp. binary predicate (input predicate),
Q(t) is a dl-query (t contains variables and/or constants), which is
one of

(a) C(t), for a concept C and term t, or
(b) R(t1, t2), for a role R and terms t1, t2.
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DL[S1]p1, . . . , Sm] pm; Q](t) , m ≥ 0,

where

each Si is either a concept or a role

Intuitively ] increases Si by pi

pi is a unary resp. binary predicate (input predicate),
Q(t) is a dl-query (t contains variables and/or constants), which is
one of

(a) C(t), for a concept C and term t, or
(b) R(t1, t2), for a role R and terms t1, t2.

Shorthand: λ = S1op1p1, . . . , Smopmpm
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Example: Network Connections

Π = (O,P) Ontology O :

n1

n2

n3

n4

n5

≥ 1.wired v Node > v ∀wired.Node

wired = wired−;

n1 6= n2 6= n3 6= n4 6= n5

wired(n1, n2) wired(n2, n3) wired(n2, n4)

wired(n2, n5) wired(n3, n4) wired(n3, n5).
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Intuition: extend role wired by connect, then query
HighTrafficNode

• E.g. Suppose {connect(x1, n3), connect(x2, n3)} ⊆ I
• Then I |= DL[wired ] connect; HighTrafficNode](n3)

• Thus I |= overloaded(n3)G. Xiao / TU Wien 23/01/2014 26/71
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Example: Network Connections
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not overloaded(Y), not excl(X, Y).
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Semantics

Satisfaction (I |=O a )

I satisfies a classical ground atom a iff a ∈ I;

I satisfies a ground dl-atom a = DL[λ; Q](c) iff
O ∪

⋃m
i=1 Ai(I) |= Q(c), where Ai(I) = {Si(e) | pi(e) ∈ I},

The semantics of Logic Programmings can be extended to
dl-Programs

Answer set semantics

Well-founded semantics
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Network Example: Answer Sets

n1

n2

n3

n4

n5

x1?

x2?

X

newnode(x1). newnode(x2).

overloaded(X)← DL[wired ] connect; HighTrafficNode](X).

connect(X, Y)← newnode(X),DL[Node](Y),
notoverloaded(Y), notexcl(X, Y).

excl(X, Y)← connect(X, Z),DL[Node](Y), Y 6= Z.

excl(X, Y)← connect(Z, Y), newnode(Z), newnode(X), Z 6= X.

excl(x1, n4).

M1 = {connect(x1, n1), connect(x2, n4), . . .},
M2 = {connect(x1, n1), connect(x2, n5), . . .},
M3 = {connect(x1, n5), connect(x2, n1), . . .},
M4 = {connect(x1, n5), connect(x2, n4), . . .}.
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Network Example: Well-founded Semantics

n1

n2

n3

n4

n5

x1?

x2?

X

newnode(x1). newnode(x2).

overloaded(X)← DL[wired ] connect; HighTrafficNode](X).

connect(X, Y)← newnode(X),DL[Node](Y),
notoverloaded(Y), notexcl(X, Y).

excl(X, Y)← connect(X, Z),DL[Node](Y), Y 6= Z.

excl(X, Y)← connect(Z, Y), newnode(Z), newnode(X), Z 6= X.

excl(x1, n4).

WFS(Π) = {overloaded(n2), . . .}
Π |=wf ¬connect(x1, n4), ...

WFM(Π) = {overloaded(n2),¬connect(x1, n4), . . .}
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System for dl-Programs

NLP-DL
• https://www.mat.unical.it/ianni/swlp/

• First Experimental prototype
• DL Engine: RacerPro
• ASP Solver: DLV
• PHP

dlvhex DL Plugin
• www.kr.tuwien.ac.at/research/systems/dlvhex/dlplugin.html

• DL Engine: RacerPro
• ASP Solver: DLV or Clingo
• C++
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Inline Evaluation of Hybrid KBs 3. Inline Evaluation 3.1 Inline Evaluation Framework

Problem Statement

Loose Coupling - revisited

Advantage:

• clean semantics, can use legacy systems
• fairly easy to incorporate further knowledge formats

(e.g. RDF)
• supportive to privacy, information hiding

Rules

Ontology

dl-atom 1

dl-atom 2

Rule
Reasoner

Ontology
Reasoner

Hybrid Reasoner

Drawback: impedance mismatch, performance

• dl-program evaluation needs multiple calls of a
dl-reasoner

• Calls are expensive
∗ optimizations (caching, pruning ...)

• exponentially many calls may be unavoidable
• Even polynomially many calls might be too costly
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Inline Evaluation of Hybrid KBs 3. Inline Evaluation 3.1 Inline Evaluation Framework

Motivation

Goal
Improving the efficiency of reasoning over dl-Programs

Approach

Converting the evaluation problem into one for a single reasoning engine

L-formulas Logic L
Reasoner

Transform dl-program Π into an (equivalent) knowledge base in formalism
L for evaluation (uniform evaluation)

• L = FO Logic (SQL): MOR; acyclic Π over DL-Lite, using an RDBMS

• L = Datalog¬ (ASP)
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Questions arising from Datalog¬ rewritings of dl-Progmas

Possibility of transformation?
• Is there a general framework?
• Which DLs can be transformed?

Suitable for implementation?
• Can we reuse existing tools?

Performance?
• Benchmarks?
• How to evaluate?
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Inline Evaluation of Hybrid KBs 3. Inline Evaluation 3.2 Reasoning via Datalog Rewriting

Inline Evaluation of dl-Programs by Datalog rewriting

Idea:

for Datalog-rewritable ontologies, we may replace dl-atoms
DL[λ; Q](~c) with Datalog programs evaluating the atoms

the result is computed in an atom Qλ(~c)

rewrite the dl-rules to ordinary rules, by replacing dl-atoms

evaluate the resulting logic program using a Datalog engine / ASP
solver

Demonstrate the method on the Network example
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Network Example

Π = (O,P) Ontology O :

n1

n2

n3

n4

n5

x1?

x2?

X

≥ 1.wired v Node > v ∀wired.Node

wired = wired−;

n1 6= n2 6= n3 6= n4 6= n5

wired(n1, n2) wired(n2, n3) wired(n2, n4)

wired(n2, n5) wired(n3, n4) wired(n3, n5).

≥ 4.wired v HighTrafficNode

Rules P newnode(x1). newnode(x2).

overloaded(X)← DL[wired ] connect;HighTrafficNode](X).

connect(X, Y)← newnode(X),DL[Node](Y),
not overloaded(Y), not excl(X, Y).

excl(X, Y)← connect(X, Z),DL[Node](Y), Y 6= Z.

excl(X, Y)← connect(Z, Y), newnode(Z), newnode(X), Z 6= X.

excl(x1, n4).
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Network Example, cont’d
1. Rewriting the ontology

The DL component O is in OWL 2 RL resp. LDL+, which is
Datalog-rewritable (LDL+ will be introduced later).

We transform O to the Datalog program ΦLDL+(O):

wired−(Y,X)← wired(X, Y) wired(Y,X)← wired−(X, Y)
>(X)← wired(X, Y) >(Y)← wired(X, Y)
>(X)← wired−(X, Y) >(Y)← wired−(X, Y)

%axiom ≥ 1.wired v Node
Node(Y)← wired(X, Y)

%axiom > v ∀wired.Node
Node(Y)← wired(X, Y),>(X)

%axiom ≥ 4.wired v HighTrafficNode
HighTrafficNode(X)← wired(X, Y1),wired(X, Y2),wired(X, Y3),wired(X, Y4),

Y1 6= Y2, Y1 6= Y3, . . . , Y3 6= Y4.

wired(n1, n2) wired(n2, n3) wired(n2, n4),wired(n2, n5). wired(n3, n4). wired(n3, n5).
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Network Example, cont’d
2. Duplicating for dl-inputs

dl-atoms in Π:
DL[Node](Y), DL[wired ] connect; HighTrafficNode](X)

the dl-queries in are just instance queries, so given by Node(Y)
resp. HighTrafficNode(X)

Each DL-atom sends up a different input λ to O and so entailments
for the λ’s might be different.

To this purpose, we copy ΦLDL+(O) to new disjoint equivalent
versions for each DL-input λ

For the set ΛP = {λ1 = ε, λ2 = wired ] connect}, we have

• ΦLDL+,λ1
(O) = {Nodeλ1(X)← wiredλ1(X,Y), . . .} and

• ΦLDL+,λ2
(O) = {Nodeλ2(X)← wiredλ2(X,Y), . . .}
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Network Example, cont’d
3. Rewriting dl-rules to ordinary rules

To rewrite DL-rules P into ordinary rules Pord, we simply replace
each DL-atom DL[λ; Q](~t) by a new atom Qλ(~t).

Pord

newnode(x1). newnode(x2).

overloaded(X)← HighTrafficNodeλ2
(X).

connect(X, Y)← newnode(X),Nodeλ1(Y),
not overloaded(Y), not excl(X, Y).

excl(X, Y)← connect(X, Z),Nodeλ1(Y), Y 6= Z.

excl(X, Y)← connect(Z, Y), newnode(Z), newnode(X), Z 6= X.

excl(x1, n4).
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Network Example, cont’d
4. Rewriting dl-atom Input to Datalog rules

The inputs λ for the copies ΦLDL+,λ can be transferred by rules:

• λ1 = ε (no input); no rule needed

• λ2 = wired ] connect:

wiredλ2(X,Y)← connect(X,Y).
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Network Example, cont’d
5. Calling the Datalog reasoner

Now we have transformed all the components into a Datalog¬

program

ΨLDL+(Π) = ΦLDL+,λ1
(Σ)∪ΦLDL+,λ2

(Σ)∪Pord ∪P(ΛP).

We can send it to a datalog engine, e.g. DLV, and compute its
answer set or the well-founded model

The answer sets of ΨLDL+(Π), filtered to connect, overloaded,
newnode, excl, are the (strong) answer sets of Π

ΨLDL+(Π) |=wf p(a) iff Π |=wf p(a) for ground atom

Example: ΨLDL+(Π) |=wf overloaded(n2)
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dl-program Transformation (General Case)

DL: Datalog-rewritable Description Logic

Π = (O,P): a dl-program with dl-atoms DL[λi; Qi](~ti), 1 ≤ i ≤ n, where

λi = Si,1 ] pi,1, . . . , Si,mi ] pi,mi , and

Qi is an instance query.

Let ΛP = {λ1, . . . , λn} and define

ΨDL(Π) :=
⋃
λi∈ΛP

ΦDL,λi(O) ∪ Pord ∪ ρ(ΛP) ∪ TP

where

ΦDL,λi(O) is a copy of ΦDL(O) with all predicates subscripted with
λi

ρ(ΛP) consists of rules Si,j,λ(~Xi,j)← pi,j(~Xi,j), for all λi ∈ ΛP

Pord is P with each DL[λi; Qi](~ti) replaced by a new atom Qλi(~ti)

TP = {>(a),>2(a, b) | a, b occur in P }

G. Xiao / TU Wien 23/01/2014 41/71



Inline Evaluation of Hybrid KBs 3. Inline Evaluation 3.3 dl-program Transformation

dl-program Transformation (General Case)

Theorem

Let Π = (O,P) be a dl-program over Datalog-rewritable DL. Then

(1) for every a ∈ HBP, Π |=wf a iff ΨDL(Π) |=wf a;
(2) the answer sets of Π correspond 1-1 to the answer sets of Ψ(Π), s.t.

(i) every answer set of Π is expendable to an answer set of Ψ(Π); and
(ii) for every answer set J of Ψ(Π), its restriction I = J |HBP to HBP is an

answer set of Π.
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Datalog-Rewritable DLs

Definition (Datalog-rewritable)

A DL DL is Datalog-rewritable if there exists a transformation ΦDL from
DL KBs to Datalog programs such that, for any DL KB O,

1 O |= Q(o) iff ΦDL(O) |= Q(o) for any concept or role name Q from
O, and individuals o from O;

2 ΦDL is modular, i.e., for O = 〈T ,A〉 where T is a TBox and A an
ABox, ΦDL(O) = ΦDL(T ) ∪ A;

Further properties: A DL DL is

polynomial Datalog-rewritable, if DL is Datalog-rewritable and
ΦDL(O) is computable in polynomial time;

non-uniform Datalog-rewritable, if only condition (1) of
Datalog-rewritability holds for DL.
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Example Datalog-Rewritable DLs

LDL+ [Heymans et al., 2010]:
lightweight ontology language, extending in essence core OWL 2 RL
with singleton nominals, role conjunctions, and transitive closure

SROEL(u,×) [Krötzsch, 2010]:
superset of OWL 2 EL [Motik et al., 2008] resp. EL++
• disregarding datatypes
• adding (restricted) conjunction of roles (R u S), local reflexivity (Self ),

concept production (C × D v T, R v C × D)

SROEL(×) [Krötzsch, 2011]

Horn-SHIQ [Ortiz et al., 2010]:
Horn fragment of SHIQ

SROIQ-RL [Bozzato and Serafini, 2013]:
restriction of SROIQ for OWL 2 RL
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LDL+

LDL+ forbids in axioms X v Y

• disjunction C t D in Y
• existentials ∃R in Y

Viewing X v Y as rule Y ← X, it distinguishes head (h) and body (b)
concepts/roles, for occurrence in Y resp. X

LDL+ shares properties with datalog programs:

• It can express transitive closure (via an operator +)
• An LDL+ ontology O has a least model in each domain
• For query answering, we can exclude unnamed individuals (i.e., use

the active domain of individuals occurring in O

graph part
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Syntax of LDL+– Roles

head (h-) and body (b-) restrictions on roles in LDL+ axioms

h-roles (h for head) S,T are
(i) role names R,
(ii) role inverses S−,
(iii) role conjunctions S u T, and
(iv) role top >2;

b-roles (b for body) S,T are the same as h-roles, plus
(v) role disjunctions S t T,
(vi) role sequences S ◦ T,
(vii) transitive closures S+, and
(viii) role nominals {(o1, o2)}, where o1, o2 are individuals.
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Syntax of LDL+– Concepts

head (h-) and body (b-) restrictions on concepts in LDL+ axioms

basic concepts C,D are concept names A, >, and conjunctions
C u D;
h-concepts are

(i) basic concepts B, and
(ii) value restrictions ∀S.B where S is a b-role;

b-concepts C,D are
(i) basic concepts B,
(ii) disjunctions C t D,
(iii) exists restrictions ∃S.C,
(iv) atleast restrictions ≥ nS.C, and
(v) nominals {o}, where S is a b-role, and o is an individual.
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Transformation of LDL+ to Datalog

The transformation ΦLDL+(O) of an LDL+ ontology O to Datalog
contains the following elements:

transformation of the LDL+ axioms in O;

transformation of the closure of O.

Definition (closure)

The closure of an LDL+ knowledge base O, denoted clos(O), as the
smallest set containing

all subexpressions that occur in O (both roles and concepts) except
value restrictions, and

for each role name occurring in O, its inverse.
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Transformation Rules
Axiom translation:

B v H H(X)←B(X)
B v ∀E.A A(Y)←B(X),E(X, Y).
S v T T(X, Y)← S(X, Y)

closure translation:
role name P P(X, Y)←P−(Y,X)
concept name A >(X)←A(X)
role name (R) >(X)←R(X, Y) >(Y)←R(X, Y)

> >2(X, Y)←>(X),>(Y).
D = {o} D(o)←
D = D1 uD2 D(X)←D1(X),D2(X)
D = D1 tD2 D(X)←D1(X) D(X)←D2(X)
D = ∃E.D1 D(X)←E(X, Y),D1(Y)
D = ≥n E.D1 D(X)←E(X, Y1),D(Y1), . . . ,E(X, Yn),D(Yn),

Y1 6= Y2, . . . , Yi 6= Yj, . . . , Yn−1 6= Yn
E = {(o1, o2)} E(o1, o2)←
E = F− E(X, Y)←F(Y,X)
E = E1 u E2 E(X, Y)←E1(X, Y),E2(X, Y)
E = E1 t E2 E(X, Y)←E1(X, Y) E(X, Y)←E2(X, Y)
E = E1 ◦ E2 E(X, Y)←E1(X, Z),E2(Z, Y)
E = F+ E(X, Y)←F(X, Y) E(X, Y)←F(X, Z),E(Z, Y)
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Formal Properties

Theorem

For every LDL+ ontology O,

(i) O |= C(a) iff ΦLDL+(O) |= C(a)

(ii) O |= R(a, b) iff ΦLDL+(O) |= R(a, b).

Notes:

ΦLDL+(O) can be constructed in polynomial time from O (unary
encoding of counting ≥ n R)

can be evaluted in polynomial time (rule matching is polynomial)

the above result extends to CQs and UCQs Q(~X):

~c ∈ ans(Q,O) iff ΦLDL+(O) ∪ Q(~X) |= q(~c)
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SROEL(u,×)

SROEL(u,×) is in essence a superset of OWL 2 EL
Differences:
• disregards datatypes
• adding conjunction of roles (R u S), local reflexivity (Self ), concept

production (C × D v T, R v C × D)
• restrictions on role occurrences in a KB (simplicity, range restrictions),

but not role regularities

SROEL(u,×) has polynomial complexity (sat, instance checking)

[Krötzsch, 2010] describes a proof system for instance checking
over a SROEL(u,×) ontology

This proof system can be naturally encoded in a logic program,
viewing axioms α as facts and inference rules α1,...,αn

α as rules
α←α1, . . . , αn

A universal (schematic) encoding in Datalog is possible
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Transformation of SROEL(u,×) to Datalog
SROEL(u,×) proof system for O:
• the axioms C v D, C(a) etc of O can be understood as facts

E.g., C v D viewed as v(C,D) (infix)

• view the inference rules α
α1,...,αn

as LP rules α←α1, . . . , αn

E.g., CvD, C(a)
D(a) can be viewed as rule D(a)← v(C,D),C(a)

Use reification to obtain a Datalog representation

ΦEL(O) = Iinst(O) ∪ Pinst

where Iinst(O) encodes O and Pinst is a fixed set of rules (schemata)
• names: C ; cls(C); R ; rol(R); a ; nom(a)
• assertions: e.g C(a) ; isa(a,C); R(a, b) ; triple(a,R, b)
• axioms: e.g. A v C ; subClass(A,C),

Make reified rules generic using variables

E.g. isa(a,D)← subClass(C,D), isa(a,C) gets
isa(X,Z)← subClass(Y,Z), isa(X,Y)
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Rewrtings of LDL+ vs SROEL(u,×)

LDL+

• TBox assertions ; Rules
• Direct rewrting

SROEL(u,×)
• TBox assertions ; Facts
• Fixed set of rules
• Reification based rewriting
• The resulting program is always recursive
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DReW Reasoner

DReW prototype: uniform dl-program evaluation in Datalog¬

http://www.kr.tuwien.ac.at/research/systems/drew/
at GitHub: https://github.com/ghxiao/drew

written in Java

ontology parser: OWL-API

Datalog reasoner: DLV (inside DReW); Clingo may be used as well
(compute rewriting, via command line)

Features in DReW v0.3
ontology component
• OWL 2 RL (LDL+)
• OWL 2 EL (SROEL(u,×))

rule formalism
• dl-Programs (answer sets, well founded semantics)
• CQs under DL-safeness
• Terminological Default Reasoning (frontend)
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System Architecture (Core)
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DL-Rules
Parser

DL RewriterDL Profile
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DL-Rules
Rewriter
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DL-Atom
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Datalog
Generator

DL-Program
Rewriter

Model
Builder

Results

Datalog¬

Engine
data flow

conrol flow
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Example Usage

Example with Network dl-Program under ASP semantics:

$ ./drew -rl -ontology sample_data/network.owl \
-dlp sample_data/network.dlp \
-filter connect -dlv $HOME/bin/dlv

{ connect(x1, n1) connect(x2, n5) }

{ connect(x1, n5) connect(x2, n1) }

{ connect(x1, n5) connect(x2, n4) }

{ connect(x1, n1) connect(x2, n4) }
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Example Usage, cont’d

Example with network dl-Programs under well-founded semantics

# ./drew -rl -ontology sample_data/network.owl \
-dlp sample_data/network.dlp \
-filter overloaded -wf -dlv ./dlv-wf

{ overloaded(n2) }
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Benchmark Scenarios

Graph
• Ontologies derived from Random Graph Generator
• Programs for computing the transitive closure

University
• Ontologies from LUBM and ModLUBM
• DL-Programs for computing e.g. co-author relations

GeoData
• TBox from MyITS Project; ABox from Open Street Map
• semantically enriched spatial queries

EDI (Electronic data interchange)
• TBox from EDIMine project; ABox from EDI messages
• Rule-based reasoning over Business ontologies

Policy
• EL ontoloigy
• Default Rules modeling Role Based Access Control
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Platform

Ubuntu 12.04 Linux Server

DReW 0.3
• Java: Oracle JDK 1.7.0_21, JVM memory 6G
• DLV 2012-12-17

dlvhex 1.7.2
• RacerPro 1.9.2 beta (released on 2007-10-25)
• DLV 2012-12-17

HTCondor for scheduling the runs
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Graph Benchmark Suite

TBox: Empty

ABox: Generated by a random graph generator

DL-Programs for Computing transitive closure

tc2 extracts the arc relations from the ontology and computes the
closure by linear recursion
edge(X, Y) :- DL[arc](X, Y).

tc(X, Y) :- edge(X, Y).
tc(X, Y) :- edge(X, Z), tc(Z, Y).

tc3 extracts the arc relations from the ontology and computes the
closure by recursion while feeding back the arc relations

tc(X, Y) :- DL[arc](X, Y).
tc(X, Y) :- DL[arc] tc; arc](X, Z), tc(Z, Y).
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Graph Benchmark Suite Evaluation
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Evaluation results on the Graph Benchmark Suite

tc3/DLVHEX
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tc3/DReW[EL]
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tc2/DReW[RL]
tc2/DReW[EL]

G. Xiao / TU Wien 23/01/2014 61/71



Inline Evaluation of Hybrid KBs 5. Implemenation and Evaluation 5.2 Evaluation

GeoData Benchmark Suite

TBox
• Ontology developed in the MyITS Project
• GeoConceptsMyITS-v0.9-Lite1

ABox
• Features derived from Open Street Map
• Geo Relations (next, within) computed by our scripts
• Four Areas: Vienna, Salzburg, Austria, Upper Bavaria

Programs
• Geo Relation enriched Queries

#IND #CA #OPA #DPA #next #within File Size
Salzburg 12971 13037 539 19513 79615 455 11M
Vienna 33405 33531 1303 50520 292985 2610 36M
Austria 150911 151616 5326 222189 893438 6712 133M

Upper Bavaria 70837 71201 2182 106140 414512 3772 55M

Table: ABox Sizes of the GeoData benchmark suite

1http://www.kr.tuwien.ac.at/staff/patrik/GeoConceptsMyITS-v0.9-Lite.owl
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GeoData Benchmark Suite – Example Program

P5: List all the Italian restaurants next to a subway station which
can be reached from “Karlsplatz” by one change.

q(YN, ZN, L1, L2) :- metro_connect_1(L1,L2,“Karlsplatz”, YN),
DL[SubwayStation](Y),
DL[featurename](Y, YN), DL[Restaurant](Z),
DL[next](Y, Z), DL[featurename](Z, ZN),
DL[hasCuisine](Z, “ItalianCuisine”).

metro_next(Line, Stop1, Stop2) :- metro_next(Line, Stop2, Stop1).
metro_connect_0(L, Stop1, Stop2) :- metro_next(L, Stop1, Stop2).
metro_connect_0(L, Stop1, Stop2) :- metro_connect_0(L, Stop1, Stop3),

metro_connect_0(L, Stop3, Stop2).
metro_connect_1(L1, L2, Stop1, Stop2) :- metro_connect_0(L1, Stop1, Stop3),

metro_connect_0(L2, Stop3, Stop2), L1 != L2.
% and the facts of the subway lines
metro_next(“U1”,“Reumannplatz” , “Keplerplatz”).
metro_next(“U1” , “Keplerplatz” , “Suedtiroler Platz”).
. . .
metro_next(“U6”, “Handelskai”, “Neue Donau”).
metro_next(“U6”, “Neue Donau”, “Floridsdorf”).
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GeoData Benchmark Suite – Example Program

P6: Select restaurants next to “Karlsplatz” with preference:
ChineseCuisine > AsianCuisine > Other.

restaurant(X) :- DL[Restaurant](X), DL[next](X,Y),
DL[SubwayStation](Y), DL[featurename](Y, “Karlsplatz”).

chinese_restaurant(X) :- restaurant(X), DL[hasCuisine](X, “ChineseCuisine”).
asian_restaurant(X) :- restaurant(X), DL[hasCuisine](X, “AsianCuisine”).

exists_chinese_restaurant :- chinese_restaurant(X), restaurant(X).
exists_asian_restaurant :- asian_restaurant(X), restaurant(X).

sel(X) :- chinese_restaurant(X), exists_chinese_restaurant.
sel(X) :- asian_restaurant(X), not exists_chinese_restaurant,

exists_asian_restaurant.
sel(X) :- restaurant(X), not exists_asian_restaurant,

not exists_chinese_asian_restaurant.
q(XN) :- sel(X), DL[featurename](X, XN).

G. Xiao / TU Wien 23/01/2014 64/71



Inline Evaluation of Hybrid KBs 5. Implemenation and Evaluation 5.2 Evaluation

Graph Benchmark Suite Evaluation
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Evaluation results on the GeoData Benchmark Suite

p5/DReW[RL]
p5/DReW[EL]
p6/DReW[RL]
p6/DReW[EL]

Note: dlvhex [DL, RacerPro] does not terminate in 20mins
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Policy Benchmark

Terminological default KB ∆ = 〈L,D〉, where the the TBox of L and the
defaults D are shown bellow:

T =


Staff v User, Blacklisted v Staff , Deny u Grant v ⊥,
UserRequest ≡ ∃hasAction.Action u ∃hasSubject.User u ∃hasTarget.Project,
StaffRequest ≡ ∃hasAction.Action u ∃hasSubject.Staff u ∃hasTarget.Project,
BlacklistedStaffRequest ≡ StaffRequest u ∃hasSubject.Blacklisted


D =

 UserRequest(X) : Deny(X)/Deny(X),
StaffRequest(X) : ¬BlacklistedStaffRequest(X)/Grant(X),
BlacklistedStaffRequest(X) : >/Deny(X)


Informally, D expresses that

users normally are denied access to files,

staff is normally granted access to files,

while to blacklisted staff any access is denied.
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Policy Benchmark Suite – dl-Programs

The default theory D is equivalent to the following highly recursive dl-Programs

Deny+(X)← DL[λ; UserRequest](X), not DL[λ′;¬Deny](X)

Grant+(X)← DL[λ; StaffRequest](X), not DL[λ′; BlacklistedStaffRequest](X)

Deny+(X)← DL[λ; BlacklistedStaffRequest](X).

in_Deny(X)← not out_Deny(X)

out_Grant(X)← not in_Grant(X)

fail← DL[λ′; Deny](X), out_Deny(X), not fail

fail← DL[λ; Deny](X), in_Deny(X), not fail

fail← DL[λ; Deny](X), out_Deny(X), not fail

fail← DL[λ′; Grant](X), out_Grant(X), not fail

fail← DL[λ; Grant](X), in_Grant(X), not fail

fail← DL[λ; Grant](X), out_Grant(X), not fail

where λ′ = {Deny]in_Deny,Grant]in_Grant}, and
λ = {Deny]Deny+,Grant]Grant+}.
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Evaluation results on the Policy Benchmark Suite

DReW[EL]/DLV
DReW[EL]/Clingo

dlvhex with DF-front end can only handle up to 5 requests in almost 3
mins.
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Observations from the Evaluation

dl-Programs are exprssive and useful as a query language

the DReW system outperforms dlvhex [DL, RacerPro] in general,
especially for dl-Programs of complex structure or dl-programs with
large instances

DReW scales polynomially on large ABoxes in general

In most of the evaluations, the direct rewriting approach (RL) is
faster than the reification-based rewriting (EL)
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Summary

dl-Programs: Loose coupling ontologies and rule

current systems are not very efficient due to the overhead of calling
external DL reasoners

Contributions

Theoretical Contributions
• A framework of inline evaluation of dl-Programs by Datalog¬ rewriting
• Identifying a class of Datalog-rewritable DLs

Practical Contributions
• DReW reasoner for Datalog-rewritable dl-Programs
• Extensive evaluations on novel benchmark suites with promising

results

G. Xiao / TU Wien 23/01/2014 70/71



Inline Evaluation of Hybrid KBs 6. Summary and Outlook

Ongoing / Future Work

Optimization of the DReW system

Experiments with other Backend Engines (e.g., RDBMS and DLV∃)

More reasoning paradigm support, e.g. Closed World Assumption

Supporting W3C standard OWL-RIF

Further update operators (−∩) and semantics
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SROEL(u,×)

SROEL(u,×) is in essence a superset of OWL 2 EL
Differences:
• disregards datatypes
• adding conjunction of roles (R u S), local reflexivity (Self ), concept

production (C × D v T, R v C × D)
• restrictions on role occurrences in a KB (simplicity, range restrictions),

but not role regularities

SROEL(u,×) has polynomial complexity (sat, instance checking)

[Krötzsch, 2010] describes a proof system for instance checking
over a SROEL(u,×) ontology

This proof system can be naturally encoded in a logic program,
viewing axioms α as facts and inference rules α1,...,αn

α as rules
α←α1, . . . , αn

A universal (schematic) encoding in Datalog is possible
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SROEL(u,×), cont’d

Key aspects:
It is suffcient to generate a small part of a canonical forest-shaped
model

graph part

depth 1 trees

More precisely, only new elements directly connected to some
individual, due to existenial axioms A v ∃R.B

For uniform (ABox independent) encoding, share new elements

B B B

R R R
R

a bA A a bA A
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Transformation of SROEL(u,×) to Datalog
SROEL(u,×) proof system for O:
• the axioms C v D, C(a) etc of O can be understood as facts

E.g., C v D viewed as v(C,D) (infix)

• view the inference rules α
α1,...,αn

as LP rules α←α1, . . . , αn

E.g., CvD, C(a)
D(a) can be viewed as rule D(a)← v(C,D),C(a)

Use reification to obtain a Datalog representation

ΦEL(O) = Iinst(O) ∪ Pinst

where Oinst encodes O and Pinst is a fixed set of rules (schemata)
• names: C ; cls(C); R ; rol(R); a ; nom(a)
• assertions: e.g C(a) ; isa(a,C); R(a, b) ; triple(a,R, b)
• axioms: e.g. A v C ; subClass(A,C),

Make reified rules generic using variables

E.g. isa(a,D)← subClass(C,D), isa(a,C) gets
isa(X,Z)← subClass(Y,Z), isa(X,Y)
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Encoding Iinst(O)

C(a) ; isa(a,C) R(a, b) ; triple(a,R, b) a ∈ NI ; nom(a)
> v C ; top(C) A v ⊥; bot(A) A ∈ NC ; cls(A)
{a} v C ; subClass(a,C) A v {c}; subClass(A, c) R ∈ NR ; rol(R)

A v C ; subClass(A,C) A u B v C ; subConj(A,B,C)
∃R.Self v C ; subSelf (R,C) A v ∃R.Self ; supSelf (A,R)
∃R.A v C ; subEx(R,A,C) A v ∃R.B ; supEx(A,R,B, eAv∃R.B)

R v T ; subRole(R, T) R ◦ S v T ; subRChain(R, S, T)
R v C × D ; supProd(R,C,D) A× B v R ; subProd(A,B,R)
R u S v T ; subRConj(R, S, T)

Encode axiom α; Iinst(α)

Encode individual s ; Iinst(s)
Iinst(O) = {Iinst(α) | α ∈ L} ∪ {Iinst(s) | s ∈ NI ∪ NC ∪ NR}

• use constants eAv∃R.B for elements enforced by existential axioms
A v ∃R.B

• encode in supEx(A,R,B, eAv∃R.B) the pattern
A◦ R−→B◦

• “share” eAv∃R.B for individuals a, b belonging to A
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Example

Consider

O = {A(a), A v ∃R.B, B v C, ∃R.C v D}

O is translated to

Iinst(O) =
{

isa(a,A), supEx(A,R,B, eAv∃R.B), subClass(B,C),
subEx(R,C,D), nom(a), cls(A), cls(B), cls(C), cls(D), rol(R)

}
.
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Inference Rules (Datalog Encoding)

Datalog program Pinst: instance inference

isa(X, Z)← top(Z), isa(X, Z′)

isa(X, Y)← bot(Z), isa(U, Z), isa(X, Z′), cls(Y)

isa(X, Z)← subClass(Y, Z), isa(X, Y)

isa(X, Z)← subConj(Y1, Y2, Z), isa(X, Y1), isa(X, Y2)

isa(X, Z)← subEx(V, Y, Z), triple(X,V,X′), isa(X′, Y)

isa(X, Z)← subEx(V, Y, Z), self (X,V), isa(X, Y)

isa(X′, Z)← supEx(Y,V, Z,X′), isa(X, Y)

isa(X, Z)← subSelf (V, Z), self (X,V)

isa(X, Z1)← supProd(V, Z1, Z2), triple(X,V,X′)

isa(X, Z1)← supProd(V, Z1, Z2), self (X,V)

isa(X′, Z2)← supProd(V, Z1, Z2), triple(X,V,X′)

isa(X, Z2)← supProd(V, Z1, Z2), self (X,V)

isa(X,X)← nom(X)

isa(Y, Z)← isa(X, Y), nom(Y), isa(X, Z)

isa(X, Z)← isa(X, Y), nom(Y), isa(Y, Z)
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Inference Rules (Datalog Encoding), cont’d

Datalog program Pinst: role and Self inference

triple(X,W,X′)← subRole(V,W), triple(X,V,X′)

triple(X,W,X′′)← subRChain(U,V,W), triple(X,U,X′), triple(X′,V,X′′)

triple(X,W,X′)← subRChain(U,V,W), self (X,U), triple(X,V,X′)

triple(X,W,X′)← subRChain(U,V,W), triple(X,U,X′), self (X′,V)

triple(X,W,X)← subRChain(U,V,W), self (X,U), self (X,V)

triple(X,W,X′)← subRConj(V1,V2,W), triple(X,V1,X′), triple(X,V2,X′)

triple(Z,U, Y)← isa(X, Y), nom(Y), triple(Z,U,X)

triple(X,V,X′)← supEx(Y,V, Z,X′), isa(X, Y)

triple(X,W,X′)← subProd(Y1, Y2,W), isa(X, Y1), isa(X′, Y2)

self (X,V)← nom(X), triple(X,V,X)

self (X,W)← subRole(V,W), self (X,V)

self (X,W)← subRConj(V1,V2,W), self (X,V1), self (X,V2)

self (X,W)← subProd(Y1, Y2,W), isa(X, Y1), isa(X, Y2)

self (X,V)← supSelf (Y,V), isa(X, Y)
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Instance Queries

ΦEL(O) = Pinst ∪ Iinst(O) can be used to decide satisfiability

ΦEL(O) can be used to answer instance queries

Theorem

For every SROEL(u,×) ontology O and a, b ∈ NI

(i) O |= C(a) iff ΦEL(O) |= isa(a,C)

(ii) O |= R(a, b) iff ΦEL(O) |= triple(a,R, b).
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Example, cont’d

Consider O = { A(a), A v ∃R.B, B v C, ∃R.C v D }

Iinst(O) =
{

isa(a,A), supEx(A,R,B, eAv∃R.B), subClass(B,C),
subEx(R,C,D), nom(a), cls(A), cls(B), cls(C), cls(D), rol(R)

}
.

We have O |= D(a)

From ΦEL(O) we can derive Iinst(D(a)) = isa(a,D):

• apply isa(X′,Z)← supEx(Y,V,Z,X′), isa(X,Y):

isa(eAv∃R.B,B)

• apply isa(X,Z)← subClass(Y,Z), isa(X,Y):

isa(eAv∃R.B,C)

• apply triple(X,V,X′)← supEx(Y,V,Z,X′), isa(X,Y)

triple(a,R, eAv∃R.B)

• apply isa(X,Z)← subEx(V,Y,Z), triple(X,V,X′), isa(X′,Y)

isa(a,D)
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Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.1 Horn-SHIQ

Query Answering in Horn-SHIQ

SHIQ is an expressive DL (cf. OWL Lite)
• transitive roles (S), role hierarchies (H), inverses (I)
• qualified number restrictions (Q)

Horn fragment (Horn-SHIQ): eliminate positive disjunction t on
right hand side
Horn-SHIQ has useful features missing in EL and DL-Lite

trans(isLocatedIn) countryv ∀hasCapital.city countryv 61 isLocatedIn−.capital

CQ Answering for Horn-SHIQ is tractable in data complexity
(PTIME-complete)

The combined complexity of CQs is not higher than for satisfiability
testing (EXPTIME-complete)

Its features make CQ answering for Horn-SHIQ significantly more
complex than for EL
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Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.1 Horn-SHIQ

Issues

trees

graph part

Match the query Q partially between graph part and trees
(⇒ tree-shaped query parts)

Inverse roles allow to move up and down the tree
(⇒ connect different trees)

Transitive roles: how far to go for a match in a tree?
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Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.2 Datalog transformation

Datalog Query Answering for Horn-SHIQ
Ortiz et al. [2010]: CQ rewriting to Datalog (big predicate arities; impractical)

E_ et al. [2012a,2012b]: better rewriting

Three components:

UOC rewriting: CQ Q ; UCQ rewT (Q) (depends on the TBox T )

TBox saturation: enrich T with relevant axioms for rewriting (Ξ(T ))

ABox completion: T is rewritten into a set of Datalog rules cr(T ) to
“complete” the graph part

Answering Q over (T ,A) amounts to evaluating the Datalog program

A ∪ cr(T ) ∪ rewT (q)

One can evaluate rewT (Q) over the completion of A (with no additional
unnamed objects)

rewT (q) can be exponential, but has manageable size for real queries and
ontologies
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Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.2 Datalog transformation

The rewriting algorithm

Main idea:

Eliminate query variables that can be matched at unnamed objects
• Query matches have tree-shaped parts

• We clip off the variables x that can be leaves

• Replace them by constraints D(y) on their parent variables y

• The added atoms D(y) ensure the existence of a match for x

In the resulting queries all variables are matched to named objects

A Horn-SHIQ TBox T is in normal form, if GCIs in T have the forms:
(F1) A1 u . . . u AnvB, (F3) A1v∀r.B,
(F2) A1v∃r.B, (F4) A1v61 r.B,

where A1, . . . ,An,B are concept names and r is a role.

Normalize T (efficiently doable, [Kazakov, 2009], [Krötzsch et al., 2007])
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Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.2 Datalog transformation

One Step of Query Rewriting

q(x1)← r(x1, x2), r(x1, x4), r(x2, x3), s(x3, x4),A(x1),B(x4),B′(x2),C(x3)

x1A

ρ

x4B

r

x2B′

r

x3C

rs

1 Select the non-distinguished variable x3

2 Ensure that x3 has only incoming edges
äreplace r(x, y) by r−(y, x) as needed

3 Merge the predecessors
äif x3 is a leaf of a tree, they must be mapped together

4 Find an axiom that enforces an (r u s−)-child that is C
äfail if T does not imply such an axiom

5 Drop x3 and add D(x2)
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Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.2 Datalog transformation

Another Step of Query Rewriting

The query using the axiom is rewritten to

x1A1

x2A2

R1

x3A3

R2

x4A4

R3

Av ∃R2.A3

x1A1

x2A2,A

R1

x4A4

R3
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Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.2 Datalog transformation

Transitive Roles

To handle transitive roles in the query Q:

introduce a new variable between eliminated variable and some of
its predecessors

eliminate sets of variables
variables connected in the query may be mapped to same element
(reach the element on paths of different length)

Note:

the number of variables in Q does not increase (reuse of variables
possible)

only an exponential number of queries are possible

the labels on edges of the query graph increase

Thus, rewriting terminates
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Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.2 Datalog transformation

TBox Saturation

A set Ξ(T ) of relevant axioms is computed in advance

• Tailored resolution calculus for Horn-ALCHIQu

• Adaptation of existing consequence driven procedures for
satisfiability [Kazakov, 2009], [Ortiz et al., 2010]

Example Rules (all: Appendix)

M v ∃S.(N u N′) N v A
M v ∃S.(N u N′ u A)

Rc
v

M v ∃(S u inv(r)).(N u A) Av ∀r.B
M v B

R−∀

The rewriting step simply searches for an axiom in Ξ(T )
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Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.2 Datalog transformation

ABox Completion Rules

The completion rules cr(T ) are straightforward:

B(y) ← A(x), r(x, y) for each Av ∀r.B ∈ T

B(x) ← A1(x), . . . ,An(x) for all A1u . . .uAnvB∈Ξ(T )

r(x, y) ← r1(x, y), . . . , rn(x, y) for all r1 u . . . u rn v r ∈ T

⊥(x) ← A(x), r(x, y1), r(x, y2),B(y1),B(y2), y1 6= y2

for each Av 61 r.B ∈ T

Γ ← A(x),A1(x), . . . ,An(x), r(x, y),B(y)

for all A1u . . .uAn v ∃(r1u . . .urm).B1u . . .uBk and
Av 61 r.B of Ξ(T ) such that r=ri and B=Bj for some
i, j with Γ ∈ {B1(y), . . . ,Bk(y), r1(x, y), . . . , rk(x, y)}
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Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.2 Datalog transformation

Query Answering Algorithm

Algorithm Horn-SHIQ-CQ:

Input: normal Horn-SHIQ KB O = (T ,A), conjunctive query Q
Output: query answers
Ξ(T )← Saturate(T );
rewT (Q)← Rewrite(Q,Ξ(T ));
cr(T )← CompletionRules(T );
P← A∪ cr(T ) ∪ rewT (Q);
ans← {~u | q(~u) ∈ Datalog-eval(P)}; � call Datalog reasoner

Theorem

For satisfiable Horn-SHIQ O in normal form and CQ Q, the algorithm
Horn-SHIQ-CQoutputs ans(Q,O). It runs (properly implemented)
polynomial in data complexity and exponential in combined complexity.
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Inline Evaluation of Hybrid KBs 8. Query Answering in Horn-SHIQ 8.2 Datalog transformation

Closed-world Assumption

Reiter’s well-known closed-world assumption (CWA) is
acknowledged as an important reasoning principle for inferring
negative information from a first-order theory T.

For a ground atom p(c), conclude ¬p(c) if T 6|= p(c). Any such atom
p(c) is also called free for negation.

The CWA of T , denoted CWA(T), is then the extension of T with all
literals ¬p(c) where p(c) is free for negation.

Using dl-Programs, the CWA may be intuitively expressed on top of
an external DL knowledge base, which can be queried through
suitable dl-atoms.
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