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Abstract

The deployment of knowledge representation formalisms to the Web has created the need for
hybrid formalisms that combine heterogeneous knowledge bases (KBs). There are many for-
malisms proposed by the knowledge representation community for modeling knowledge bases,
among which two families are of great importance, in particular in the context of semantic Web.
One is the family of Description Logics (DLs) based ontologies, and the other is rule-based logic
programming.

The challenge of combining ontologies and rules has been drawing a lot of attentions in
recent years. Among several proposed approaches, loose coupling of rules and ontologies aims
at combining respective knowledge bases by means of a clean interfacing semantics, in which
roughly speaking inferences are mutually exchanged such that the one KB takes the imported
information into account, and exports in turn conclusions to the other KB. This approach is
fostered by non-monotonic description logic (dl-) programs, where this exchange is handled by
a generalization of the answer set semantics of non-monotonic logic programs.

Because of the loose coupling nature of dl-programs, one can build engines for dl-programs
on top of legacy reasoners. For instance, the DLVHEX system with dl-plugin, which is a state-
of-the-art system for dl-programs, is built on top of the ASP reasoner DLV and the DL reasoner
RacerPro. Although this architecture is very elegant, the performance of this implementation is
suboptimal. We observe that the overhead of calling external reasoners in the classical approach
can be the bottleneck of the performance.

The aim of this thesis is to improve the reasoning efficiency over hybrid KBs. We propose
a new strategy, called inline evaluation, which compiles the whole hybrid KB into a new KB
using only one single formalism. Hence we can use a single reasoner to do the reasoning tasks,
and improve the efficiency of hybrid reasoning. In case of dl-programs, we design an abstract
framework rewriting dl-programs to Datalog programs with negation, by compiling all com-
ponents carefully and combining them together into a single program. The reduction is sound
and complete when the DL ontologies are “Datalog-rewritable”. We show that many DLs are
Datalog-rewritable by introducing concrete rewriting algorithms. Furthermore, we show that
inline evaluation can be used in hybrid KBs of other formalisms.

To confirm the hypothesis that the inline evaluation is superior to the classical approach of
“ASP + external DL reasoner”, we implement the inline evaluation method in the novel DReW
system for dl-programs. We conduct an extensive evaluation on several benchmark suites and
show that DReW outperforms the classical approach in general, especially for dl-programs of
complex structure or with large instances.
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CHAPTER 1
Introduction

1.1 Combining Rules and Ontologies

In the last decade, the growing importance of the (Semantic) Web and its envisioned future
development has triggered a lot of research on accessing and processing data based on semantic
approaches. Knowledge representation (KR) provides solid theoretical foundations for these
approaches and new research topics for KR are raised when applying these semantics techniques.

A KR formalism is normally formally defined by a logic with well-defined syntax and clear
semantics. For each formalism, the research can be roughly divided into theoretical and practical
directions. The former concerns the theoretical properties of the logics, e.g., expressivity and
complexity; the latter is about the realization of the formalism by developing and optimizing the
reasoning algorithms, and implementing them in software programs of so-called reasoners.

There are many formalisms proposed by the KR community for modeling knowledge bases
(KBs), among which the two families are of importance, in particular in the context of Semantic
Web. One family is Description Logics (DLs), and the other is logic programming. They are
studied intensively and implemented in many practical systems. Moreover, they are two impor-
tant building blocks in the architecture of the Semantic Web layered stack and are standardized
by the W3C.

Description Logics (DLs) are mostly fragments of first-order logic with a clear-cut seman-
tics, convenient syntax and decidable reasoning, performed by quite efficient algorithms [Baa+07].
They range from tractable DLs (e.g., RL, EL, and DL-Lite), over expressive DLs (e.g., Horn-SHIQ)
to very expressive ones (e.g.,SHIQ, SHOIQ and SROIQ). DLs are the theoretical foun-
dation of the W3C Web Ontology Language (OWL). Because of the close relation of DL and
OWL, KB formulated in DLs are often called ontologies. On the practical side, many efficient
OWL reasoners (e.g., Pellet, RacerPro, HermiT) are implemented for DLs.

Logic programming is a family of rule-based languages, among that are Datalog, Datalog
with negations (Datalog¬), and Datalog with disjunctions (Datalog∨). Unlike DL families with
a standard first-order semantics, several semantics are proposed for logic programmings, among
which two most important ones are the stable model semantics [GL88] and the well-founded
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semantics [GRS91]. The stable models of a program are also called answer sets [GL91], and
the logic programming under stable models semantics is also called answer set programming
(ASP), which is implemented in many ASP solvers, such as DLV and Clasp.

The distributed nature of the Web poses a challenge for integrating heterogeneous data
sources. In KR terms, this means a need for hybrid KBs combining KBs formulated in dif-
ferent logics. In the context of Semantic Web, we focus on combining description logic based
ontologies and logic programs. Such combination is non-trivial because simply putting them
together easily leads to high computational complexities or even undecidability [LR98]. Nor-
mally, some forms of syntax or semantic restrictions on the interaction between the ontology
and rule components have to be applied for retaining a reasonable complexity, but this comes at
the cost of sacrificing expressivity.

The challenge of combining ontologies and rules has been drawing a lot of attentions in
recent years. The approaches of hybrid knowledge bases fall into three categories following the
representational paradigms of the respective approaches [de +09]:

(1) The loose coupling approaches define an interface between the two formalisms based on the
exchange of the entailed knowledge.

(2) The tight coupling approaches define an interface based on common models.

(3) The embedding approaches define an interface based on embeddings of both the ontology
and the rules in a single unifying non-monotonic formalism.

Among several approaches, loose coupling of rules and ontologies aims at combining re-
spective knowledge bases by means of a clean interfacing semantics, in which roughly speaking
inferences are mutually exchanged such that the one KB takes the imported information into
account, and exports in turn conclusions to the other KB. This approach is fostered by non-
monotonic description logic (dl-) programs [Eit+08a], where this exchange is handled by a
generalization of the answer set semantics of nonmonotonic logic programs [GL91]. Follow
up work has adapted this approach to other formalisms (e.g., [Wan+04; Hey+10; Eit+05]) and
considered alternative semantics (e.g. [Luk10; Wan+10; Eit+11]).

The loose coupling approach is attractive in several regards. First, legacy KBs, powered
by different reasoning engines, can be combined. Second, thanks to the interfacing and loose
semantics connection, it is fairly easy to incorporate further knowledge formats besides rules
and OWL (description logic) ontologies, e.g. RDF KB. HEX-programs [Eit+05] are a respective
generalization of dl-programs, which in fact allow for incorporating arbitrary software. Third,
view based data access of loose coupling is in support of privacy, as the internal structure of a
KB remains hidden.

On the other hand, the impedance mismatch of different formalisms and reasoning engines
comes at a price. A simple realization of the loose coupling considers the interface calls as an
API which makes computation expensive, in particular if rules lead to choices via the underlying
semantics. The black box view of other KBs hinders optimization and is a major obstacle for
scalability.

We try to improve the efficiency of reasoning over hybrid KBs by borrowing the concepts of
inline expansion in the programming language community. Inline expansion is an optimization
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that replaces the function call with the actual body of the called function, which removes the
costs of the function calls and return instructions. More importantly, since the body is directly
accessible, further optimization is possible. The situation of the dl-programs is conceptually
similar. The overhead of calling external reasoners can be a performance bottleneck.

1.2 Contributions

The goal of this thesis is to provide efficient novel reasoning methods for hybrid knowledge
bases, in particular for dl-program. We propose the “inline evaluation” framework for hybrid
KBs, which converts the evaluation problem of hybrid KBs into an (equivalent) KB in one
formalism for evaluation and thus eliminates the overhead of calling external reasoners. The
hypothesis is that the inline evaluation outperforms the classical approach of simply combining
legacy reasoners to access the underlying data sources.

The contributions of this thesis are on both the theoretical and the practical side. On the
theoretical side, we develop an “inline evaluation” framework for dl-programs by reducing them
to Datalog¬ programs and show that this method can be applied or extended to some other
hybrid KBs.

• We abstractly define the framework of inline evaluation for dl-programs by reducing them
to Datalog¬ programs. Essentially, we use the Datalog¬ program to simulate the differ-
ent components of the dl-programs, including the ontology component, the rule compo-
nent and even their interactions. The reduction requires that DL ontologies are “Datalog-
rewritable”, that is, the ontology can be rewritten to an equivalent Datalog program. We
propose a concrete Datalog-rewritable DL LDL+ and find that it is strongly related to
OWL 2 RL. We also show that the DLs SROEL(u,×) (the logic underpinning OWL
2 EL), and Horn-SHIQ are Datalog-rewritable by introducing concrete rewriting algo-
rithms.

• We apply or extend inline evaluation to several other hybrid KBs.

– Terminological default logic KBs are a combination of default logics and DL on-
tologies [BH95]. We adopt the encoding to dl-programs and showed that they can
be inline evaluated when the ontology part is Datalog rewritable.

– Similarly, dl-safe conjunctive queries (CQs) [MSS05] can be reduced to dl-programs
easily and then inline evaluation could be applied.

– We extended the query rewriting algorithm to general conjunctive queries over ex-
pressive DL Horn-SHIQ, and more general weakly dl-safe KBs.

– cq-programs are an extension of dl-programs using CQs to access ontologies [Eit+08b].
We extend the inline evaluation to cq-programs using the query rewriting techniques.

On the practical side, we implemented a new system for dl-programs and conducted exten-
sive evaluations.
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• We implement the inline evaluation of dl-programs in the DReW system, which also sup-
ports dl-safe conjunctive queries and terminological default theories.

• We create several novel benchmark suites for dl-programs and evaluate the DReW system
and DLVHEX system on these benchmark suites.

Recall that the hypothesis was that inline evaluation can be much more efficient than the
classical approach. The results show that inline evaluation is a general framework for reasoning
over several hybrid KBs. The implementation and evaluation confirm that the DReW system
outperforms DLVHEX in general, especially for dl-programs of complex structure or dl-programs
with large instances.

We also note that inline evaluation is not always feasible. For instance, when ontologies can
only be accessed through a query interface, the current approach cannot transform the ontologies
to Datalog programs.

1.3 Evolution of this Work

In this section, we describe the evolution of this work and spot relevant publications. Most of
the work of this thesis has been carried in the context of EU Project OntoRule and FWF Project
Reasoning in Hybrid KBs.

2009 – 2010 This work started in October 2009. The goal of developing new efficient rea-
soning methods for hybrid KBs and implementing systems was very clear from the beginning.
The initial work was to identify a tractable fragment of dl-programs under well-founded seman-
tics and to show that reasoning can be done by a reduction to Datalog¬. The first result was
published at ECAI 2010 [HEX10]. After that, we implemented the the first version of DReW
system in two months and presented it as a workshop paper in BuRO 2010 [XHE10].

2011 – 2012 Based on the established results, the framework of inline evaluation became ma-
ture and was written down as the PhD proposal and later published in RR 2011 [XE11]. We
continued the work on dl-programs and we found that the family of EL ontologies can also be
faithfully handled in our framework and it can be used for terminological default logics. These
results were parts of an invited paper in FoIKS 2012 [Eit+12a]. The implementation of DReW
was further refined and the new version was described in a paper at SWWS 2012 [XEH12].

In parallel to the research on dl-programs, we also investigated conjunctive queries over
the description logic Horn-SHIQ. We developed a query rewriting algorithm for CQ over
Horn-SHIQ by a reduction to Datalog and implemented it in the clipper system. The results
were published at AAAI 2012 [Eit+12b] and DL 2012 [Eit+12c].

2013 In 2013, our main goal has been to converge the work and finish the thesis writing. To
make the results complete, we spent quite some efforts on building several novel benchmarks
and did extensive evaluations.
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1.4 Thesis Organization

The rest of this thesis is structured as follows:

- In Chapter 2, we introduce all the preliminary knowledge for the thesis. We start from
first-order logic and computational complexity theory. Then we recall two important knowl-
edge representation languages, namely description logics (ontologies) and logic programming
(rules).

- In Chapter 3, we give a brief survey on the state of the art of the approaches of combination
of ontologies and rules. In particular, we focus on dl-programs, which is a loose coupling
approach of combining ontologies and rules.

- In Chapter 4, we present the main theoretical contribution of this thesis. We first present the
general framework of inline evaluation of dl-programs, which reduces the reasoning over dl-
programs to that over Datalog¬. Then we show how to apply this framework to dl-programs
over different Datalog-rewritable description logics: LDL+ (closely related to OWL 2 RL),
OWL 2 EL, and up to Horn-SHIQ.

- In Chapter 5, we apply the idea of inline evaluation to other formalisms of hybrid knowledge
bases: terminological default logics, dl-safe conjunctive queries, general conjunctive queries
and weakly dl-safe rules over Horn-SHIQ, and cq-programs.

- In Chapter 6, we present the DReW system, a dl-programs reasoner based on the inline evalua-
tion strategy. When reasoning, it first rewrites the whole dl-program into a Datalog¬ program,
and then calls a Datalog reasoner (currently DLV) for the underlying reasoning.

- In Chapter 7, we present the evaluation results of the inline evaluation approach. The eval-
uations are performed on several novel benchmark suites. The results show that the inline
evaluation approach outperforms the classical one in most of the tests.

- Finally in Chapter 8, we summarize this thesis and discuss issues and directions for future
work.
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CHAPTER 2
Preliminaries

In this chapter, we introduce some necessary knowledge for the thesis. We first recall first-order
logic and computational complexity theory, and then we investigate two families of widely used
knowledge representation languages: (description logic based) ontologies and (Datalog with
negation) rules. Finally, we compare these two families of logics.

2.1 First-order Logic

First-order logic is the fundamental of all the logics used later in this thesis. There are many
introductions and textbooks for first-order logic; readers may refer to [Ros53; Bry+07; Rau09].

Definition 2.1 (First-order vocabulary and variable). A first order vocabulary is a pair (NP,NF)
of countably disjoint sets. The elements of NP are predicate symbols, usually denoted by p, q, r;
the elements of NF are called function symbols, denoted by f, g. Each predicate and function
is associated with a natural number, called arity. We assume NP contains two special 0-ary
predicates > and ⊥, called top and bottom.

We use a set NV of variables; the elements are usually denoted by x, y, z.

From variables and function symbols in the first-order vocabularies, we can construct first-
order terms, which are intuitively the objects we can model using first-order logic.

Definition 2.2 (First-order term). Given a first-order vocabulary (NP,NF) and a set of variables
NV, the set of (first-order) terms is inductively defined as follows:

(a) Variable x ∈ NV is a term;

(b) Function terms are of the form f(t1, . . . , tn), where f is a n-ary function symbol, and
t1, . . . , tn are terms. Note that 0-ary function term f(), which is usually called constant,
is normally abbreviated as f without parentheses.
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First-order formulas are built on the predicates and terms using connectives. They intuitively
model the assertions about the objects and their relations.

Definition 2.3 (First-order formula). Given a first-order vocabulary (NP,NF) and a set of vari-
ables NV, the set of first-order formulas is inductively defined as follows:

(a) Atomic formula. If p is a m-ary predicate, and t1, . . . , tn are terms, then p(t1, . . . , tm) is a
formula. When m = 0, p() is usually abbreviated as p.

(b) Negation. If α is a formula, then ¬α is a formula.

(c) Conjunction. If α1 and α2 are formulas, then α1 ∧ α2 is a formula.

(d) Disjunction. If α1 and α2 are formulas, then α1 ∨ α2 is a formula.

(e) Implication. If α1 and α2 are formulas, then α1 → α2 is a formula.

(f) Universal Quantification. If x is a variable, and α is a formula, then ∀xα is a formula.

(g) Existential Quantification. If x is a variable, and α is a formula, then ∃xα is a formula.

A first-order theory is a countable set of first-order formulas.
Propositional logic is a fragment of first-order logic, where predicates are restricted to be

0-ary predicates (also called propositional symbols), and without quantifications.
Sometimes, we assume that there is a “built-in” binary equality predicate =. In this case, we

usually abbreviate the formula = (x, y) as x = y, and ¬ = (x, y) as x 6= y.

Example 2.4. Peano axioms of natural numbers are a first-order theory [Men97, Chap 3], which
has a constant symbol 0, a unary function symbol s, and two binary function symbols add and
mul, and the equality predicate =. For readability, terms add(t1, t2) (resp. mul(t1, t2)) are
written as t1 + t2 (resp. t1 ∗ t2). Some of the axioms are as following:

∀x(x 6= s(x)) (2.1)

∀x∀y(s(x) = s(y)→ x = y) (2.2)

∀x(x+ 0 = x) (2.3)

∀x∀y(x+ s(y) = s(x+ y)) (2.4)

∀x(x ∗ 0 = 0) (2.5)

∀x∀y(x ∗ s(y) = x ∗ y + x) (2.6)

The intuition of the above theory is as follows: formulas (2.1) and (2.2) are about the prop-
erties of the function s (which is for the successor of a natural number), formulas (2.3) and (2.4)
inductively define the addition, and formulas (2.5) and (2.6) inductively define the multiplica-
tion.

Definition 2.5 (Subformula). The subformulas of a formula α are α itself and all subformulas
of immediate subformulas of α.

8



• Atomic formulas and > and ⊥ have no immediate subformulas.

• The only immediate subformula of ¬α is α.

• The immediate subformulas of (α1 ∧ α2) or (α1 ∨ α2) or (α1 → α2) are α1 and α2.

• The only immediate subformula of ∀xα or ∃xα is α.

Definition 2.6 (Scope). Let α be a formula, Q a quantifier, and Qxβ a subformula of α. Then
Qx is called a quantifier for x. Its scope in α is the subformula β except subformulas of β that
begin with a quantifier for the same variable x.

Each occurrence of x in the scope of Qx is bound in α by Qx. Each occurrence of x that is
not in the scope of any quantifier for x is a free occurrence of x in α.

The formal meaning of the first-order logic is defined by the first-order semantics, which is
given by interpretations and models.

Definition 2.7 (Variable assignment). Let D be a nonempty set. A variable assignment in D is
a function V mapping each variable to an element of D. We denote the image of a variable x
under an assignment V by xV .

Definition 2.8 (First-order Interpretation). Given a signature (NP,NF), an interpretation is a
triple I = (D, I, V ) where

• D is a nonempty set called the domain or universe (of discourse) of I .
Notation: dom(I) := D.

• I is a function defined on the symbols of (NP,NF) mapping

– each n-ary function symbol f ∈ NF to an n-ary function f I : Dn → D.
For n = 0 this means f I ∈ D.

– each n-ary predicate symbol p ∈ NP to an n-ary relation pI ⊆ Dn.
For n = 0 this means either pI = {} or pI = {()}.

Notation: fI := f I and pI := pI .

• V is a variable assignment in D.
Notation: xI := xV .

Notation 2.9. Let V be a variable assignment in D, let V ′ be a partial function mapping vari-
ables to elements of D, which may or may not be a total function. Then V [V ′] is the variable
assignment with

xV [V ′] =

{
xV
′

if xV
′

is defined,
xV otherwise.

Let I = (D, I, V ) be an interpretation. Then I[V ′] := (D, I, V [V ′]).
By {x1 7→ d1, . . . , xk 7→ dk} we denote the partial function that maps xi to di and is

undefined on other variables. In combination with the notation above, we omit the set braces
and write V [x1 7→ d1, . . . , xk 7→ dk] and I[x1 7→ d1, . . . , xk 7→ dk].
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Definition 2.10 (Tarksi, model relationship). Let I be an interpretation and α a formula. The
relationship I |= α, pronounced “I is a model of α” or “I satisfies α” or “α is true in I”, and
its negation I 6|= α, pronounced “I falsifies α” or “α is false in I”, are defined inductively:

• I |= p(t1, . . . , tn), if (tI1 , . . . t
I
n) ∈ pI ;

• I |= > ;

• I 6|= ⊥ ;

• I |= ¬α, if I 6|= α ;

• I |= α1 ∧ α2, if I |= α1 and I |= α2 ;

• I |= α1 ∨ α2, if I |= α1 or I |= α2 ;

• I |= ∃xα, if I[x 7→ d] |= α for at least one d ∈ D ;

• I |= ∀xα, if I[x 7→ d] |= α for each d ∈ D ;

An interpretation I is a model of theory S, if I is a model of all formulas in S.

Based on the models, the following reasoning tasks are defined:

• Satisfiability. A formula α is satisfiable if there exists a model for α.

• Validity. A formula α is valid if I |= α, for every interpretation I .

• Entailment. A formula α is entailed by a theory S, denoted S |= α , if I |= α for all the
models of the S.

These reasoning tasks can be reduced to each other. Let α be a formula, then

(1) α is satisfiable iff ¬α is not valid;

(2) α is unsatisfiable iff {α} |= ⊥;

(3) α is valid iff ¬α is not satisfiable;

(4) for every set S of formulas, S |= α iff S ∧ ¬α is not satisfiable.

Example 2.11. We show an interpretation I for formulas (2.1) to (2.6) of Peano axioms in
Example 2.4.

• Domain D = {1...1︸︷︷︸
n

| n ≥ 0}. We denote the element when n = 0 by ε.

• Constant 0I = ε.

• Functions sI(1...1︸︷︷︸
m

) = 1...1︸︷︷︸
m+1

, mulI(1...1︸︷︷︸
m

, 1...1︸︷︷︸
n

) = 1...1︸︷︷︸
mn

, addI(1...1︸︷︷︸
m

, 1...1︸︷︷︸
n

) = 1...1︸︷︷︸
m+n
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• Predicate (=I) = {(1...1︸︷︷︸
n

, 1...1︸︷︷︸
n

) | n ≥ 0}.

Indeed, the intuition of this interpretation is the unary encoding of natural numbers. It is
easy to verify that I is a model of formulas (2.1) to (2.6).

Finally we remark that first-order logic is very expressive, however it is not well-suited as a
practical knowledge representation language because of its high complexity. As we will see the
in the next section, first-order logic is even undecidable in general.

2.2 Computational Complexity

In this section, we recall the basic notions and results of computational complexity theory that
will be used in this thesis. The content of this section is based on the teaching materials used
in the lecture of Formal Methods in Computer Science1 and Complexity Theory2, by Reinhard
Pichler, in Vienna University of Technology. For more details about the complexity theory, there
are several excellent textbooks, e.g. the one by Christos H. Papadimitriou [Pap94].

Complexity theory focuses on analyzing the computational complexity of problems (not
algorithms). Here a problem is an infinite set of possible instances with a question. We are
particularly interested in the decision problems whose questions have only yes/no answers. For
example, in the problem of satisfiability of the first-order logic, the instances are all first-order
formulas, and the question is whether they are satisfiable.

2.2.1 Turing Machine

Turing Machine is a computational model which is widely accepted to be a universal model for
computation.

Definition 2.12. A deterministic Turing machine (DTM) is a quadruple M = (S,Σ, δ, s) with
a finite set of states S, a finite set of symbols Σ (alphabet of M ) so that , . ∈ Σ, a transition
function δ:

S × Σ→ (S ∪ {yes,no})× Σ× {−1, 0, 1},
an accepting state yes, a rejecting state no, and cursor directions: −1 (left), 0 (stay), and
+1 (right).

Let M be a DTM (S,Σ, δ, s0). The tape of M is divided into cells containing symbols of
Σ. There is a cursor that may move along the tape. At the start, M is in the initial state s0,
and the cursor points to the leftmost cell of the tape. An input string I is written on the tape as
follows: the first |I| cells c0, . . . , c|I|−1 of the tape, where |I| denotes the length of I , contains
the symbols of I , and all other cells contain .

The machine takes successive steps of computation according to δ. Namely, assume that M
is in a state s ∈ S and the cursor points to the symbol σ ∈ Σ on the tape. Let δ(s, σ) = (s′, σ′, d).

1Course website: http://www.logic.at/lvas/185291/
2Course website: http://www.dbai.tuwien.ac.at/staff/pichler/complexity/index.html
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Then M changes its current state to s′, overwrites σ′ on σ, and moves the cursor according to
d. Namely, if d = −1 or d = +1, then the cursor moves to the previous cell or the next one,
respectively; if d = 0, then the cursor remains in the same position. When any of the states yes
or no is reached, M halts. We say that M accepts the input I if M halts in yes. Similarly, we
say that M rejects the input in the case of halting in no.

Solving a decision problem amounts to deciding the language consisting of the encodings
of the yes instances of the problem. For instance, the language for the problem of satisfiability
of first-order logic is the set of all the satisfiable formulas. Given a set of symbols, a (formal)
language L is an (infinite) set of strings of symbols.

Definition 2.13. Let L ⊆ (Σ − {., })∗ be a language. A Turing machine M decides L iff
for every string x ∈ (Σ − {., })∗, the following conditions hold: if x ∈ L, M(x) = “yes”
and if x 6∈ L,M(x) = “no”. A language L is decidable, if L is decided by a Turing Machine;
otherwise, it is undecidable.

It is easy to see that the number of Turing machines is countable, so they can decide only
countably many languages. Since there are uncountably many languages, there must exist unde-
cidable languages. One famous undecidable language is first-order logic.

Theorem 2.14. The problem of deciding the satisfiability of formulas in first-order logic is un-
decidable.

In the definition of Turing machine, the computation is deterministic, as the transition of
status is a function. A variant of Turning machine is non-deterministic: at each step, there can
be many different possibilities for the next step.

Definition 2.15. A non-deterministic Turing machine (NTM) is a quadruple N = (K,Σ,∆, s)
like the ordinary Turing machine except that ∆ is a transition relation (rather than a transition
function):

∆ ⊆ (K × Σ)× [(K × {yes,no})× Σ× {−1, 0,+1}]

A tuple of a transition relation whose first two members are s and σ respectively, specifies
the action of the NTM when its current state is s and the symbol pointed at by its cursor is σ.
If the number of such tuples is greater than one, the NTM non-deterministically chooses any of
them and operates accordingly.

Unlike the case of a DTM, the definition of acceptance and rejection by an NTM is asym-
metric. We say that an NTM accepts an input if there is at least one sequence of choices leading
to the state yes; an NTM rejects an input if no sequence of choices can lead to yes.

2.2.2 Complexity Classes

Definition 2.16. A deterministic Turing machine M decides a language L in time f(n) iff M
decides L and for any x ∈ Σ∗ and k is the steps of deciding x by M , then k ≤ f(|x|).

Definition 2.17. A non-deterministic Turing machine N decides a language L in time f(n) iff
N decides L and for any x ∈ Σ∗ and k is the steps of deciding x by N , then k ≤ f(|x|).
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Definition 2.18. A time complexity class TIME(f(n)) (NTIME(f(n))) is the set of languages
L such that L is decided by a deterministic (non-deterministic) Turing machine in timeO(f(n)).

Definition 2.19. A space complexity class SPACE(f(n)) (NSPACE(f(n))) is the set of lan-
guages L such that L is decided by a deterministic (non-deterministic) Turing machine within
space O(f(n)).

Definition 2.20. Some of the important complexity classes are as follows:

P =
⋃
k∈N

(TIME(O(nk)))

NP =
⋃
k∈N

(NTIME(O(nk)))

PSPACE =
⋃
k∈N

(SPACE(O(nk)))

NPSPACE =
⋃
k∈N

(NSPACE(O(nk)))

EXPTIME =
⋃
k∈N

(TIME(O(2n
k
)))

NEXPTIME =
⋃
k∈N

(NTIME(O(2n
k
)))

2EXPTIME =
⋃
k∈N

(TIME(O(22n
k

)))

N2EXPTIME =
⋃
k∈N

(NTIME(O(22n
k

)))

Any complexity class C has its complementary class denoted by co-C and defined as follows.

Definition 2.21. For every language L in Σ∗, let L denote its complement i.e.L = Σ∗ \ L.
Then co-C is defined as co-C = {L | L ∈ C}.

2.2.3 Reductions

To classify languages to computational complexity classes, we need the notion of reduction.

Definition 2.22. Let L1 and L2 be decision problems (i.e., languages over some alphabet Σ).
A reduction from language L to L′ is a function f : Σ∗ → Σ∗ , s.t. x ∈ L iff f(x) ∈ L′.
We are interested in reduction can be computed computed efficiently, e.g. in polynomial time or
logarithm space. The language L can be (polynomially) reduced to L′, denoted L ≤ L′, if there
exists a (polynomial) reduction. In the following of this thesis, we assume all the reductions are
polynomial, unless otherwise stated.
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Definition 2.23. Let C be a complexity class and let L be a language in C. Then L is C-complete
if for every L′ ∈ C, L′ ≤ L. A language L is called C-hard if any language L′ ∈ C is reducible
to L.

The complexity classes in Definition 2.20 form the following hierarchy:

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆ 2EXPTIME ⊆ N2EXPTIME

In the bottom of this hierarchy, it is the important class P. It is generally accepted that P is
the tractable class and the problems in P can be solved efficiently. In contrast, NP is believed
to be intractable and the problems in NP (and beyond NP) can not be solved very efficiently
in theory. The problem that whether P = NP holds is a very important open issue in computer
science.

2.2.4 Oracle Turing Machine and Polynomial Hierarchy

A Turing Machine can invoke another Turing machine, called Oracle Turing Machine, as a sub
module. For any time complexity class C and oracle A (where A is either a problem or a class of
problems) we write CA for the problems which can be decided by a TM within the time bound
of C, where the TM is allowed to use an oracle for (any problem in the class) A.

Definition 2.24. The polynomial hierarchy is a sequence of classes:

• ∆P
0 = ΣP

0 = ΠP
0 = P,

• For i ≥ 0: ∆P
i+1 = PΣP

i ,ΣP
i+1 = NPΣP

i ,ΠP
i+1 = co-NPΣP

i ,

• Cumulative polynomial hierarchy: PH =
⋃
i≥0 Σp

i .

The classes in polynomial hierarchy have the following relation.

P ⊆ ΣP
1 (= NP)

ΠP
1 (= co-NP)

⊆ ∆P
2 ⊆

ΣP
2

ΠP
2

⊆ ∆P
3 ⊆

ΣP
3

ΠP
3

⊆ · · · ⊆ PH.

2.3 Description Logics and OWL

Description Logics (DLs) are a family of KR formalisms underpinning the Web Ontology Lan-
guage (OWL). DLs are decidable, but yet expressive fragments of first-order logic. The syntax
of DLs only uses predicate names and constants, but not variables, which can be seen as a syntax
sugar for the corresponding fragment of first-order logics.

2.3.1 Expressive Description Logics

We start with the “basic” description logic ALC (Attributive Language with Complement).

Definition 2.25 (DL Vocabulary). A DL vocabulary V is a triple (NC,NR,NI) where NC is a set
of concept names, NR a set of role names, and NI a set of individual names.
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Constructor description

> top concept
⊥ bottom concept
A concept names

C1 u C2 conjunction
C2 t C2 disjunction
¬C1 negation (complement)
∀R.C1 universal quantification
∃R.C1 existential quantification

Table 2.1: concept expressions in ALC

In the literature, concept (role) names are also known as atom concepts (roles). In OWL 2
specification, concepts and roles are called classes and properties respectively.

In ALC, concept expressions can be built by conjunction, disjunction, negation, universal
quantification, and existential quantification. Formally, the constructors in ALC are listed in
Table 2.1.

Intuitively, individuals are objects or instances; concepts are unary predicates about the ob-
jects; and roles are binary predicates modeling the relations between objects. The concepts are
either (1) concept names or (2) complex concept expressions.

Note that ∀R.> (resp. ∃R.>) can be abbreviated to ∀R (resp. ∃R).

Example 2.26. Let NC = {Male,Female,Person,Student ,Professor},NR = {hasChild}.
For instance, we can build the following concepts:

Concept Intended meaning
Male u Person male person
Student t Professor student or professor
Student u (¬Male) non-male student
Male u Person u ∃hasChild .Person male person who has a child which is a person
Female u Person u ∀hasChild .Female Female person whose children are all female

DLALC allows us to express the assertions about individuals and relations between concepts
in the following forms:

(1) C(a): a is a instance of C,

(2) R(a, b): a and b are related by R,

(3) C v D: C is a subconcept of D,

(4) C ≡ D: C is equivalent to D.

Axioms of the form (1) and (2) are called assertion axioms; axioms of the form (3) and (4)
are called terminological axioms. A set of assertion axioms is called assertion box (ABox), and
a set of terminological axioms is called terminological box (TBox). An ontology O is a pair
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john

Male, Person

mary

Female, Person

sam

Male, Person

alice

Female, Person

jim

Male, Person

hC hP

hC

hP

hC hP

hP

hC

couple

couple

hC=hasChild, hP=hasParent

Figure 2.1: Family Tree

(T ,A) where T is a TBox and A is a ABox. We say O is in ALC if all the axioms are ALC
axioms.

Example 2.27. The following ontology Of = (Tf ,Af ) is an ALC ontology for family relation.

Tf =



Father ≡ Male u Person u ∃hasChild .Person,

Mother ≡ Female u Person u ∃hasChild .Person,

Son ≡ Male u Person u ∃hasParent .Person,

Daughter ≡ Female u Person u ∃hasParent .Person,

Person v ∃hasParent .(Male u Person)

Person v ∃hasParent .(Female u Person)

Male v ¬Female

Person v ∀hasChild .Person


Af =


Person(john). Person(mary). Person(alice). Person(sam). Person(jim).

Male(john). Female(mary). Female(alice). Male(sam). Male(jim).

hasChild(john, sam). hasChild(john, jim). hasChild(mary , sam).

hasChild(mary , jim). couple(john,mary). couple(alice, sam)


Semantics

The semantics of ALC is the standard first-order semantics defined by interpretations I.

Definition 2.28. An interpretation I is a pair (∆I , ·I) where ∆I is set called domain, and ·I is
a function from NI to ∆I , such that:
• aI ∈ ∆I ;
• AI ⊆ ∆I ;
• RI ⊆ ∆I ×∆I ;
• (C1 u C2)I = CI1 ∩ CI2 ;
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Mapping Concepts to FOL
πy(>, X) = >
πy(⊥, X) = ⊥
πy(A,X) = A(X)
πy(¬C,X) = ¬πy(C,X)

πy(C uD,X) = πy(C,X) ∧ πy(D,X)
πy(C tD,X) = πy(C,X) ∨ πy(D,X)
πy(∀R.C,X) = ∀y : R(X, y)→ πx(C, y)
πy(∃R.C,X) = ∃y : R(X, y) ∧ πx(C, y)

πy(≤ nR.C,X) = ∀y1, . . . , yn+1 :
∧n+1
i=1 [R(X, yi) ∧ πx(C, yi)]→

∨n+1
i=1

∨n+1
j=i+1 yi 6≈ yj

πy(≥ nR.C,X) = ∃y1, . . . , yn :
∧n+1
i=1 [R(X, yi) ∧ πx(C, yi)] ∧

∧n+1
i=1

∧n+1
j=i+1 yi 6≈ yj

πx({a}) = (x ≈ a)
∃S.Self = S(x, x)

Mapping Roles to FOL
πx,y(S) = S(x, y)

πx,y(R
−) = πy,x(R)

πx,y(R1 ◦ · · · ◦Rn) = ∃x1, . . . , xn−1 (πx,x1(R1)) ∧∧n−2
i=1 πxi,xi+1(Ri+1) ∧ πxn−1,y(Rn)

Mapping Axioms to FOL
π(C vD) = ∀x : πy(C, x)→ πy(D,x)
π(C ≡ D) = ∀x : πy(C, x)↔ πy(D,x)
π(Rv S) = ∀x : πx,y(R)→ πx,y(S)

π(Trans(R)) = ∀x, y, z : R(x, y) ∧R(y, z)→ R(x, z)
π(C(a)) = πy(C, a)

π(R(a, b)) = R(a, b)
π(¬S(a, b)) = ¬S(a, b)

π(a ◦ b) = a ◦ b for ◦ ∈ {≈, 6≈}
π(Ref(R)) = (∀x)πx,x(R)
π(Asy(R)) = (∀x)(∀y)πx,y(R)→ ¬πy,x(R)

π(Dis(R1, R2)) = ¬(∃x)(∃y)(πx,y(R1) ∧ πx,y(R2))

Mapping Ontology O = (T ,A,R) to FOL
π(R) = ∀x, y : R(x, y)↔ R−(y, x)
π(R) =

∧
α∈R ∧

∧
R∈NR

π(R)

π(T ) =
∧
α∈T

π(A) =
∧
α∈A

π(O) = π(R) ∧ π(T ) ∧ π(A)

Table 2.2: Semantics of SROIQ by Mapping to FOL
Notes:
(1) X is a meta-variable and is substituted by the actual term;
(2) πx is obtained from πy by simultaneously substituting in the definition all y(i) with x(i), πy

with πx, and vice versa.
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• (C1 t C2)I = CI1 ∪ CI2 ;
• (¬C1)I = ∆I \ CI1 ;
• (∃R.C)I = {x | there exists y0 ∈ ∆I , such that (x, y0) ∈ RI and y0 ∈ CI} ;
• (∀R.C)I = {x | if (x, y) ∈ RI then y ∈ CI} .
The satisfiability of an axiom α w.r.t an interpretation I is defined as follows:
• I |= C(a), if aI ∈ CI ;
• I |= R(a, b), if (aI , bI) ∈ RI ;
• I |= C v D, if CI ⊆ DI ;
• I |= C ≡ D, if CI = DI .
An axiom (resp. TBox, ABox, ontology) is satisfiable (or consistent) if it is satisfiabile w.r.t

some interpretation I.

Note that often Description logics are said to be fragments of first-order logic with equality.
There is a translation of SROIQ (logic underpinning OWL 2 DL) into first-order logic shown
in Table 2.2 which is equivalent to the above definition.

Example 2.29. If1 = (∆If1 , ·If1 ) is an interpretation for ontology Of in Example 2.26.
The domain is natural numbers: ∆If1 = N.
Interpretation of individuals:

johnIf1 = 1 maryIf1 = 2 aliceIf1 = 3 samIf1 = 4 jimIf1 = 5

Interpretation of concepts:

PersonIf1 = {1, 2, 3, 4, 5} ∪ {11, 12, 111, 112, 121, 122, 1111, 1112, . . . , }
∪ {21, 22, 211, 212, 221, 222, . . .}
∪ {31, 32, 311, 312, 321, 322, . . .}

MaleIf1 = {1, 4, 5} ∪ {11, 111, 121, 1111, 1121, . . .}
∪ {21, 211, 221, 2111, 2121, . . .}
∪ {31, 311, 321, 3111, 3121, . . .}

FemaleIf1 = {2, 3} ∪ {12, 112, 122, 1112, 1122, . . .}
∪ {22, 212, 222, 2112, 2122, . . .}
∪ {32, 312, 322, 3112, 3122, . . .}

SonIf1 = MaleIf1

DaughterIf1 = FemaleIf1

FatherIf1 = {1}
MotherIf1 = {2}
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Interpretation of roles:

hasChildIf1 = {(1, 4), (2, 4), (1, 5), (2, 5)}
hasParentIf1 = {(4, 1), (4, 2), (5, 1), (5, 2)}

∪ {(1, 11), (1, 12), (12, 121), (12, 122), . . .}
∪ {(2, 21), (2, 22), (22, 221), (22, 222), . . .}
∪ {(3, 31), (3, 32), (32, 321), (32, 322), . . .}

Logical entailment an axiom α is a logical entailment of an ontology O, if for all the in-
terpretations of O are also interpretations of α. In other words, models of α are a superset of
models of O.

Beyond the basic constructors inALC, there are more constructors for exprssive description
logics. We list all the concept constructors and axioms of SROIQ in Table 2.3. Note that
these features are not completely independent. For instance, unqualified number restriction N
is a special case of qualified number restriction Q. These constructors can be combined to
form fragments of description logics. By convention, ALC with transitivity(+) is abbreviated
as S . Some common combinations are: SHIF (logic underpinning OWL Lite), SHOIN
(underpinning OWL 1), SROIQ (underpinning OWL 2).

For decidability, some syntax restrictions have to be applied on the expressive description
logics.

(1) In SHIQ (and all DLs containing SHIQ), in any qualified number restriction ≥ nR.C
and ≤ nR.C, role R has to be restricted to simple roles, that is R cannot have transitive sub
roles.

(2) In SROIQ, complex role inclusion axioms are restricted to the regular ones [HKS06].
Regularity prevents a role hierarchy from containing cyclic dependencies that may lead to
undecidablity.

Reasoning Tasks

Now we are ready to talk about some reasoning tasks in ALC (and in general DLs).

• Satisfiability (or consistency). Given an ontology L, determine whether there exists an
interpretation for L.

• Ground instance query. Given an ontology L and an assertion C(a), determine whether
L |= C(a) holds.

• Instance query. Given an ontogeny L and a concept C, compute all the instances x such
that L |= C(x).

• Subsumption checking. Given an ontology L and an assertion C v D, determine whether
L |= C v D holds.
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• Classification. Given an ontology L, compute all pairs of atomic concepts (A,B) such
that L |= A v B holds.

Note that all of the above reasoning tasks can be reduced to the (un)satisfiability [HP04a].

Example 2.30. Reconsider the ontology Of in Example 2.26. Clearly, Of is satisfiable. It
is easy to check that Of |= Father v Son , Of |= Son v Male , Of |= Son(sam), Of |=
Son(john), and Of |= Father(john) hold.

Sometimes we are interested in the interpretations which assign different meanings to dif-
ferent individuals. Formally, an interpretation I is under unique name assumption (UNA), if
aI 6= bI holds for all a 6= b ∈ NI.

Queries over Description Logics A query is an open formula of first-order logic (FOL) with
equalities. Formally, a FOL query q is an expression of the form

{X | φ(X) },

where φ(X) is a FOL formula with free variables X. We call the size of X the arity of the
query q. Given an interpretation I, qI is the set of tuples of domain elements that, when assigned
to the free variables, make the formula φ true in I.

A conjunctive query (CQ) q is a query of the form

{X | ∃Y.conj(X,Y)} ,
where conj(X,Y) is a conjunction of atoms and equalities, with free variables X and Y. Some-
times, we use the standard Datalog notation

q(X)← conj(X,Y).

Similarly, a union of conjunctive queries (UCQ) q is a query of the formX |
∨

i=1,...,n

∃Yi.conji(X,Yi)

 ,

where each conji(X,Yi) is, as before, a conjunction of atoms and equalities with free variables
X and Yi. A UCQ q can also be expressed in the standard Datalog notation as

q(X)← conj1(X,Y1).

q(X)← conj2(X,Y2).

. . .

q(X)← conjn(X,Yn).

Given a query q (either a CQ or a UCQ) and an ontology L, the answer to q over L is the set
ans(q, L) of tuples a of constants appearing in L such that aI ∈ qI , for every model I of L.
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Syntax Semantics

Concept constructors

Top > >I = ∆I

Bottom ⊥ ⊥I = ∅
Atomic concepts A AI ⊆ ∆I

Negation (C) ¬C (¬C)I = ∆I \ CI

Existential quant. ∃R.C (∃R.C)I = {x | there is y0 ∈ ∆I , s.t. (x, y0) ∈ RI ∧ y0 ∈ CI}
Universal quant. ∀R.C (∀R.C)I = {x | if (x, y) ∈ RI then y ∈ CI}
Unqualified number ≤ nR.> (≤ nR.>)I = {x | #{x | (x, y) ∈ RI} ≤ n}

restrictions (N ) ≥ nR.> (≥ nR.>)I = {x | #{x | (x, y) ∈ RI} ≥ n}
Functionality (F) ≤ 1.R (≤ 1R)I = {x | #{x | (x, y) ∈ RI} ≤ 1}
Qualified number ≤ nR.C (≤ nR.C)I = {x | #{x | (x, y) ∈ RI , y ∈ CI} ≤ n}

restrictions (Q) ≥ nR.C (≥ nR.C)I = {x | #{x | (x, y) ∈ RI , y ∈ CI} ≥ n}
Nominals (O) {o1, . . . , ok} {o1, . . . , ok}I = {oI1 , . . . , oIk}
Self ∃R.Self (∃R.Self)I = {x | (x, x) ∈ RI}
Role Constructors

Atomic roles R RI ⊆ ∆I ×∆I

Inverse roles (I) R− (R−)I = {(x, y) | (y, x) ∈ RI}
ABox Axioms

Concept assertions C(a) aI ∈ CI

Role assertions R(a, b) (aI , bI) ∈ RI

TBox Axioms

Concept subsumption C vD CI ⊆ DI

RBox Axioms

Role hierarchy (H) R1 v R2 RI1 ⊆ RI2
Role transitivity (+) trans(R) RI ◦RI = RI

Complex role R ◦ S v R RI ◦ SI ⊆ SI
inclusion (R) S ◦R v R SI ◦RI ⊆ SI

Table 2.3: Syntax and semantics of Description Logic SROIQ

Language Combined complexity Data complexity

ALC EXPTIME-complete NP-complete
SHIF EXPTIME-complete NP-complete
SHIQ EXPTIME-complete NP-complete
SHOIN NEXPTIME-complete NP-hard
SROIQ N2EXPTIME-complete NP-hard

Table 2.4: Computational Complexity of Expressive DLs
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Complexities

The computational complexity of DLs are well studied. There are two settings used for com-
plexity in description logics: (1) combined complexity, which takes all the components in the
ontology as inputs, and (2) data complexity, which fixes the TBox and RBox and only considers
ABox as inputs. We summarize some complexity results of satisfiability checking from [Kaz08]
in Table 2.4. For more results, Evgeny Zolin maintains an extensive list for reference3.

2.3.2 Lightweight Description Logics

We have seen that reasoning in expressive DLs is intractable (Table 2.4). To tackle the high
complexity, apart from optimizing the reasoning algorithm for expressive DLs, researchers also
identified lightweight fragments of DLs which have low complexity and are still expressive
enough in many applications. These lightweight logics include DL-Lite family (underpinning
OWL 2 QL), EL family (underpinning OWL 2 EL), and DLP (underpinning OWL 2 RL). For
all these OWL 2 profiles, see [Mot+12].

DL-Lite family and OWL 2 QL

Consider a vocabulary of individual names NI, atomic concepts NC, and atomic roles NR. Then,
for A and P being an atomic concept and atomic role, respectively, we define basic concepts B
and basic roles R, complex concepts C and complex role expressions E as

B ::= A | ∃R C ::= B | ¬B
R ::= P | P− E ::= R | ¬R

where P− is the inverse of P .
In DL-Litecore, TBox T consists of a finite set of inclusion assertions of the form B v C.

DL-LiteR additionally allow R v E. As usual, a DL-Lite ontology O = (T ,A) is pair of a
TBox T and an ABox A.

The main reasoning task in DL-Lite is conjunctive query answering. Answering CQ over
DL-Lite ontologies can be done by query rewriting [Cal+07]: given a DL-Lite TBox T , the
CQ q over T can be rewritten to a UCQ QT , such that ans(q, (T ,A)) = ans(QT ,A) for
any ABox A. Recall that in plain database, conjunctive query is AC0 complete under data
complexity [AHV95]. Therefore, DL-Lite also enjoys this attractive low data complexity for
conjunctive queries.

EL family and OWL 2 EL

According to W3C OWL 2 Profiles [Mot+08], the OWL 2 EL profile is designed as a subset
of OWL 2 that is particularly suitable for applications employing ontologies that define very
large numbers of classes and/or properties, captures the expressive power used by many such
ontologies, and for which the reasoning tasks can be done in polynomial time.

3http://www.cs.man.ac.uk/~ezolin/dl/
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OWL 2 EL is based on the family of EL logics, which includes EL, EL+, EL++ and SROEL(u,×)
[BBL05; BBL08; Krö11]. We recall SROEL(u,×) as it is the most expressive logic in the EL
family.

Consider a vocabulary (NI,NC,NR), for A and P being an atomic concept and atomic role,
respectively, the set C of SROEL(u,×) concepts is given as

C ::= > | ⊥ | NC | C uC | ∃NR.C | ∃NR.Self | {NI}.
Concepts are interpreted as sets: >/⊥ as the whole/empty set, conjunctions u as a set in-

tersection, and existential restrictions as sets of individuals with some particular role successor.
Nominals {a} encode singleton sets. Now a SROEL(u,×) axiom can be an assertion C(a) or
R(a, b), a general concept inclusion C v D, or a role inclusion of one of the forms R v T ,
R ◦ S v T , R u S v T , C ×D v T , R v C ×D where C,D ∈ C, R,S, T ∈ NR , a, b ∈ NI.
SROEL(u,×) ontologies are sets of SROEL(u,×) axioms that satisfy some additional

properties regarding simplicity or roles and admissibility of range restrictions. Entailment of
SROEL(u,×) is defined model theoretically, as usual.

DLP and OWL 2 RL

Description Logic Programs (DLPs) were proposed as the intersection of Description Logics
and Horn rules [Gro+03]. The syntax is defined by distinguishing concepts in the head (Ch)
and concepts in the body (Cb): Consider a vocabulary (NI, NC, NR). Then, for A and P being
an atomic concept and atomic role, respectively, we define roles R, head concepts Ch and body
concepts Cb:

R ::= P | P−
Ch ::= Ch u Ch | ∀R.Ch | A | ⊥ | >
Cb ::= Cb u Cb | Cb t Cb | ∃R.Cb | A | ⊥ | >

Then TBox axioms in DLP are of the form Cb v Ch or R1 ◦ · · · ◦Rn v R.
DLP is the logic basis of OWL 2 RL that is aimed at applications that require scalable

reasoning without sacrificing too much expressive power [Mot+08]. OWL 2 RL is designed
to accommodate OWL 2 applications that can trade the full expressivity of the language for
efficiency, as well as RDF(S) applications that need some added expressivity. Furthermore,
OWL 2 RL reasoning systems can be implemented using rule-based reasoning engines.

2.3.3 Practical Considerations

Based on the strong theoretical foundation of description logics, the Semantic Web community
puts tremendous efforts on realizing the automatic reasoning, resulting in

(1) RDF(S), OWL, SPARQL, and RIF specifications as W3C recommendations,

(2) programming tools and application programming interfaces (APIs) for manipulating DL
based ontologies and interface to reasoning engines,
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(3) and many reasoning engines for various fragments of description logics and OWL.

(1) W3C Recommendations

RDF The Resource Description Framework (RDF) is a standard model for data interchange
on the Web [MM04]. An RDF knowledge base is a collection of triples of the form (s, p, o),
which means that s and o is related by p. When p is the special role rdf:type, the triples
(s,rdf:type, o) means that s is an instance of o.

RDFS The RDF Schema (RDFS) is a semantic extension of RDF [BG04]. More built-in prop-
erties (e.g., rdfs:range, rdfs:domain, rdfs:subClassOf, and rdfs:subPropertyOf) are de-
fined in RDFS. These properties correspond to the DL axioms as shown in Table 2.5.

OWL The OWL Web Ontology Language (latest version OWL 2), is an ontology language for
the Semantic Web with formally defined meaning [Gro12]. OWL 2 ontologies provide classes,
properties, individuals, and data values.

In practice, a concrete syntax is needed in order to store OWL 2 ontologies and to exchange
them among tools and applications. The primary exchange syntax for OWL 2 is RDF/XML,
which is compatible with XML serializations of RDF documents, and is indeed the only syntax
that must be supported by all OWL 2 tools. There are also other concrete syntaxes that may
also be used. These include alternative RDF serializations, such as Turtle; OWL/XML as an
XML serialization; and a more “readable” syntax, called the Manchester syntax used in several
ontology editing tools. Finally, the functional-style syntax can also be used for serialization,
although its main purpose is specifying the structure of the language.

There are two alternative semantics for OWL: the direct semantics [MPG12] (informally
OWL 2 DL) and the RDF-based semantics [Sch12] (informally OWL 2 Full). In this thesis we
are only interested in the direct semantics as it is compatible with the model theoretic semantics
of the description logic SROIQ. The advantage of this close connection is that the extensive
description logic literature and implementation experience can be directly exploited by OWL 2
tools. In contrast, the RDF-based Semantics assigns meaning directly to RDF graphs.

SPARQL SPARQL 1.1 is a set of specifications that provide languages and protocols to query
and manipulate RDF graph content on the Web or in an RDF store [Gro13]. SPARQL Entailment
Regimes defines the semantics of SPARQL queries under entailment regimes such as RDFS and
OWL [GO13].

RIF The Rule Interchange Format (RIF) is a W3C recommendation [KB13], which is an XML
language for rules.
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RDF(S) triple DL Axiom

a rdf:type C C(a)
R rdfs:range C > v ∀R.C
R rdfs:domain C ∃R.> v C
C rdfs:subClassOf D C v D
R rdfs:subPropertyOf S R v S

Table 2.5: RDF(S) triples and DL Axioms

(2) Programming Tools

The semantic web community developed many programming tools4. In particular, there are
several APIs for RDF, OWL, and SPARQL; we briefly describe some of them below.

OWL API OWL API5 is now the de facto Java library for OWL [HB11], which is an API
for OWL 2 and an efficient in-memory reference implementation. It also implements parsers
and writers for OWL in several formats, e.g., RDF/XML, OWL/XML parser, OWL Functional
Syntax, Turtle, KRSS parser, and OBO Flat file format. Finally, it provides a reasoner interface
that is supported by many DL reasoners such as FaCT++, HermiT, Pellet and Racer.

Jena API Jena6 is also a widely used API which focuses on RDF(S) and SPARQL [Car+04].
It is an API for reading, processing and writing RDF data in XML, N-triples and Turtle formats
and an ontology API for handling OWL and RDFS ontologies. As a query engine, it is compliant
with the latest SPARQL 1.1 specification.

Protégé-OWL API Protégé is a popular free, open source ontology editor and knowledge-base
framework7. The Protégé-OWL API is an open-source Java library for the OWL and RDF(S).
The API provides classes and methods to load and save OWL files, to query and manipulate
OWL data models, and to perform reasoning. Furthermore, the API is optimized for the imple-
mentation of graphical user interfaces. Protégé-OWL API is built on top of OWL API.

(3) OWL Reasoners

Designing efficient algorithms for DLs and implementing them in OWL reasoners are central
central tasks in the DL and OWL Community. A comprehensive list8 of reasoners is maintained
by Uli Sattler at the University of Manchester. Moreover, there is a dedicated OWL Reasoner
Evaluation Workshop (ORE) for OWL reasoner competition.

4http://www.w3.org/2001/sw/wiki/Category:Tool
5http://owlapi.sourceforge.net/
6http://jena.apache.org/
7http://protege.stanford.edu/
8http://www.cs.man.ac.uk/~sattler/reasoners.html
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We describe some well-known reasoners below, focusing on the expressivity, supported API,
underlying algorithm, and we will also give some further remarks.

(3.1) Reasoners for expressive DLs

Pellet Pellet9 fully supports OWL 2 DL and DL-safe SWRL rules [Sir+07]. It can be used
with OWL API, Jena API, proprietary Pellet API, Protégé and command line interface (CLI).
The underlying algorithm is tableau-based and Pellet is fully implemented in Java. It is open-
source under AGPL Version 3, and also under alternative commercial incenses.

HermiT HermiT is an OWL 2 compliant reasoner10 and supports DL-safe SWRL rules. It can
be used with OWL API, Protégé, and command line interface (CLI). The system is based on a
novel “hypertableau” calculus[MSH09]. It is open-source and released under LGPL.

KAON2 KAON211 is a reasoner for SHIQ(D), DL-safe SWRL and function free F-Logic.
It can be used with its proprietary KAON2 Java API and CLI. The system reduces a SHIQ(D)
ontology to a disjunctive datalog (Datalog∨) program, and applies the magic set optimiza-
tion [HMS04]. It is geared towards efficient ABox reasoning for ontologies with large ABoxes.

RacerPro RacerPro12 is a commercial reasoner that implements an optimized tableau calculus
for SHIQ [Haa+12]. It offers reasoning services for multiple TBoxes and for multiple ABoxes
as well. RacerPro provides another query language (nRQL, new Racer Query Language), which
also supports negation as failure, numeric constraints w.r.t. attribute values of different individ-
uals, substring properties between string attributes, etc. It can be used with DIG and CLI.

(3.2) EL Reasoners

The dedicated EL reasoners are usually for classifying large TBox by a polynomial algorithm.

CEL CEL13 is the first dedicated reasoner for classification of EL ontologies [MS09]. The
main module is implemented in Common Lisp. CEL supports OWL API and can be used with
Protege. A Java port of CEL is implemented in the JCEL Project14.

ELK ELK15 currently supports a part of the OWL 2 EL ontology language [KKS11]. The
primary goal of ELK is high performance in standard reasoning tasks, which is achieved by
using efficient consequence-based reasoning algorithms that have been further enhanced to take
advantage of modern multi-core processors.

9http://clarkparsia.com/pellet/
10http://www.hermit-reasoner.com/
11http://kaon2.semanticweb.org/
12http://www.racer-systems.com/products/racerpro/
13https://code.google.com/p/cel/
14http://jcel.sourceforge.net/
15https://code.google.com/p/elk-reasoner
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(3.3) DL-Lite Reasoners

Most of DL-Lite reasoners are aiming for efficient query answering over OWL 2 QL (DL-Lite)
ontologies via query rewriting. They accept a TBox and a conjunctive query (usually in SPARQL
format or Datalog-like format) and produce the rewritten queries in UCQs or Datalog.

The systems QuOnto16 [Acc+05], OWLGres [SS08], Nayaya [Dra+09a], Iqaros17 [VSS12]
produce UCQs by (optimized) PerfectRef algorithm; Requiem18 [PHM09] implements a res-
olution based algorithm similar to KAON2 and produces UCQs or Datalog depending on the
expressivity of the TBox; the systems Presto [RA10] and Prexto [Ros12] produce non-recursive
Datalog.

Ontop19 is a platform to query databases as virtual RDF graphs using SPARQL [RKZ13],
which mainly contains two components Quest and ontopPro. Quest is the SPARQL engine
supports the OWL 2 QL and RDFS entailment regimes [RC12]; ontopPro is the plugin for
Protege.

(3.4) RL Reasoners

RL reasoners are usually used for reasoning in OWL 2 RL and RDF graphs using rules.

Jena Jena API implements a rule-based inference engine for reasoning with RDF and OWL
data sources, but may be incomplete for OWL 2 in case of disjunction or negation. It is complete
for a practical subset of OWL 2 RL.

BaseVISor BaseVISor20 is a forward-chaining inference engine specialized to handle facts in
the form of RDF triples with support for OWL 2 RL and XML Schema Datatypes.

Oracle Database The native RDFS/OWL inference engine in Oracle Database 11g21 version
supports most of the RL/RDF rules. User-defined rules are supported as well.

2.4 Datalog Family and Logic Programming

Logic programming is a large family of rule-based knowledge representation languages. The
research of logic programming starts from the Prolog language [War77; Llo87; Kow88], which
is later standardized by ISO [ISO95; ISO00] and implemented in several systems, e.g. SWI-

16http://www.dis.uniroma1.it/quonto/
17https://code.google.com/p/iqaros/
18http://www.cs.ox.ac.uk/isg/tools/Requiem/
19http://ontop.inf.unibz.it
20http://www.vistology.com/basevisor/basevisor.html
21http://www.oracle.com/technetwork/database-options/spatialandgraph/overview/

rdfsemantic-graph-1902016.html
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Prolog22, Sicstus Prolog23, GNU Prolog24, and XSB25. Normally, Prolog programs are evaluated
by SLD resolution and backtracking [Llo87], which is sensitive to the order of the atoms in the
rules and the order of rules in the programs, and thus not fully declarative. Even worse, for some
“bad” programs, e.g. p← not p, the evaluation does not terminate.

To achieve the full declarativity, researchers developed a family of Datalog languages. Syn-
tactically, Datalog programs are essentially the function-free fragments of Prolog programs. The
main difference is from the semantics perspective: Datalog and its variants are based on fully
declarative model-based semantics, and terminate in general. In this section, we will briefly
recall the syntax, semantics and computational complexity of Datalog family, and show how
they can be used in practice. Readers may refer to [AHV95; Bar02; EIK09; Fab13] for more
extensive introductions.

2.4.1 Syntax

Let (NP,NC) be a function-free first-order vocabulary, consisting of the nonempty finite sets of
predicates NP, constants NC, and let NV be a set of variables. A term is either a constant from
NC or a variable from NV. An atom is defined as p(t1, . . . , tn), where p ∈ NP, each t1, . . . , tn
is a term, and n is called the arity of p. A classical literal is a positive (resp. negative) atom a
(resp. ¬a). A negation-as-failure (NAF) literal is a literal a or a default-negated literal not a. A
rule r is of the form:

a1 ∨ . . . ∨ as ← b1, . . . , bk, not bk+1, . . . , not bm, m ≥ k ≥ 0, s ≥ 0, (2.7)

where a1, . . . , al, b1, . . . , bm are literals. We refer to {a1, . . . , as} as the head of r, denoted
H(r), while the conjunction b1, . . . , bk, not bk+1, . . . , not bm is the body of r. We defineB(r) =
B+(r)∪B−(r), whereB+(r) = {b1, . . . , bk} denoted the positive part andB−(r) = {bk+1, . . . , bm}
denoted the negative part of r. We say that

(a) r is a fact if s = 1 and m = 0. By convention, fact rules can be written as “a.”.

(b) r is deterministic (disjunction free) if s = 1;

(c) r is positive (negation free) if k = m;

(d) r is a Datalog rule if it is both positive and disjunction free.

A Datalog¬,∨ program program P is a finite set of rules of the form 2.7. Furthermore, we
say that

(a) P is a Datalog program if all rules in P are Datalog rules;

(b) P is a Datalog¬ program if all rules in P are deterministic;

22http://www.swi-prolog.org/
23http://sicstus.sics.se
24http://www.gprolog.org/
25http://xsb.sourceforge.net/
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(c) P is a Datalog∨ program if all rules in P are positive;

Example 2.31. The following program Pg models the reachability in a graph

reach(X,Y )← edge(X,Y ).

reach(X,Y )← reach(X,Z), edge(Z, Y ).

and facts about some edges in a graph:

edge(1, 2). edge(2, 3). edge(3, 4). edge(5, 6).

Among Datalog¬ programs, stratified programs use restricted negations.

Definition 2.32 (Stratification). Let S be a set of Datalog¬ rules. A stratification of S is a
partition S0, . . . , Sk of S such that

• For each relation symbol p there is a stratum Si, such that all clauses of S containing p in
their heads are members of Si. In this case one says that the relation symbol p is defined
in stratum Si.

• For each stratum Sj and for each positive literal A in the antecedents of members of Sj ,
the relation symbol of A is defined in a stratum Si with i ≤ j.

• For each stratum Sj and for each negative literal ¬A in the antecedents of members of
Sj , the relation symbol of A is defined in a stratum Si with i < j.

A set of Datalog¬ rules is called stratified, if there exists a stratification of it; A Datalog¬

program is stratified, if the set of its rules is stratified.

2.4.2 Semantics

Many semantics for Datalog¬,∨ programs are proposed in the literature (see [EIK09] for a sur-
vey). For simplicity, we first recall the semantics for the programs with only positive literals
(so-called general logic programs in [Llo87]). These semantics can be naturally extended to
programs with negative literals [GL91].

Given a program P and a vocabulary (NP,NC), the Herbrand base HBP is the set of all
atoms with predicates from NP and constant symbols from NC. When the vocabulary is not
explicitly stated, we assume that NP and NC are all the predicates and constants occuring in the
program P .

A term (atom, literal) is grounded if there is no variables inside. A ground instance of a rule
r is obtained by replacing all the variables with some constants. We denote by gr(P ) the set of
all ground instances of rules in P (relative to HBP ). A program is ground, if all of its rules are
ground; ground Datalog programs are also called propositional logic programs .

A (Herbrand) interpretation I is a subset of of Herbrand base. An interpretation I is a model
of a grounded rule r = H(r)← B+(r), not B−(r), if B+(r) ⊆ I and B−(r) ∩ I = ∅ implies
H(r) ∈ I . For a program P , I is a model of P , if I |= r for every r ∈ P . For a non-ground P ,
I is a model of P if it is a model of gr(P ).
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Example 2.33 (Example 2.31 cont.). The Herbrand domain of Pg is HBPg = {1, 2, . . . , 6}, and
the Herbrand base of Pg is {edge(i, j), reach(i, j) | i, j ∈ HBPg}. The ground gr(Pg) of Pg
contains the original facts and the following rules

reach(1, 1)← edge(1, 1).

reach(1, 2)← edge(1, 2).

reach(1, 3)← edge(1, 3).

reach(1, 4)← edge(1, 4).

. . .

reach(6, 6)← edge(6, 6).

reach(1, 1)← reach(1, 1), edge(1, 1).

reach(1, 2)← reach(1, 2), edge(2, 2).

reach(1, 3)← reach(1, 3), edge(3, 3).

. . .

reach(6, 6)← reach(6, 6), edge(6, 6).

It is easy to check that I0 = {edge(1, 2), edge(2, 3), edge(3, 4), edge(5, 6), reach(1, 2),
reach(2, 3), reach(3, 4), reach(1, 3), reach(2, 4), reach(1, 4), reach(5, 6)} is a model. Fur-
thermore, any interpretation which is a superset of I0 is also a model of Pg.

Minimal Model Semantics

Definition 2.34. A model I of a Datalog¬ program P is minimal, if P has no model J such
that J ( I .

It is a well-known property that each Datalog program P has some minimal model, which
in fact is unique; we denote it with MM(P ). In this case, we write P |= a if MM(P ) |= a.

The minimal model of Datalog programs can be computed by a fixpoint operator [Llo87].
Let P be a set of ground Datalog program. Then P defines an operator TP : 2HBP → 2HBP ,
where 2HBP denotes the set of all Herbrand interpretations of P , by

TP (I) = {H(r) ∈ HBP | H(r)← B+(r) ∈ P and B+(r) ⊆ I} (2.8)

This operator is called the immediate consequence operator. Intuitively, it yields all atoms that
can be derived by one step application of rules in P with respect to I . Let T∞P be the limit of
the sequence T 0

P = ∅, T i+1
P = TP (T iP ), i ≥ 0. Then the minimal model of a ground positive

Datalog program P coincides the fixpoint: MM(P ) = T∞P .

Example 2.35. Consider the program Pg in Example 2.31. The minimal model can be computed
by immediate consequence operator on the grounding gr(Pg) as follows:
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T 0
gr(Pg) = ∅
T 1
gr(Pg) = {edge(1, 2), edge(2, 3), edge(3, 4), edge(5, 6)}
T 2
gr(Pg) = T 1

gr(Pg) ∪ {reach(1, 2), reach(2, 3), reach(3, 4), reach(5, 6)}
T 3
gr(Pg) = T 2

gr(Pg) ∪ {reach(1, 3), reach(2, 4)}
T 4
gr(Pg) = T 3

gr(Pg) ∪ {reach(1, 4)}
Tngr(Pg) = T 4

gr(Pg), for n ≥ 4

Then

MM(P ) = T∞P = {edge(1, 2), edge(2, 3), edge(3, 4), edge(5, 6), reach(1, 2), reach(2, 3),

reach(3, 4), reach(1, 3), reach(2, 4), reach(1, 4), reach(5, 6)}.

The minimal model semantics of Datalog programs is widely accepted. However, Datalog¬

programs may have multiple minimal models and some minimal models are counter-intuitive.
For instance, it is easy to check that single rule program p← not p has a single minimal model
{p}, but p is not supported by the absence of p in the model.

Iterative Fixpoint Semantics for Stratified Datalog¬ Program

Definition 2.36 ([GL88]). Let I be an interpretation for a Datalog¬ program P . The GL-
reduct P I of a program P is the set of Datalog rules H(r) ← B+(r) such that r = H(r) ←
B+(r), not B−(r) ∈ gr(P ) and I ∩B−(r) = ∅.

Intuitively, the GL-reduct partially evaluates the negative part of the program P with respect
to I by removing (a) rules that cannot be “fired” under the Interpretation I and (b) the negative
bodies of the rest of the rules.

Definition 2.37. Let S1, . . . , Sn be a stratification for the program P . Then the semantics of the
program P is the set Mn where M0 = ∅ , and the Mi are defined as follows:

M1 = MM(S1
M0), M2 = MM(S2

M1), . . . , Mn = MM(Sn−1
Mn−1).

We note that the iterative fixpoint semantics for stratified Datalog¬ Program is well-defined
as it does not depend on a concrete stratification [AB88].

Stable Model Semantics The stable model semantics was introduced by Gelfond and Lifs-
chitz [GL88], and later became the theoretical foundation for answer set programming [GL91].

Definition 2.38. Let P be a Datalog¬ program and I ⊆ HBP be an interpretation. Then I is a
stable model (or answer set) of P if MM(P I) = I .
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A program may have zero, one or many stable models. The set of stable models of a program
P is denoted SM(P ). Multiple stable models can be seen as multiple possible worlds. Brave and
cautious reasonings are defined naturally: a program P bravely entails a ground term q, denoted
P |=b q, if q ∈M , for some M ∈ SM(P ); similarly, P cautiously entails q, denoted P |=c q, if
q ∈M , for all M ∈ SM(P ).

Example 2.39. Let P1 = {p ← not q}, P2 = {p ← not q. q ← not p}, P3 = {p ←
not p}. Then P1 has one stable model {p}; P2 has two stable models {p} and {q}. Clearly,
P2 |=b p and P2 |=b q, but P2 6|=c p, and P2 6|=c q. P3 has no stable models.

Well-founded Semantics In contrast to stable model semantics, which may have multiple
total models, well-founded semantics produce a single partial model, which can be seen as a
three-valued models with truth values True, False and Unknown [GRS91].

The original definition is based on the concept of unfounded set [GRS91]. Here we introduce
the alternative definition using the γ operator [BS93].

Definition 2.40. Let γP (I) = MM(P I) and γ2
P (I) = γP (γP (I)). As γP is anti-monotone, γ2

P

is monotone. The set of well-founded atoms of P , denoted WFS (P ), is the least fixed point of
γ2
P . We denote with P |=wf a that a ∈ WFS (P ). The set of unfounded atoms of P , denoted

UFS (P ), is the complement of greatest fixpoint of γ2
P .

Intuitively, the well-founded set are atoms which have be true, the unfounded set are atoms
which have to false, and the rest of atoms have truth value unknown. A well-founded model I
can be represented as a set of literals WFM (P ) = WFS (P ) ∪ {¬a | a ∈ UFS (P )} .

Example 2.41. Consider the programs in Example 2.39.
For P1, the Herbrand base HBP1 = {p, q}. Then
• γ1(∅) = {p}, γ2

1(∅) = {p}, lfp(γ2) = {p}. WFS (P1) = {p}.
• γ1(HBP ) = ∅, γ2

1(∅) = {p}, gfp(γ2) = {p}. UFS (P2) = HBP \ {p} = {q}.
So the well-founded model of P1 is WFM (P1) = {p,¬q}.
Similarly, we can show that WFM (P2) = ∅, and WFM (I3) = ∅. In this case, empty sets

means that p and q have truth values of unknown.

Semantics of Disjunctions The minimal model semantics and GL-reduction are defined as be-
fore for non-disjunctive programs. The stable model semantics can be generalized to Datalog¬,∨

programs with disjunctions.

Definition 2.42 ([Prz91]). An interpretation I is a (disjunctive) stable model of P iff M ∈
MM(P I); by SM(P ) we denote the set of all stable models of P .

2.4.3 Computational Complexities

We review computational complexity results of Datalog¬ as a query language over a plain
database (which can be seen as a set of facts), and consider the problems of the ground lit-
eral entailment under different semantics. For more details on the complexity results of Datalog
and its variants, please refer to [Dan+01; Bry+07]
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Formally, the decision problem we study is the following: given a plain database Din, a
program P , and a ground literal a, decide whether Din ∪ P |= a. Following [Var82], there are
three main kinds of complexities:

(1) The data complexity assumes that the Datalog program P is fixed, and takes varying input
databases Din and ground atoms a as inputs.

(2) The program complexity assumes that Din are fixed, and takes varying programs P and
ground atoms as inputs.

(3) The combined complexity takes varying input databases Din, Datalog programs P , and
ground atoms a as inputs.

Note that for the problems we consider here, the results of program complexity and com-
bined complexity are identical (under polynomial reductions), since the databaseDin can always
be reduced to some program easily.

Propositional logic programming (i.e. ground Datalog program) is tractable.

Proposition 2.43. Propositional logic programming is P-complete under both data complexity
and combined complexity.

The combined complexity for Datalog is exponentially higher than the data complexity.

Proposition 2.44. Datalog is P-complete under data complexity and EXPTIME-complete under
combine complexity.

Well-founded semantics for Datalog¬ does not increase the complexity compared with min-
imal models for Datalog.

Proposition 2.45 ([GRS91]). Propositional logic programming with negation under well-founded
semantics is P-complete. Datalog with negation under well-founded semantics is P-complete
under data complexity and and EXPTIME-complete under combined complexity.

By the complexity of stable model semantics, we mean the complexity of deciding whether a
stable model exists. Datalog¬ programs under stable model semantics are in general intractable.

Proposition 2.46 ([MT91]). Given a propositional Datalog¬ program P , deciding whether P
has a stable model is NP-complete.

For queries under stable models semantics, we need to distinguish cautious reasoning and
brave reasoning.

Proposition 2.47 ([MT91]). Cautious (resp. brave) reasoning of propositional logic program-
ming with negation under stable model semantics is co-NP-complete (resp. NP-complete). Cau-
tions (resp. brave) reasoning of Datalog¬ under stable model semantics is co-NP-complete
(resp. NP-complete) under data complexity and co-NEXPTIME-complete (resp. NEXPTIME-
complete) under combined complexity.
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Proposition 2.48 ([EG95; EGM97]). Propositional Datalog¬,∨ program under stable model
semantics is Πp

2-complete. Datalog¬,∨ program under stable model semantics is Πp
2-complete

under data complexity and co-NEXPTIMENP-complete under combined complexity.

2.4.4 Practical Considerations

File Formats

The commonly used format for Datalog¬,∨ files inherits the Prolog style. This format is stan-
dardized by ASP Standardization Working Group, partially for the ASP Competition26; the latest
version is ASP-Core-2 Input Language Format27.

The Rule Interchange Format (RIF) is a W3C recommendation [KB13], which is an XML
language for expressing rules which computers can execute. The standard RIF dialects are Core,
BLD, and PRD. RIF Core provides “safe” positive datalog with built-ins; RIF BLD (Basic Logic
Dialect) is positive Horn logic, with equality and built-ins; PRD (Production Rules Dialect) adds
a notion of forward-chaining rules, where a rule fires and then performs some action. The RIF
dialect RIF-CASPD28 is a language for exchanging rules among systems that are based on the
ASP paradigm.

Systems

There are many reasoners developed for Datalog¬. See participants of the ASP Competitions
201129 and 201330 for an incomplete list.

A Datalog¬,∨ reasoner usually contains two components: (1) the grounder and (2) the solver
for grounded programs.

LParse LParse is a grounder for answer set programming31 [Syr01]. Lparse also implements
several other semantics (classical negation, partial stable models) by translating them into nor-
mal logic programs.

Smodels The program Smodels is an implementation of the stable model semantics for logic
programs32 [Sim00]. Smodels can be used either as a C++ library that can be called from user
programs or as a stand-alone program together with a suitable front-end. The main front-end is
LParse.

ASSAT ASSAT33 (Answer Sets by SAT solvers) is a system for computing answer sets of a
logic program by using SAT solvers [LZ04]. The system ASSAT(X), depending on the SAT

26https://www.mat.unical.it/aspcomp2013
27https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.0.pdf
28http://ruleml.org/rif/RIF-CASPD.html
29https://www.mat.unical.it/aspcomp2011/Participants
30https://www.mat.unical.it/aspcomp2013/Participants
31http://www.tcs.hut.fi/Software/smodels/
32http://www.tcs.hut.fi/Software/smodels/
33http://assat.cs.ust.hk/
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solver X used, computes the answer set of a ground logic program P by incrementally add loop
formulas.

DLV DLV34 is a deductive database system, based on disjunctive logic programming, which
is of the core of the DLV family [Leo+06]. DLV system implements a smart grounder and im-
plements many optimizations (e.g. magic set optimization for non-ground query answering) and
offers front-ends to several advanced KR formalisms. DLV supports both answer set semantics
and well-founded semantics and offers model generation as well as query answering. DLV has
several extensions. For instance,

• dlvex is an extension providing access to external predicates which are supplied via li-
braries;

• DLT is an extension providing reusable template predicate definitions;

• DLVDB is a further extension which follows a more database-oriented approach .

Potassco Potassco35 (the Potsdam Answer Set Solving Collection) is a bundle of tools for
answer set programming [Geb+12].

• Glingo is a grounder which outputs grounded program in LParse format.

• Clasp is an answer set solver which combines the high-level modeling capacities of ASP
with state-of-the-art techniques from the area of Boolean constraint solving. The primary
clasp algorithm relies on conflict-driven nogood learning, a technique that was proved
successful for satisfiability checking (SAT).

• Clingo stands for clasp on Gringo and combines both systems in a single software.

2.5 Description Logics vs Logic Programming

Description logics and logic programming are two families of logics, and they are different in
many aspects; cf. [Bry+07]. Most of these differences are inherent from the differences of first-
order logic and logic programming (Section 2.5.1 to 2.5.5). We list some of the differences in
the following.

2.5.1 Unique Name Assumption

In logics with the unique name assumption (UNA), different names always refer to different
entities in the world . Formally, under UNA, for any interpretation I and constants a, b, a 6= b
implies that aI 6= bI .

34http://www.dlvsystem.com/dlv/
35http://potassco.sourceforge.net/
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In DLs, we normally don’t use unique name assumption. Consider an ontology (T ,A),
where A = {hasChild(peter, jack), hasChild(peter, john)}, and

T = {≥ 2hasChildvHappyParent}.

One may expect that T ∪ A |= HappyParent(peter). However, this does not hold, because
there is no way to exclude the models I with jackI = johnI . Indeed, if we want the desired
result, we have to explicitly add the assertion jack 6= john to the ABox.

In logic programming , we normally use unique name assumption. The above reasoning can
be modeled as a rule

q : HappyParent(X)← hasChild(X,Y1), hasChild(X,Y2), Y1 6= Y2.

Then A ∪ {q} |= HappyParent(peter) holds.
We remark that in lightweight DLs such as DL-Lite the UNA is often adopted, as equality

reasoning is expensive [Cal+07].

2.5.2 Open Domain vs Close Domain

The first-order semantics of DLs use open domain, i.e. in an interpretation I = (∆I , ·I) the
domain ∆I is not fixed and could be any set. In DLs, we can talk about anonymous individuals
(i.e. unnamed elements in ∆I \ {dI | d ∈ NI}). For example, we can express every person
has a father: Person v ∃hasFather . Then, informally in every model of this axiom, every
person will have a father, even when the individual of his father is not explicitly mentioned in
the ontology.

Datalog¬ programs normally use Herbrand domain, which is a closed domain, once the
vocabulary is fixed. We can not talk about nameless individuals in Datalog¬.

There are some variants of Datalog¬, like Open Answer Set Programming (OASP) and
Datalog±, using open domain assumption. But open domains in Datalog¬ makes the reasoning
much more difficult, or even undecidable. Other syntax or semantics restrictions needs to be
applied for the decidability. See Section 3.3.2 and 3.3.3 for more discussion.

2.5.3 Open world vs close world

Under the closed world assumption (CWA), certain answers are admitted as a result of failure to
find a proof. More specifically, if no proof of a positive ground literal exists, then the negation
of that literal is assumed true [Rei87]. In contrast, the open world assumption (OWA) is that the
truth-value of a statement is independent of whether or not it is known. The first-order semantics
corresponds to OWA; the minimal model nature of logic programming corresponds to CWA.

When the information can be assumed to be complete, the results by CWA is intuitive. For
instance, assume that we have a database of all directed flights between cities in the world and
there is no information of direct flights between Vienna and Shanghai in the database. If we ask
whether some direct flight between Vienna and Shanghai exists, under CWA, the answer is false;
under OWA, the answer is unknown, since the flight information might be incomplete.
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2.5.4 Strong negation and default negation

Related to CWA, default negation of a statement says it is not known to be true, or can be
consistently assumed to be false. In first-order logic, such default negation is not expressible. To
derive negated information in FOL, we must explicitly conclude that the statement is false.

For example, modern laws assume the fact that someone is innocent unless proven guilty. In
DL, this can not be modeled. While in logic programming, this can be easily expressed by

Pi : innocent(X)← person(X), not guilty(X). (2.9)

2.5.5 Monotonicity

An entailment relation |=? is called monotonic if K |=? α always implies K ∪K ′ |=? α; oth-
erwise, it is called non-monotonic. Description logics inherits the monotonicity property from
first-order logic. Logic programming is typically nonmonotonic: adding new information may
invalidate previously derived conclusions, which can be easily seen in the following example
with the program (2.9):

Pi ∪ {person(a)} |= innocent(a)

Pi ∪ {person(a), guilty(a)} 6|= innocent(a)

2.5.6 Arities

In DLs, the predicates are normally restricted to unary predicates (concept) and binary predicates
(roles). In logic programming, we can use predicates of arbitrary arities.

Consider a 4-ary Datalog predicate Person where the arguments are intended as (Id ,
Name, Father ,Mother). To express the same structure in DL, we normally decompose it into
several relations: a concept Person , a data role hasName , and two object roles: hasFather ,
hasMother .

Note that some DLs consider high-arity predicates, e.g. DLR [CGL98], but these do not
correspond to OWL directly and are out of the scope of this thesis.
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CHAPTER 3
Hybrid Knowledge Bases

As shown in the previous section, description logics and logic programming are two families
of KR languages, with different expressivities and properties. It is a natural idea to combine
them to realize hybrid knowledge bases in order to use the features from both worlds. However,
because of the mismatch of the two families trivial combinations easily lead to undecidability
or poor expressivity. Many formalisms of hybrid KBs were proposed by researchers; c.f. sur-
veys [Ant+05; Dra+09b; de +09]. We will briefly survey the state of the art of the formalisms of
hybrid KBs in this chapter and in particular we will focus on the formalism of dl-programs.

Informally, a hybrid knowledge base is a pair KB = (L,P ), where L is a DL ontology
and P is a logic program. The approaches of hybrid knowledge bases fall into three categories,
following the representational paradigms of the respective approaches [de +09]:

• The loose coupling approaches (e.g., dl-programs [Eit+08a], F-Logic# KB [Hey+10], and
CQ-Programs [Eit+08b]) define the interface between the two formalisms based on the
exchange of the entailment.

• The tight coupling approaches (e.g. SWRL [Hor+04], ELP [KRH08a],DL+ log [Ros06])
define the interface based on common models.

• The embedding approaches (e.g. Hybrid MKNF [MR10], FO(ID) [VDB10]) define the
interface based on embeddings of both the ontology and the rules in a single unifying
non-monotonic formalism.

3.1 Loose Coupling Approaches

The loose coupling approaches define the interface between the two formalisms based on the
exchange of the entailment. The semantics of the ontology and the rule part are modular and
clearly separated.
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3.1.1 DL-Programs

The approach of dl-programs [Eit+08a; Eit+11] supports a loosely-coupled integration of rules
and ontologies, and provide an expressive combination framework based on the interaction of
rules with a DL ontology via so-called dl-atoms. Such dl-atoms query the DL KB by checking
for entailment of ground atoms or axioms w.r.t. the KB; as knowledge deduced by the rules can
be streamed up to the DL KB in turn, a bi-directional flow of information is possible.

Syntax

The formalism of dl-programs have rules similar as logic programs with negation as failure , but
the rule bodies may also contain queries to the DL ontology in their bodies.

Suppose (NP,NC) is a vocabulary of finite predicate symbol set NP and constant symbol set
NC, and let NV be a set of variables. As usual, elements from NC ∪ NV are terms, and classical
atoms have the form p(t1, . . . , tn), where p ∈ NP has arity n and all ti are terms.

Queries to L occur in so-called dl-atoms. A dl-query Q(t) is either

(a) a concept inclusion axiom F or its negation ¬F ; or

(b) of the forms C(t) or ¬C(t), where C is a concept, and t is a term; or

(c) of the forms R(t1, t2) or ¬R(t1, t2), where R is a role, and t1 and t2 are terms; or

(d) of the forms = (t1, t2) or 6= (t1, t2), where t1 and t2 are terms.

Note here that t is the empty argument list in (a), t= t in (b), t= (t1, t2) in (c) and (d), and
terms are defined as above.

Definition 3.1. A dl-atom has the form

DL[S1op1p1, . . . , Smopm pm;Q](t) , m≥ 0, (3.1)

where each Si is either a concept or a role; opi ∈ {], −∪, −∩}; pi is a unary (resp.,binary)
predicate symbol, if Si is a concept (a role); andQ(t) is a dl-query. Intuitively, opi =] (resp. −∪)
increases Si (resp. ¬Si) by the extension of pi and −∩ increases Si by the absence in the extension
of pi.

A dl-rule r is of the form

a1 ∨ . . . ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm, m ≥ k ≥ 0, n ≥ 0 (3.2)

where ai’s are classical atoms and each bi is either an atom or a dl-atom. As
A dl-programKB = (L,P ) consists of a DL knowledge base L and a finite set of dl-rules P .

Example 3.2. Let KB = (L,P ) where L = {C v D} and P is the set of rules

p(a). p(b). q(c).
s(X)← DL[C ] p;D](X), not DL[C ] q, C−∪p;D](X) .

Intuitively, we extend in the first dl-atom concept C by predicate p and retrieve then all instances
from D in this extended ABox. With the second dl-atom we extend C and ¬C by the extensions
of q and p, resp.
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The following network example taken from [Dra+09a] is more involved.

Example 3.3. Suppose that an existing network must be extended by new nodes. The knowledge
base Σ contains information about existing nodes (n1, . . . , n5) and their interconnections as
well as a definition of “overloaded” nodes (concept HighTrafficNode), which are nodes with
more than three connections:

≥ 1.wired v Node. > v ∀wired .Node. wired = wired−.

≥ 4.wired v HighTrafficNode. n1 6= n2 6= n3 6= n4 6= n5.

Node(n1). Node(n2). Node(n3). Node(n4). Node(n5).

wired(n1, n2). wired(n2, n3). wired(n2, n4).

wired(n2, n5). wired(n3, n4). wired(n3, n5).

The following program P evaluates possible combinations of connecting the new nodes:

newnode(x1). (3.3)

newnode(x2). (3.4)

overloaded(X)← DL[wired ] connect ; HighTrafficNode](X). (3.5)

connect(X,Y )← newnode(X),DL[Node](Y ), not overloaded(Y ),

not excl(X,Y ). (3.6)

excl(X,Y )← connect(X,Z),DL[Node](Y ), Y 6= Z. (3.7)

excl(X,Y )← connect(Z, Y ),newnode(Z),newnode(X), Z 6= X. (3.8)

excl(x1, n4). (3.9)

The facts (3.3)-(3.4) (bodyless rules) define the new nodes to be added. Rule (3.5) imports
knowledge about overloaded nodes in the existing network, taking new connections already into
account. Rule (3.6) connects a new node to an existing one, provided the latter is not overloaded
and the connection is not to be disallowed, which is specified by Rule (3.7) (there must not
be more than one connection for each new node) and Rule (3.8) (two new nodes cannot be
connected to the same existing one). Rule (3.9) states a specific condition: node x1 must not be
connected with n4.

Semantics

The meaning of dl-programs is given by formal semantics, among which (strong and weak) an-
swer set semantics [Eit+08a] and well-founded semantics [Eit+11] are widely used (see [Wan+12]
for a survey).

Definition 3.4. The Herbrand base of P , denoted HBP , is the set of all atoms p(c1 . . . , cn)
where p ∈ NP occurs in P and all ci are from NC. An interpretation I relative to P is any subset
of HBP . Such an I satisfies (models) a ground (i.e.,variable-free) atom or dl-atom a under L,
denoted I |=L a, if the following holds:

• a∈ I , if a∈HBP ;
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• L(I;λ) |= Q(c), where λ = S1op1 p1, . . . , Smopmpm, L(I;λ) = L∪ ⋃m
i=1Ai(I) and,

for 1 ≤ i ≤ m,

Ai(I) =


{Si(e) | pi(e)∈ I}, if opi =],
{¬Si(e) | pi(e)∈ I}, if opi = −∪,
{¬Si(e) | pi(e) /∈ I}, if opi = −∩.

if a is a ground and positive dl-atom DL[λ;Q](c).

We say that the interpretation I satisfies a ground and disjunction-free dl-rule r iff I |=L l
for all l ∈ B+(r) and I 6|=L l for all l ∈ B−(r) implies I |=L H(r). The interpretation I
satisfies a dl-program KB= (L,P ), denoted I |= KB, iff I |=L r for every rule r ∈ gr(P ) ,
where gr(P ) is the set of all ground instances of rules in P (relative to HBP ). We call KB
satisfiable, if it has some model, and unsatisfiable otherwise.

A ground dl-atom a is monotonic relative to KB= (L,P ) iff I ⊆ I ′⊆HBP implies that
if I |=L a then I ′ |=L a. Otherwise a is nonmonotonic.

Minimal Model Semantics We first lift positive programs to dl-programs. A dl-program
KB = (L,P ) is positive iff (i) P is “not”-free (ii) every ground dl-atom that occurs in gr(P )
is monotonic relative to KB.

It is easy to see that every positive KB has some model and, like every Datalog program,
a unique minimal (least) (under inclusion ⊆) model, denoted MM(KB). This model naturally
captures the semantics of positive and stratified dl-programs.

Iterative least model semantics of stratified dl-programs For any dl-programKB = (L,P ),
we denote by DLP the set of all ground dl-atoms that occur in gr(P ). We assume that KB has
an associated set DL+

P ⊆ DLP of ground dl-atoms which are known to be monotonic, and we
denote by DL?

P = DLP \ DL+
P the set of all other ground dl-atoms. An input literal of some

dl-atom a ∈ DLP is a ground literal with an input predicate of a and constant symbols in NC.

Definition 3.5. Let KB = (L,P ) be a dl-program. A stratification of KB (relative to DL+
P ) is

a mapping µ : HBP ∪DLP → {0, 1, ..., k} such that

(i) for each r ∈ gr(P ), µ(H(r)) ≥ µ(l′) for each l′ ∈ B+(r), and µ(H(r)) > µ(l′) for each
l′ ∈ B−(r), and µ(a) ≥ µ(l) for each input literal l of each a ∈ DL+

P , and µ(a) > µ(l)
for each input literal l of each a ∈ DL?

P .

(ii) We call k ≥ 0 the length of µ. For every i ∈ {0, . . . , k}, we then define the dl-program
KBi as (L,Pi) = (L, {r ∈ gr(P ) | µ(H(r)) = i}), and HBPi (resp., HB∗Pi ) as the set of
all l ∈ HBP such that µ(l) = i (resp., µ(l) ≤ i).

We say that a dl-programKB = (L,P ) is stratified, iff it has a stratification µ of some length
k ≥ 0. Its canonical model is determined as follows.

Definition 3.6. Let KB = (L,P ) be a dl-program with a stratification of length k ≥ 0. We
define its iterative least models Mi ⊆ HBP with i ∈ {0, . . . , k} by:
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(1) M0 is the least model of KB0;

(2) if i > 0, then Mi is the least subset M of HBP such that

(a) M is a model of KBi and

(b) M ∩HB∗Pi−1
= Mi−1 ∩HB∗Pi−1

.

Strong Answer Set Semantics The answer sets of a general dl-program KB= (L,P ) are
defined by a generalized GL reduction to the least model semantics of positive dl-programs.

Definition 3.7. The strong dl-transform of P relative to L and an interpretation I ⊆HBP ,
denoted sP IL, results from gr(P ) by deleting

(i) every dl-rule r such that either I 6|=L a for some a ∈ B+(r) ∩DL?
P , or I |=L l for some

l ∈ B−(r); and

(ii) from each remaining dl-rule r all literals in B−(r) ∪ (B+(r) ∩DL?
P ).

Note that (L, sP IL) has only monotonic dl-atoms and no NAF-literals anymore. Thus, (L, sP IL)
is a positive dl-program and has a unique minimal (the least) model.

Definition 3.8. Let KB = (L,P ) be a dl-program. A strong answer set of KB is an interpreta-
tion I ⊆ HBP such that I is the least model of (L, sP IL). We write KB |= a for a ground atom a
if I |=L a for every answer set of KB. The brave and cautious reasonings are defined as usual.

Weak Answer Set Semantics The weak answer set semantics of general dl-programs asso-
ciates with a dl-program a larger set of models than the strong answer set semantics. It is based
on a generalized transformation that removes all NAF-literals and all dl-atoms, and it reduces to
the answer set semantics of ordinary programs.

Definition 3.9. Let KB = (L,P ) be a dl-program. The weak dl-transform of P relative to L
and to an interpretation I ⊆ HBP , denoted wP IL , is the ordinary positive program obtained
from gr(P ) by deleting

(i) all dl-rules r such that either I 6|=L a for some dl-atom a 6∈ B+(r) , or I |=L l for some
l ∈ B−(r); and

(ii) from each remaining dl-rule r all literals in B−(r) ∪ (B+(r) ∩DLP ).

Definition 3.10. Let KB = (L,P ) be a dl-program. A weak answer set of KB is an interpreta-
tion I ⊆ HBP such that I is the least model of the ordinary positive program wP IL. We denote
by answ(KB) the set of all weak answer sets ofKB. If a ground literal l is in every (resp., some)
weak answer set ofKB, then we say that l is a cautious (resp., brave) consequence ofKB (under
the weak answer set semantics), in symbols KB |=w,c l (resp., KB |=w,b l).

Example 3.11. Consider P = {p(a)← DL[c]p; c](a)} and L = ∅. The unique strong answer
set of (L,P ) is M1 = ∅, while the weak answer sets of (L,P ) are M1 and M2 = {p(a)}.
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Well-founded Semantics The well-founded semantics for dl-programs is defined using the γ2

operator [Eit+11].

Definition 3.12. Define the operator γKB on interpretations I of KB by γKB(I) = MM(KBI).
As γKB is anti-monotone, γ2

KB(I) = γKB(γKB(I)) is monotone and has a least fixpoint, which is
the set of well-founded atoms of KB, denoted WFS (KB) [Eit+11]; we denote with KB |=wf a
that a ∈WFS (KB). The set of unfounded atoms ofKB , denoted UFS (KB), is the complement
of greatest fixpoint of γ2

KB. Finally, the well-founded model of KB is defined as WFM (KB) =
WFS (KB) ∪ {¬a | a ∈ UFS (KB))}

Example 3.13. The dl-programKB from Example 3.2 has the single answer set {p(a), p(b), q(c),
s(a), s(b)}, which coincides with WFS (KB). If we replace the facts for p in P by the “guess-
ing” rules

p(a)← not p(b); p(b)← not p(a),

the resulting KB has the two answer sets {p(a), q(c), s(a)} and {p(b), q(c), s(b)}, while q(c) is
the only well-founded atom.

Example 3.14. The dl-program in Example 3.3 has four strong answer sets (we show only atoms
with predicate connect) : M1 = {connect(x1, n1), connect(x2, n4), . . .},M2 = {connect(x1, n1),
connect(x2, n5), . . .},M3 = {connect(x1, n5), connect(x2, n1), . . .}, andM4 = {connect(x1, n5),
connect(x2, n4), . . .}. Note that the ground DL-atom

DL[wired ] connect ; HighTrafficNode](n2)

from rule (3.5) is true in any partial interpretation of P . According to the well-founded seman-
tics, the atom overloaded(n2) is thus true in the well-founded model.

Computational Complexities

We summarize the computational complexity results of the dl-programs for answer sets exis-
tence, brave and cautious reasoning, and literal entailment under well-founded semantics in
Table 3.1 [Eit+08a; Eit+11].

Systems

Several systems implement dl-programs.

NLP-DL NLP-DL [Eit+04a; Eit+08a] is a proof-of-concept system for dl-programs, support-
ing both well-founded semantics and answer set semantics. This prototype evaluation algorithm
uses the DL reasoner RacerPro and the deductive database system DLV and is programmed in
PHP scripts with an online demo 1.

1https://www.mat.unical.it/ianni/swlp/
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dl-program SHIF SHOIN
KB positive EXPTIME-complete NEXPTIME-complete
KB stratified EXPTIME-complete PNEXPTIME-complete
KB general NEXPTIME-complete PNEXPTIME-complete

(a) Complexity of deciding strong or weak answer set existence

dl-program SHIF SHOIN
KB positive EXPTIME-complete co-NEXPTIME-complete
KB stratified EXPTIME-complete PNEXPTIME-complete
KB general co-NEXPTIME-complete PNEXPTIME-complete

(b) Complexity of cautious reasoning from the strong or weak answer sets

dl-program SHIF SHOIN
KB positive EXPTIME-complete DEXPTIME-complete / PNEXPTIME-complete
KB stratified EXPTIME-complete PNEXPTIME-complete
KB general NEXPTIME-complete PNEXPTIME-complete

(c) Complexity of brave reasoning from the strong / weak answer sets

dl-program SHIF SHOIN
KB general EXPTIME-complete PEXPTIME-complete

Data Complexity PNP-complete PNP-complete

(d) Complexity of literal entailment under the well-founded semantics.

Table 3.1: Computational Complexity Results of dl-programs

DLVHEX DLVHEX2 [Eit+06], as the successor of NLP-DL, is a prototype implementation
written in C++ for computing answer sets of so-called HEX-programs – an extension of dl-
programs for reasoning with external sources (not necessarily DL knowledge bases) under the
answer set semantics. By using the Description Logic Plugin 3, which interfaces to OWL on-
tologies via a DL reasoner (currently RacerPro), DLVHEX can reason from dl-programs under
the answer set semantics.

3.1.2 CQ-Programs

CQ-Programs extend DL-Programs by generalizing dl-query to conjunctive queries [Eit+08b].

2http://www.kr.tuwien.ac.at/research/systems/dlvhex
3http://www.kr.tuwien.ac.at/research/systems/dlvhex/dlplugin.html

45

http://www.kr.tuwien.ac.at/research/systems/dlvhex
http://www.kr.tuwien.ac.at/research/systems/dlvhex/dlplugin.html


Definition 3.15 (dl-atom in CQ-Programs). A dl-atom α is of the form DL[λ; q](X), where
λ = S1op1p1, . . . , Smopmpm(m ≥ 0) is a list of expressions Siopipi called input list, each Si
is either a concept or a role, opi ∈ {], −∪, −∩}, pi is a predicate symbol matching the arity of Si ,
and

• q is a (U)CQ with output variables X (in this case, α is called a (u)cq-atom), or

• q(X) is a dl-query as in definition 3.1 (in this case, α is called an ordinary dl-atom),

We define satisfaction of atoms with respect to an interpretation. Let I be an interpretation
of P . Then

• the satisfaction of an ordinary dl-atom is the same as that defined in dl-programs;

• a ground instance a(c) of a (U)CQ-atom a(X) = DL[λ; q](X), is satisfied by I under L,
denoted I |=L a(c), if c ∈ ans(q(X), L ∪ λ(I)).

The semantics of cq-programs can be defined similarly as for dl-programs [Eit+08b].

Example 3.16. Consider the following cq-program [Eit+08b] which is adapted from a scenario
in [MSS05].

L =


hates(Cain,Abel). hates(Romulus,Remus).

father(Cain,Adam). father(Abel, Adam).

father v parent,
∃father.∃father−.{Remus}(Romulus)


P1 = {BadChild(X)← DL[parent](X,Z), DL[parent](Y, Z), DL[hates](X,Y )}

Apart from the ABox assertions, L states that each father is also a parent and that Romulus
and Remus have a common father . The single rule in P specifies that an individual hating
a sibling is a BadChild . From this dl-program, BadChild(Cain) can be concluded, but not
BadChild(Romulus). The reason is that the common father of Romulus and Remus is not an
named individula and thus not in the Herbrand domain. Thus there is no way to instantiate the
variable X in P1 to the individual for their common father.

Consider another program

P2 = {BadChild(X)← DL[parent(X,Z), parent(Y, Z), hates(X,Y )](X,Y )}

where the body of the rule is a CQ {parent(X,Z), parent(Y, Z), hates(X,Y )} to L with
distinguished variables X and Y . We then obtain the desired result BadChild(Romulus).

The DL-plugin of DLVHEX supports all forms of dl-atoms of cq-programs by rewriting cq-
atoms to corresponding external atoms (and additional auxiliary rules) in a HEX-program. Since
RacerPro only supports DL-safe (U)CQs (only named individuals are under consideration) ,
DLVHEX is also limited to this restricted form of (U)CQs.
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3.1.3 F-Logic# KBs

Frame Logic (or F-Logic) provides a logical foundation for frame-based and object-oriented
languages for data and knowledge representation [KLW95]. In F-Logic, one can express many
features in object oriented languages, such as object identity, complex objects, inheritance, poly-
morphism, and encapsulation.

F-Logic# knowledge bases [Hey+10] are a framework based on the semantics of the dl-
programs, which provides a loose coupling approach to integrating F-logic rules and DL ontolo-
gies by allowing rules to query the ontology using external atoms.

A prototype implementation of F-Logic# is based on the OntoBroker inference engine4 from
ontoprise5 [Hey+10]. OntoBroker consists of two reasoners: (i) OntoBroker F-logic, a sophis-
ticated and fast rule engine, and (ii) OntoBroker-OWL, an OWL-DL reasoner (the successor
of KAON2 [Mot06]) for SHIQ). The two reasoners use the same API, which simplifies the
implementation of the interfacing mechanisms of F-Logic#.

3.1.4 Defeasible Logic Rules on Top of Ontologies

Defeasible logic is a non-monotonic logic proposed to formalize defeasible reasoning, which
has a low computational complexity [Ant+01]. Antoniou proposed the integration of descrip-
tion logics with defeasible reasoning, where ontology predicates are allowed to occur only in
rule bodies [Ant02]. Compared with dl-programs, there is no information flow back to the on-
tology [de +09]. A prototype system DR-Prolog [AB07] is available online6.

3.2 Tight coupling Approaches

The tight coupling approaches define the interface based on common models, which are models
for both the ontology part and for the rule part, by restricting the predicates used in the respective
parts. Tight coupling approaches can be classified, depending on the expressivity of the rule
component, to (1) the fragments of first order logics, with only positive Datalog style rules, and
(2) DL+ log knowledge bases and its variants, featuring default negations and full answer set
semantics in the rule component.

syntactically, we start from three mutually disjoint predicate alphabets: an alphabet of con-
cept names NC, an alphabet of role names NR, and an alphabet of Datalog predicates ND. Pred-
icates in NC and NR are called DL-predicates. In the most general case of tight coupling ap-
proaches, the knowledge base is a pair (L,P ) where L be a DL ontology and P is a Datalog¬,∨

program. The rules r in P are of the following form

p1(X1) ∨ . . . ∨ pn(Xn) ← r1(Y1), . . . , rm(Ym), s1(Z1), . . . , sk(Zk),

not u1(W1), . . . , not uh(Wh) (3.10)

4http://www.ontoprise.de/en/home/products/ontobroker/
5http://www.ontoprise.de
6http://www.csd.uoc.gr/~bikakis/DR-Prolog/
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where pi ∈ NC ∪ NR ∪ NP, ri ∈ NP, ui ∈ NP, si ∈ NC ∪ NR.
There are two important safeness conditions for the decidability in this setting. The first one

is condition is called DL-safeness[MSS05; Ros05].

Definition 3.17. A rule r in the form of (3.10) is called DL-safe if each variable in r occurs in
one of the positive non-DL-atom in the rule body, i.e.,

⋃
Xi ∪

⋃
Yi ∪

⋃
Zi ∪

⋃
Wi ⊆

⋃
Yi. A

program P is DL-safe if all its rules are DL-safe.

Sometimes, we say that the rule is interpreted under DL-safeness restrictions. In this case,
we do not really put syntax restrictions. Instead, we semantically assume that the variables can
only be bounded the named individuals. This is equivalent to

(1) for every rule appending auxiliary atomsO(X) to the body for all the variables inside it and

(2) adding facts O(a) for all the named individual a from the ontologies and program.

Note that conjunctive query is not fully captured under DL-safeness conditions[Ros06], be-
cause existential variables can not be bounded the unnamed individual in DL-safe rules. Later
the DL-safeness condition were relaxed to weakly DL-safeness [Ros06].

Definition 3.18. A rule r of the form (3.10) is called weakly DL-safe if every head variable of
R must appear in at least one of the positive non-DL-atoms, i.e.,

⋃
Xi ⊆

⋃
Yi. A program P

is weakly DL-safe if all its rules are weakly DL-safe.

Similarly as the DL-safeness case, when we say that a rule is interpreted under weakly
DL-safeness, we semantically assume that the head variables can only be bounded the named
individuals. This is equivalent to

(1) for each rule appending auxiliary atoms O(x) to the body for all head variables x ∈ Xi and

(2) adding facts O(a) for all the named individual a from the ontologies and rules.

Note that weakly DL-safe rules fully capture conjunctive queries.

3.2.1 First-order Combinations

Description Logics and Datalog rules are two orthogonal fragments of first order logics. First
order combinations put them into a single formalisms under first order semantics.

CARIN

CARIN [LR98] is one of the early attempts in combining description logic with first-order Horn
rules. It combines the two formalisms by allowing the concepts and roles, defined in the DL
ontology, to appear as predicates in the body of the Horn rules. The reasoning problem for
recursive CARIN-ALCNR knowledge bases is undecidable. Decidability can be achieved by
restricting the syntax.
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SWRL

The Semantic Web Rule Language (SWRL) as a W3C Submission7 aims at combining OWL DL
ontologies and Horn rules [HP04b]. The predicates in the rules are restricted to the concepts and
roles from the DL ontologies. Unfortunately, SWRL in general is too expressive to be decidable
[HP04b]. Intuitively, the undecidability comes from that unnamed individuals entailed from
the ontology, which in turn will fire some Horn rules under first-order interpretation and cause
undecidability.

The decidability of SWRL in practice is not achieved by restriction on the syntax. Instead,
the notion DL-Safe rules is often applied, which means rules will be applied only to named
individuals in the ontology [MSS05]. SWRL is implemented in several reasoners, e.g., KAON2,
Pellet, HermiT, under DL-safeness.

DL Rules

As a fragment of SWRL, DL rules allow for a tight integration with DL knowledge bases [KRH08b;
MH12]. DL Rules are Datalog rules which can be rewritten to DL axioms. In other words, DL
rules provide syntax sugar for some Datalog rules, and they are essentially “the rules inside the
ontology”. Therefore DL rules don’t actually increase the expressivity of DL ontologies.

For example, a rule

profOf (x, z)← worksAt(x, y),University(y), supervises(x, z),PhDStudent(z)

can be equivalently expressed by the following DL axioms using auxiliary roles S1 and S2:

S1◦supervises ◦S2 v profOf , ∃worksAt .University ≡ ∃S1 .Self , PhDStudent ≡ ∃S2 .Self .

ELP

ELP [KRH08b; KRH08a] is a decidable fragment of SWRL that admits reasoning in polynomial
time. ELP is based on the tractable DL EL++ and encompasses an extended notion of DL
rules [KRH08b]. Furthermore, ELP extends EL++ with a number of features introduced by
OWL 2, such as disjoint roles, local reflexively, certain range restrictions, and the universal role.
A reasoning algorithm is based on a translation of ELP to Datalog in a tractable fashion. A
prototype system ELLY8 is implemented using the IRIS datalog reasoner.

Nominal Schema

Nominal Schema [Krö+11] is a description-logic style extension of OWL 2 with nominal schemas
which can be used like “variable nominal classes” within axioms. This feature allows ontology
languages to express arbitrary DL-safe SWRL rules in their native syntax. Adding nominal
schemas to OWL 2 does not increase the worst-case reasoning complexity.

7http://www.w3.org/Submission/SWRL
8http://elly.sourceforge.net/
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For example, the rule

C(x)← hasParent(x, y), hasParent(x, z),married(y, z)

can not be expressed in DL rules. In contrast, using nominal schemas, it can be expressed as

∃hasParent.{z} u ∃hasParent.∃married.{z} v C.

3.2.2 DL+ log and its Variants

Compared with first-order combinations, the framework of DL+ log and its variants support
more expressive rules, featuring default negations and full answer set semantics. The research
of this family was from AL-log [Ros99], and was later extended to r-hybrid KBs [Ros05] and
DL+ log [Ros06].

R-hybrid Knowledge Bases

Definition 3.19. Given a description logic DL, an r-hybrid KB is a pair (K,P ), where:

• K is a DL ontology;

• P is a set of Datalog¬,∨ rules, where each rule r is of the form (3.10) and r is both
Datalog safe and DL-safe.

The semantics of r-hybrid KBs is defined via common models. Informally, an interpretation
I is a model of an r-hybrid KB (K,P ), if the projection of I on DL predicates is a first order
model of K, and the projection of I on Datalog predicates is a answer set of P . See [Ros05] for
the formal definition.

DL+ log Knowledge Bases

DL+ log KBs further relax r-hybrid KBs by replacing the DL-safeness condition with the weakly
DL-safeness [Ros06]. Weakly DL-safeness conditions provide more expressivity. For instance,
conjunctive queries, which can not be directly expressed in r-hybrid KBs, are captured by the
framework of DL+ log.

3.3 Embedding approaches

The embedding approaches define the interface based on embeddings of both the ontology and
the rules in a single unifying non-monotonic formalism. Normally, they start from a very expres-
sive language and then consider various interesting (decidable) fragments.
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3.3.1 Hybrid MKNF

Minimal Knowledge and Negation as Failure (MKNF) is a formalism proposed in [Lif91], which
captures many non-monotonic logics using two modal operators K and not. Hybrid MKNF
knowledge bases is one embedding proposal for combining ontologies and rules [MR07]. The
definition of Hybrid MKNF knowledge bases is parametric with respect to the ontology lan-
guage, in the sense that non-monotonic rules can extend any decidable ontology language.
Both stable model [MR07] and well-founded semantics [KAH08] have been defined for hybrid
MKNF.

A query-driven procedure for Hybrid MKNF knowledge bases was proposed in [AKS09]. It
is sound with respect to the original stable model-based semantics, and is correct with respect
to the well-founded semantics. This procedure is able to answer conjunctive queries, and is
parametric on an inference engine for reasoning in the ontology language. The procedure is
based on an extension of a tabled rule evaluation to capture reasoning within an ontology by
modeling it as an interaction with an external oracle.

3.3.2 Open Answer Set Programming

Open Answer Set Programming (OASP) can be seen as a framework to represent integrated com-
bined knowledge bases of ontologies and rules that are not necessarily DL-safe [Hey06]. The
framework makes the open-domain assumption and has a rule-based syntax supporting negation
under a stable model semantics.

An algorithm for the satisfiability checking of simple conceptual logic programs (SCLP),
which are a fragment of OASP, was proposed in [HFE09]; a prototype for SCLP was imple-
mented using BProlog.

3.3.3 Datalog±

Datalog± [Cal+10] is a recently introduced family of Datalog-based languages. It is a new
framework for tractable ontology querying, and for a variety of other applications. Datalog± ex-
tends plain Datalog by features such as existentially quantified rule heads and, at the same time,
restricts the rule syntax so as to achieve decidability and tractability. In particular, Datalog±

fully covers DL-Lite.

3.3.4 FO(ID)

It is well-known that inductive definitions, such as that of transitive closure, cannot be expressed
in first-order logic. The logic FO(ID) is an extension of first-order logic with inductive defi-
nition [VDB10]. FO(ID) offers a strong semantic integration of FO and LP, in which the LP
component is used to define concepts, and FO component can be used to assert additional prop-
erties of both the defined concepts and concepts for which no definition is provided.

DL(ID) is the fragment of FO(ID) restricting the FO part to a DL. For example, ALCI(ID)
is the combination of description logicALCI with inductive definitions. It is not surprising that
such strong integration is undecidable; it is even not semi-decidable. To obtain the decidability,
a decidable fragment called guarded ALCI(ID) was introduced.
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The IDP-system9 implements the task of model expansion for FO(ID). A program trans-
forming ALCI(ID) syntax to input for this system is available, but only works for reasoning in
a fixed, finite domain.

3.3.5 Quantified Equilibrium Logic

Equilibrium logic, based on the least constructive extension of the logic of “here-and-there”,
was proposed to characterize stable models and answer sets [Pea96]. Quantified Equilibrium
Logic (QEL) can serve as a unified framework which embraces classical logic as well as dis-
junctive logic programs under the (open) answer set semantics [Bru+07]. However, QEL is in
general undecidable.

9http://dtai.cs.kuleuven.be/krr/software/idp
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CHAPTER 4
Inline Evaluation of DL-Programs

The main goal of this thesis is to develop efficient reasoning methods for hybrid knowledge
bases, in particular for dl-programs. In this chapter, we first abstractly define the inline evaluation
framework for dl-programs, based on the the concept of Datalog-rewritability. Then we apply
the inline evaluation on dl-programs over lightweight description logics LDL+, EL, and more
expressive Horn-SHIQ.

4.1 A Framework for Inline Evaluation

The term inline evaluation is borrowed from the community of computer programming lan-
guages. For example, assume we have a small function for the maximum of two numbers, in C
programming language:

// max of integers x and y
int max(int x, int y){ return x > y ? x : y; }

and a function for the maximum elements of an array of integers.

// max of an integer array of size n
int max_array(int array[], int n) {

int result = INT_MIN;
for (int i = 0; i < n; i++) {

result = max(result, array[i]);
}
return result;

}

The function max is called n times in the function max_array. Besides the actual com-
putation part, every function call needs stack frame manipulation and the function return. Such
overhead of function calling can be a potential bottleneck of the efficiency. Even worse, function
invocation disrupts compile-time code optimization such as register allocation, code compaction,
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common subexpression elimination, and constant propagation. To avoid this, modern C compil-
ers may directly expand such function calls to the concrete expressions, and the gains may be
considerable [CH89].

int max_array(int array[], int n){
int result = INT_MIN;
for (int i = 0; i < n; i++){

// ‘‘max’’ is inline expanded
result = result > array[i] ? result : array[i];

}
return result;

}

The situation in dl-programs is conceptually similar. The state of that art reasoners for
dl-programs usually need to call the underlying Datalog¬ reasoners and DL reasoners many
(sometimes even exponentially many) times to evaluate the dl-atoms, and such cost can be very
expensive. In the following, we introduce the inline framework for dl-programs, which intu-
itively reduce all the calls to DL reasoner to some fragments of Datalog program, so that we can
only use one call to Datalog¬ reasoner for the reasoning in dl-programs.

Let KB = (Σ, P ) be a dl-program and let a be a ground atom from HBP . We define a class
of DLs, so-called Datalog-rewritable DLs, such that reasoning w.r.t. dl-programs over such DLs
becomes reducible to Datalog¬. In particular, we show that for such Datalog-rewritable DLs,
we can reduce a dl-program KB = (Σ, P ) to a Datalog¬ program Ψ(KB) and there is a close
relation between the models of KB and Ψ(KB).

We abstractly define which DLs we consider Datalog-rewritable.

Definition 4.1. A Description LogicDL is Datalog-rewritable (for instance query) if there exists
a transformation ΦDL from DL KBs to Datalog programs such that, for any DL KB Σ,

(i) Σ |= Q(o) iff ΦDL(Σ) |= Q(o) for any concept or role name Q from Σ, and individual(s)
o from Σ;

(ii) ΦDL is modular, i.e., for Σ = 〈T ,A〉 where T is a TBox and A an ABox, ΦDL(Σ) =
ΦDL(T ) ∪ A;

In other words, a ground atom a is entailed by the DL KB Σ iff a ∈ MM(ΦDL(Σ)), the
unique minimal model of the Datalog program ΦDL(Σ). Furthermore, we refer to a polynomial
Datalog-rewritable DL DL, if ΦDL(Σ) for a DL KB Σ is computable in polynomial time.

It is easy to see that ΦDL is preserving, i.e., concept- and role names in Σ are mapped to
identically named predicates in ΦDL(Σ). 1 Moreover, if Σ1 and Σ2 are disjoint on concept- and
role names, then ΦDL(Σ1) and ΦDL(Σ2) are as well on the corresponding predicates.

We assume w.l.o.g. that both P and ΦDL(Σ) are safe — each variable appears in a positive
normal atom in the body — for KB = (Σ, P ).

1Note that this is implicit in how we wrote (i).
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Definition 4.2. Let ΛP
∆
= {λ | DL[λ;Q] occurs in P}, i.e., the input signatures appearing

in P . The translation of (Σ, P ) to a Datalog¬ program is then built up of the following four
components:

• A Datalog program
⋃
λ∈ΛP

ΦDL(Σλ) where Σλ is Σ with all concept and role names
subscripted with λ. Intuitively, each input signature of a dl-atom in P will influence Σ dif-
ferently. As we want to cater for these influences in one program, we have to differentiate
between the KBs with different inputs.

• A Datalog program ρ(ΛP ) containing for each λ = S1]p1, . . . , Sm]pm ∈ ΛP the rules
Siλ(Xi)← pi(Xi), 1 ≤ i ≤ m, where the arity of Xi matches the one of Si. Intuitively,
we add the extension of pi to the appropriate concept or role.

• A set TP of Datalog facts >(a) and >2(a, b) for all a, b in the Herbrand domain of P to
ensure their introduction in Σ.

• Finally, P ord results from replacing each dl-atom DL[λ;Q](t) in P with a new atom
Qλ(t).

The transformation of the dl-program KB is then defined as

Ψ(KB) =
⋃
λ∈ΛP

ΦDL(Σλ) ∪ P ord ∪ ρ(ΛP ) ∪ TP (4.1)

Example 4.3. Let KB = (Σ, P ) where Σ = { C v D } and

P =

{
p(a). s(a). s(b).

q←DL[C ] s;D](a), not DL[C ] p;D](b)

}

The input signatures are ΛP = {λ1
∆
= C ] s, λ2

∆
= C ] p}.

• The ontology Σ is very simple, and we can define Φ(Σ) = {D(X)←C(X)}. Then
Φ(Σλ1) = {Dλ1(X)←Cλ1(X)} Φ(Σλ2) = {Dλ2(X)←Cλ2(X)}

• DL-atoms are transformed to ρ(ΛP ) = { Cλ1(X)← s(X). Cλ2(X)← p(X) }.

• TP = {>(a). >(b). >2(a, a). >2(b, b). >2(a, b). >2(a, a).}

• Finally, the component P ord consists of q←Dλ1 (a),not Dλ2 (b) and the original facts.

Note that Ψ(KB) is a Datalog program, if KB is negation-free, and a stratified Datalog¬

program, if KB is stratified (cf. [Eit+08a]); thus, beneficial for evaluation, acyclic negation is
fully preserved.

The following property is easily seen.

Proposition 4.4. Let KB be a dl-program over a polynomial Datalog-rewritable DL. Then,
Ψ(KB) is constructible in polynomial time.
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Proof. This immediately follows from the definition of Ψ(KB).

In order to establish the relation between the models ofKB and Ψ(KB), we use the following
intermediate lemmas, similarly as for the proof of Theorem 5.12 in [Eit+04b].

For a dl-program KB = (Σ, P ) over a Datalog-rewritable DL and an interpretation I over
HBP , we define an interpretation IΨ for Ψ(KB):

IΨ = I ∪
⋃
λ∈ΛP

MM(Φ(Σλ ∪ S(λ, I)))

where
S(λ, I) = {Sλ(c) | S ] p ∈ λ, p(c) ∈ I}.

In other words for an interpretation I of the KB KB, we define an interpretation IΨ of
Ψ(KB) that corresponds to it, i.e., it contains I and the minimal models of the positive pro-
grams consisting of the translation of the KB as well as the facts that follow from the particular
extensions of the input predicates w.r.t. I .

We further define some shortcuts: G(I)
∆
= γKB(I) and GΨ(I) = γΨ(KB)(I).

Lemma 4.5. Let KB = (Σ, P ) be a dl-program over a Datalog-rewritable DL, DL[λ;Q](c)
a ground dl-atom from gr(P ), and I an interpretation for KB. Then, I |=Σ DL[λ;Q](c) iff
IΨ |= Qλ(c).

Proof. We prove both sides simultaneously. All the hints are in the square brackets.
I |=Σ DL[λ;Q](c)

iff [ Σλ is an equivalent rewriting of Σ; take λ′ = S1λ ] p1, . . . , Smλ ] pm for
λ = S1 ] p1, . . . , Sm ] pm ∈ ΛP ]
I |=Σλ DL[λ′;Qλ](c)

iff [ Def. of |=Σλ and with Ai(I) = {Siλ(ci) | pi(ci) ∈ I} ]
Σλ ∪

⋃
iAi(I) |= Qλ(c)

iff [ Rewriting ABox
⋃
iAi(I) as axioms ]

Σλ ∪ {Siλ(ci) | pi(ci) ∈ I} |= Qλ(c)
iff [ Def. 4.1 ]

Qλ(c) ∈ MM(Φ(Σλ ∪ {Siλ(ci) | pi(ci) ∈ I}))
iff [ using that the Σλ disjoint on the concept- and role names, that Φ is preserv-

ing, and that Qλ is a concept- or role name ]
Qλ(c) ∈ ⋃λ∈ΛP

MM(Φ(Σλ ∪ S(λ, I)))

iff [ Qλ is concept or role name ]
Qλ(c) ∈ I ∪⋃λ∈ΛP

MM(Φ(Σλ ∪ S(λ, I)))

iff [ Def. of IΨ ]
Qλ(c) ∈ IΨ

Lemma 4.6. Let KB = (Σ, P ) be a dl-program over a Datalog-rewritable DL, and I an inter-
pretation for KB. Then, G(I)Ψ = GΨ(IΨ).
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Proof. This follows from Lemma 4.5 and the observation that sP IΣ and (P ord )
IΨ

have the same

rules where the (positive) dl-atoms DL[λ;Q](c) in sP IΣ are replaced with Qλ(c) in (P ord )
IΨ

.

The following result allows us to reduce reasoning with dl-programs to Datalog¬ under
answer set semantics.

Theorem 4.7. Let KB = (L,P ) be a dl-program over a Datalog-rewritable DL. Then the
answer sets of KB correspond 1-1 to the answer sets of Ψ(KB):

(i) every answer set of KB is extendible to an answer set of Ψ(KB); and

(ii) for every answer set J of Ψ(KB), its restriction I = J |HBP to HBP is an answer set of
KB.

Proof. We show the two directions.

(i) Suppose that I is an answer set of KB. We show that IΨ ⊇ I is an answer set of Ψ(KB).

By the definition of answer set of dl-program, we have I = MM(KBI), or equivalently
I = G(I). Then IΨ = G(I)Ψ. Since G(I)Ψ = GΨ(IΨ) holds by Lemma 4.6, we
conclude IΨ = GΨ(IΨ), that is, IΨ is a answer set of Ψ(KB).

(ii) It is easy to see that for any interpretation K of dl-programs, KΨ|HBP = K, as all the
elements in KΨ \K are in the form of Pλ(c).

Since J is an answer set of Ψ(KB), we have J = GΨ(J). As J = IΨ, we imply IΨ =
GΨ(IΨ). By lemma 4.6, G(I)Ψ = GΨ(IΨ) holds. Then IΨ = G(I)Ψ follows. We restrict
both sides to HBP and conclude I = IΨ|HBP = G(I)Ψ|HBP = G(I), that is, I is an
answer set of KB.

To prove a similar result for well-founded semantics, we first show the following lemma.

Lemma 4.8. Let KB = (Σ, P ) be a dl-program over a Datalog-rewritable DL, and let I be an
interpretation for KB. Then, LFP(G2)Ψ = LFP((GΨ)2).

Proof. The proof technique is similar as the one used in Proposition B.3 in [Eit+04b], using
Lemmas 4.5 and 4.6.

Let I0 = ∅. One shows first by induction on k ≥ 0 that for the k-th powers of G(I0) and
GΨ(IΨ

0 ), denoted by Gk(I0) and (GΨ)
k
(IΨ

0 ), we have

Gk(I0)
Ψ

= (GΨ)
k
(IΨ

0 ). (4.2)

The equality obviously holds for k = 0. Given (4.2) holds for k, then for k + 1, we have

Gk+1(I0)
Ψ

= (G(Gk(I0)))
Ψ
.
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Now, let I = Gk(I0). Then, by Lemma 4.6, we have

G(I)Ψ = GΨ(IΨ),

since by the induction hypothesis, Gk(I0)
Ψ

= (GΨ)
k
(IΨ

0 ), we get

G(Gk(I0))
Ψ

= GΨ((GΨ)
k
(IΨ

0 )) = (GΨ)k+1(IΨ
0 ),

which proves (4.2) for each k ≥ 0. Furthermore, we have that

IΨ
0 ⊆ (GΨ)2k(I0), for each k ≥ 0 . (4.3)

Observe indeed that GΨ(I0) contains IΨ
0 , as well as (GΨ)

2
(I0), and that (GΨ)

2 is mono-
tonic. From (4.3) we conclude that ((GΨ)

2k
)(IΨ

0 ) and ((GΨ)
2k

)(I0) converge to the same limit,
which is LFP((GΨ)

2
). On the other hand, G2k(I0)

Ψ converges to LFP(G2)Ψ. Thus, we get
LFP(G2)Ψ = LFP((GΨ)

2
).

Theorem 4.9. Let KB = (L,P ) be a dl-program over a Datalog-rewritable DL and a be a
ground atom from HBP . Then,
KB |=wf a iff Ψ(KB) |=wf a.

Proof. We show both directions.
(⇒). Assume KB |=wf a. Then, by the definition of the well-founded semantics for dl-
programs, a ∈ LFP(γ2

KB) = LFP(G2). Since for any interpretation I ⊆ HBP , I ⊆ IΨ, we
have that a ∈ LFP(G2)Ψ. By Lemma 4.8, we have that a ∈ LFP((GΨ)2) = LFP((γΨ(KB))

2),
and thus Ψ(KB) |=wf a.
(⇐). Assume Ψ(KB) |=wf a. By the definition of well-founded semantics and Lemma 4.8, we
have that a ∈ LFP((γΨ(KB))

2) = LFP((GΨ)2) = LFP(G2)Ψ. Since a is a ground atom from
HBP and thus constructed with a predicate from P , we conclude a ∈ LFP(G2) = LFP(γ2

KB),
that is, KB |=wf a.

Example 4.10. The dl-program KB in Example 4.3 is stratified, and has one stable model I =
{p(a), s(a), s(b), q}. The transformed Datalog¬ program Ψ(KB) has only one model IΨ =
I ∪ TP ∪ {Cλ1(a), Cλ1(b), Dλ1(a), Dλ1(b), Cλ2(a), Dλ2(a)}. The correspondence between I
and IΨ is as we expected.

Compared to dl-programs over SHIF and SHOIN , the computational complexity results
of dl-programs over Datalog-rewritable DLs are lower.

Corollary 4.11. For any dl-program KB = (L,P ) over a DL DL and ground atom a from
HBP , deciding KB |=wf a is (i) data complete for P, if DL is Datalog-rewritable and (ii)
combined complete for EXPTIME, if DL is polynomial Datalog-rewritable.

Similarly, for any dl-program KB over a DL DL, deciding the existence of the answer set
of KB is (i) data complete for NP, if DL is Datalog-rewritable and (ii) combined complete for
NEXPTIME, if DL is polynomial Datalog-rewritable.
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Proof. All hardness results follow that any Datalog¬ program P amounts to a dl-program
(∅, P ) [Eit+04b].

The membership results are based on the correctness of the polynomial reduction of dl-
programs to Datalog¬ under both well-founded semantics (Theorem 4.9) and answer set seman-
tics (Theorem 4.7).

4.2 LDL+ and OWL 2 RL

We introduce LDL+ as a particular Datalog-rewritable DL. This DL has no negation (hence the
+) and distinguishes between expressions on the left- and right-hand side of axioms. LDL+

offers expressive concept- and role expressions on the left-hand side of axioms (hence the L
in LDL+), e.g., qualified number restrictions and transitive closure of roles. The Datalog-
rewritability of LDL+ is interesting in itself, showing how to do reasoning in DLs with ex-
pressive constructs efficiently via Logic Programming. As a side result, we obtain that reason-
ing in LDL+ is tractable, considering both data and combined complexity; more precisely, we
show that it is P-complete in both settings. Despite its low complexity, LDL+ is still expres-
sive enough to represent many constructs useful in ontology applications [BBL08] such as role
equivalences and transitive roles. It turns out that LDL+ is strongly related to OWL 2 RL.

4.2.1 The Description Logic LDL+

In this section, we introduce the Description LogicLDL+ and derive some basic model-theoretic
properties.

Basic Definitions

We design LDL+ by syntactic restrictions on the expressions that occur in axioms, distinguish-
ing between occurrence in the “body” α and the “head” β of an axiom α v β. We define

• h-roles (h for head) E,F to be role names P , role inverses E−, role conjunctions E uF ,
and role top >2;

• b-roles (b for body) E,F are the same as h-roles, plus role disjunctions E t F , role
sequences E ◦ F , transitive closures E+, role nominals {(o1, o2)}, where o1, o2 are indi-
viduals.

Furthermore, let basic concepts C,D be concept names A, the top symbol >, and conjunc-
tions C uD; then we define

• h-concepts C,D are basic concepts B, and value restrictions ∀E.B where E a b-role;

• b-concepts C,D are basic concepts B, disjunctions C t D, exists restrictions ∃E.C,
atleast restrictions≥ nE.C, and nominals {o}, whereE is a b-role, and o is an individual.
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Note that all h-roles are also b-roles, but an analog relation does not hold for concepts:
∀E.C is an h-concept but not a b-concept. When immaterial, we will refer to both b-concepts
and h-concepts as (LDL+) concepts; we use an analog convention for roles.

Now an LDL+ KB is a pair Σ = 〈T ,A〉 of a finite TBox T and a finite ABox A, where

• T is a set of terminological axiomsB v H , whereB is a b-concept andH is an h-concept,
and role axioms S v T , where S is a b-role and T is an h-role, and

• A is a set of assertions of the form C(o) and E(o1, o2) where C is an h-concept and E an
h-role.

Example 4.12. Reconsider the Example 3.3. It is easily to check that the network ontology
Σ apart from the inequalities of the nodes (e.g. n1 6= n2) amounts to an LDL+ KB. The
inequalities in Σ are implicitly implied in LDL+, because of the unique name assumption.

Normal Form. To simplify matters, we restrict to an expressive normal form ofLDL+ knowl-
edge bases Σ as follows:

• An assertion C(o) is equivalent to the axiom {o} v C, and and similarly E(o1, o2) is
equivalent to {(o1, o2)} v E; hence, we assume that the ABox is empty and identify Σ
with its TBox.

• Every axiom B v H as above can be equivalently rewritten using the following rewriting
rules exhaustively such that H is either a concept name A, the> symbol, or ∀E.A, where
A is a concept name and E is a b-role.

– B v C uD could be rewritten as B v C and B v D;

– B v ∀E.C could be rewritten as B v ∀E.A and A v C for some new concept
name A;

• We can similarly remove conjunction from the head T of role axioms S v T , and restrict
the h-role T to role names, inverse role names, and >2.

Proposition 4.13. EveryLDL+ KB Σ can be transformed into the form described in polynomial
(in fact, in linear) time.

Proof. It immediately follows from the definition of normal form transformation.

In the sequel, we tacitly deal with such normalized LDL+ KBs.

Immediate Consequence Operator

In the following, we define an immediate consequence operator for LDL+ that allows us to
calculate the ground entailment of atoms. Moreover, we show that ground entailment for LDL+

is domain independent, and thus can be confined to the constants in the KB.
We first show that b-concepts satisfy a monotonicity property. For a given KB Σ and inter-

pretations I = (∆, ·I) and J = (∆, ·J ) over the same domain ∆, we write I ⊆ J if AI ⊆ AJ
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for concept names A in Σ and P I ⊆ PJ for role names P in Σ; note that oI = oJ for any
individual o due to the unique names assumption. Then I ⊂ J if I ⊆ J but I 6= J . We say
that a model I = (∆, ·I) of Σ is minimal, if there is no model J = (∆, ·J ) of Σ such that
J ⊂ I.

Definition 4.14. An LDL+ concept (role)C (E) is monotonic, if for each pair of interpretations
I = (∆, ·I) and J = (∆, ·J ) of Σ, I ⊆ J implies CI ⊆ CJ (EI ⊆ EJ ).

Proposition 4.15. All b-concepts and all LDL+ roles are monotonic.

Proof. This can be easily inductively proved on the structure of the concepts and roles.

Note that an h-concept ∀E.B is not monotonic. For example, take two interpretations I1, I2,
where ∆I1 = ∆I2 = {1}, EI1 = ∅, BI1 = ∅, EI2 = {(1, 1)}, and BI2 = ∅. It is easy to check
that I1 ⊆ I2, but (∀E.B)I1 = {1} 6⊆ ∅ = (∀E.B)I2 .

Recall that we can write interpretations I = (∆, ·I) as set-interpretations {A(x) | x ∈
AI} ∪ {P (x, y) | (x, y) ∈ P I} ∪ {{o}(o)} for concept (role) names A (P ), and for individuals
o. Instead of x ∈ CI ((x, y) ∈ EI), we write I |= C(x) (I |= E(x, y)) for concepts (roles) C
(E). Note that each such I contains >(x) for every x ∈ ∆ as well as >2(x, y) for all x, y ∈ ∆.

One can see that for a fixed ∆, the set I∆ of all set-interpretations over ∆ is under the usual
subset relation ⊆ a complete lattice as in [Tar55].

Indeed, it is a non-empty set, ⊆ is a partial order on I∆, and for any two sets I and J
in I∆ there is a least upper bound I ∪ J and greatest lower bound I ∩ J . Moreover, it is a
complete lattice as every subset S ⊆ I∆ has a least upper bound

⋃
S and greatest lower bound⋂

S. In particular, there are elements 0∆
∆
=
⋂
I∆ and 1∆

∆
=
⋃
I∆. Note that 0∆ is the set

{{o}(o) | o ind. in Σ} ∪ {>(x),>2(x, y) | x, y ∈ ∆}.
For an LDL+ KB Σ and a domain ∆, we then define an immediate consequence operator

T∆ on I∆ as follows, where A ranges over the concept names, P over the role names, and x, y
over ∆:

T∆(I) = I ∪ {A(x) | B v A ∈ Σ, I |= B(x)}
∪ {A(x) | B v ∀E.A ∈ Σ, I |= B(y), I |= E(y, x)}
∪ {P (x, y) | S v P ∈ Σ, I |= S(x, y)}
∪ {P (y, x) | S v P− ∈ Σ, I |= S(x, y)} .

For a set-interpretation I of Σ over ∆, T∆(I) is still a set-interpretation of Σ over ∆, so the
operator T∆ is well-defined over I∆.

As easily seen, T∆ is monotone, i.e., J ⊆ I implies T∆(J ) ⊆ T∆(I), and thus has a least
fixpoint LFP(T∆), i.e., a unique minimal I such that T∆(I) = I [Tar55].

Proposition 4.16. Let Σ be an LDL+ KB, ∆ a domain. Then, T∆ is increasing and has a least
fixpoint, i.e., there is an I ∈ I∆ such that T∆(I) = I and no J ∈ I∆ with J ⊂ I exists such
that T∆(J ) = J .
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Proof. If T∆ is increasing, the fixpoint result follows directly from [Tar55, Theorem 2]. We
show that T∆ is indeed increasing.

Assume I ⊆ J , set-interpretations of Σ over ∆; we show that T∆(I) ⊆ T∆(J ). Take an
A(x) ∈ T∆(I), then either (1) A(x) ∈ I, (2) there is a terminological axiom B v A such
that I |= B(x), or (3) there is a terminological axiom B v ∀E.A such that I |= B(y) and
I |= E(y, x) for some y ∈ ∆. Since I ⊆ J , (1) leads immediately to A(x) ∈ J ⊆ T∆(J ).
For (2), we have, due to monotonicity of B that J |= B(x) such that again A(x) ∈ T∆(J ). For
(3), we have again due to monotonicity of E and B, that J |= B(y) and J |= E(y, x) such that
A(x) ∈ T∆(J ).

The case for a P (x, y) ∈ T∆(I) can be done similarly.

This fixpoint corresponds to a model of Σ, which in fact is the single minimal model of Σ
over ∆.

Proposition 4.17. Let Σ be an LDL+ KB and let ∆ be a domain over Σ. Then, I = (∆, ·I) is
a minimal model of Σ iff I corresponds to the set-interpretation LFP(T∆).

Proof. We abbreviate in the following T∆ with T and LFP(T ) with L.
(⇒) Assume I = (∆, ·I) is a minimal model of Σ. We show that I corresponds to the set-
interpretation L. We assume I is written in its set-interpretation notation and prove that I is
indeed the least fixpoint of T .

1. I is a fixpoint, i.e., T (I) = I. Clearly, I ⊆ T (I) by definition of T . Assume T (I) 6⊆ I.
Then, there is a A(x) or a R(x, y) in T (I) that is not in I. For the case A(x), we have
that there is then (1) a B v A ∈ Σ such that I |= B(x) or (2) a B v ∀E.A ∈ Σ such
that I |= E(y, x) and I |= B(y) for some y ∈ ∆. For (1), clearly, then x ∈ BI such that
(since I is a model), x ∈ AI and thus A(x) ∈ I, a contradiction. For (2), (y, x) ∈ EI
and y ∈ BI such that, since I is a model, y ∈ (∀R.A)I and thus, with (y, x) ∈ EI , that
x ∈ AI , a contradiction. The case R(x, y) can be done similarly. Thus, T (I) = I.

2. Assume it is not a least fixpoint, then there is a J such that J ⊂ I and T (J ) = J . We
show that J = (∆, ·J ) is then a model of Σ, violating the minimality of I.

Take a terminological axiom B v H ∈ Σ and x ∈ BJ . Then J |= B(x). Assume H =
A for a concept name A, then H(x) ∈ T (J )(= J ) by definition of T such that x ∈ HJ .
Assume H = ∀E.A for a concept name A. Then, x ∈ (∀E.A)J . Indeed, if there is a
(x, y) ∈ EJ , then J |= E(x, y) such that, by definition of T , A(y) ∈ T (J ) = J such
that J |= A(y). Thus, J |= (∀E.A)(x) and x ∈ (∀E.A)J . Assume H = >, then the
axiom is trivially satisfied.

Role axioms can be treated similarly.

(⇐) Assume I = L. That I is a minimal model can be shown using similar techniques as in the
other direction by proving (1) I is model and (2) I is a minimal model.
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We show that for a given domain ∆, the minimal model is unique, i.e., if both (∆, I) and
(∆,J ) are minimal models, then I = J .

Proposition 4.18. Let Σ be an LDL+ KB and let ∆ be a domain over Σ with minimal models
I and J over ∆. Then, I = J .

Proof. Suppose that otherwise I and J are different minimal models. By Proposition 4.17, we
have that I andJ are least fixpoints of T . Using the monotonicity of the immediate consequence
operator, we have T (I ∩ J ) ⊆ T (I) = I and T (I ∩ J ) ⊆ T (J ) = J . It follows that
T (I∩J ) ⊆ I∩J . By the definition of the immediate consequence operator, I∩J ⊇ T (I∩J ).
Therefore T (I ∩ J ) = I ∩ J . In other words, I ∩ J is a fixpoint of T . Since I ∩ J ( I, we
that conclude the fixpoint I is not least. This is a contradiction.

Corollary 4.19. Let Σ be an LDL+ KB and let ∆ be a domain over Σ. Then, there exists a
unique minimal model I = (∆, ·I), denoted MM(∆,Σ), that equals LFP(T∆).

Proof. By Proposition 4.16, T∆ has a least fixpoint, which is, by Proposition 4.17, equal to the
minimal model. The latter is unique by Proposition 4.18.

Entailment checking of b-concepts can then in each domain be restricted to the unique min-
imal model for that domain.

Proposition 4.20. Let Σ be an LDL+ KB, C a b-concept, and o ∈ ∆H(Σ). Then, Σ |= C(o) iff
for all ∆, MM(∆,Σ) |= C(o).

Proof. The (⇒) follows immediately.
For (⇐), we show that if minimal models entail C(o), then all models do. Take a model

(∆, ·I0), then either the corresponding set interpretation I0 is minimal for the domain ∆ or not.
If it is, we are done, otherwise, there is a model (∆, ·I1) of Σ such that I1 ⊂ I0 for which
one repeats the above reasoning, i.e., eventually, we will have a minimal model In such that
In ⊂ . . . I1 ⊂ I0 for which In |= C(o). Since C is monotonic, we have that I0 |= C(o).

Note that the proposition does not necessarily hold if C is an h-concept. For example,
consider Σ = {{a} v A} and the h-concept C = ∀R.A, where A is a concept name and R is
a role name. Clearly, Σ 6|= ∀R.A(a). However, when we consider the domain ∆H(Σ) = {a},
MM(∆H(Σ),Σ) = {A(a)} and MM(∆H(Σ),Σ) |= ∀R.A(a).

Lemma 4.21. Let ∆0 ⊆ ∆ be two domains, C(E) a b-concept (role) expression, o, o1, o2 some
individuals in ∆0, I (J ) an interpretation on domain ∆0 (∆), and J = I ∪ {>(x),>2(x, y) |
x, y ∈ ∆}. Then I |= C(o) iff J |= C(o) and I |= E(o1, o2) iff J |= E(o1, o2).

Proof. We inductively proof this lemma on the number of connectives in C and E.
Base step. Assume that there is no connectives in concepts C or roles E, i.e., C = A, {o} or >
and E = P .

(1) If C = A, then I |= A(x) iff A(x) ∈ I iff A(x) ∈ J iff J |= A(x).

(2) If C = >, then I(J ) |= >(x) always hold.
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(3) If C = {x}, then for x ∈ ∆0, I |= {x}(o) iff x = o iff J |= {x}(o).

(4) For E = P , then I |= A(x, y) iff A(x, y) ∈ I iff A(x, y) ∈ J iff J |= A(x, y).

Inductive step. Assume that the conclusion holds on the concepts or role with number of con-
nectives ≤ k, then for the C and E with k connectives:

(1) If C = C1 u C2, then

I |= (C1 u C2)(o) iff I |= C1(o) and I |= C2(o)

iff J |= C1(o) and J |= C2(o)

iff J |= (C1 u C2)(o).

(2) If C = C1 t C2, then this case is similar with above “u” case.

(3) If C = ∃E.C1, then

I |= (∃E.C1)(o) iff I |= E(o, o′) and I |= C1(o′) for some o′ ∈ ∆0

iff J |= E(o, o′) and J |= C1(o′) for some o′ ∈ ∆0

iff(*) J |= E(o, o′) and J |= C1(o′) for some o′ ∈ ∆

iff J |= (∃E.C1)(o).

Note that the equivalence (*) relies on the property that for any o′ ∈ ∆ \ ∆0 and concept
C0, we have J 6|= C0(o′). we can inductively prove this property.

(4) C =≥ nE.C1. Similar with above “∃” case.

(5) For roles, the cases can be proved similarly.

Importantly, the only relevant interpretation domain is the Herbrand domain ∆H(Σ) of the
KB Σ.

Proposition 4.22. Let Σ be an LDL+ KB, C a b-concept, and o ∈ ∆H(Σ). Then, Σ |= C(o) iff
MM(∆H(Σ),Σ) |= C(o).

Proof. Assume ∆H(Σ) = {o1, . . . , on}, and take an arbitrary domain ∆ = {o1, . . . , on, e1, . . . , em}.
Denote {>(x),>2(x, y) | x, y ∈ ∆} by>∆. The zero elements for set-interpretations on ∆H(Σ)

and ∆ are 0∆H(Σ)
= {{o}(o) | o ∈ ∆H(Σ)} ∪ >∆H(Σ)

and 0∆ = {{o}(o) | o ∈ ∆H(Σ)} ∪ >∆.
We abbreviate in the following T k∆H(Σ)

(0∆H(Σ)
) with Ik, T k∆(0∆) with Jk.

We inductively prove that Ik ∪ >∆ = Jk for all k ≥ 0.
For k = 0, it is easy to verify that 0∆ = 0∆H(Σ)

∪ >∆.
For k + 1, take an A(x) ∈ Ik+1, then either (1) A(x) ∈ Ik, (2) there is a terminological

axiom B v A such that Ik |= B(x), or (3) there is a terminological axiom B v ∀E.A such that
Ik |= B(y) and Ik |= E(y, x) for some y ∈ ∆H(Σ). (1) leads immediately to A(x) ∈ Ik ⊆
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Jk ⊆ Jk+1 . For (2), due to Ik |= B(x), by Lemma 4.21, we also have Jk |= B(x) so that
A(x) ∈ Jk+1. For (3), we again have that Jk |= B(y) and Jk |= E(y, x) so that Jk+1 |= A(x).
The case for a P (x, y) ∈ T∆(I) can be done similarly. So we have Ik ∪ >∆ ⊆ Jk.

Using the observation that for ei, ej ∈ {e1, . . . , em}, Jk 6|= A(ei) for concept name A, and
Jk 6|= P (ei, ej) for role name P , the other direction Ik ∪ >∆ ⊇ Jk can be proved similarly,.

Now we have proved that Ik ∪ >∆ = Jk for all k ≥ 0. So we have that LFP(T∆H(Σ)
) ∪

>∆ = LFP(T∆). By Proposition 4.17, we have MM(∆H(Σ),Σ) ∪ >∆ = MM(∆,Σ). Now
by Lemma 4.21, it follows that for o ∈ ∆H(Σ) , we have MM(∆H(Σ),Σ) |= C(o) iff ∀∆,
MM(∆,Σ) |= C(o). Finally, by Proposition 4.20, we have Σ |= C(o) iff MM(∆H(Σ),Σ) |=
C(o).

Note thatMM(∆H(Σ),Σ) = LFP(T∆H(Σ)
) is effectively constructable by fixpoint iteration

(for a finite KB in finite time).
Proposition 4.22 is at the core of the argument thatLDL+ is a Datalog-rewritable DL, which

we show in the next section.

4.2.2 LDL+ is Datalog-rewritable

To show that a LDL+ KB Σ is Datalog-rewritable, we construct a suitable Datalog program
ΦLDL+(Σ) such that Σ |= Q(o) iff ΦLDL+(Σ) |= Q(o), whenever Q is a concept- or role name
appearing in Σ and o ⊆ ∆H(Σ).

Define the closure of Σ, clos(Σ), as the smallest set containing (i) all subexpressions that
occur in Σ (both roles and concepts) except value restrictions, and (ii) for each role name oc-
curring in Σ, its inverse. The closure is in other words the smallest set satisfying the following
conditions:

• > and >2 are in clos(Σ),

• every concept name A, role name R and its inverted role name R−, nominal {o}, and role
nominal {(o1, o2)} appearing in Σ is in clos(Σ),

• for each B v H a terminological axiom in Σ with H a concept name or H = >, B ∈
clos(Σ),

• for each B v ∀E.A a terminological axiom in Σ, {B,E} ⊆ clos(Σ),

• for each S v T a role axiom in Σ, S ∈ clos(Σ),

• for every concept expression D in clos(Σ), we have

– if D = D1 uD2, then {D1, D2} ⊆ clos(Σ),

– if D = D1 tD2, then {D1, D2} ⊆ clos(Σ),

– if D = ∃E.D1, then {E,D1} ⊆ clos(Σ),

– if D =≥ nE.D1, then {E,D1} ⊆ clos(Σ),

• for every role expression E in clos(Σ), we have
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– if E = F−, then F ∈ clos(Σ),

– if E = E1 u E2, then {E1, E2} ⊆ clos(Σ),

– if E = E1 t E2, then {E1, E2} ⊆ clos(Σ),

– if E = E1 ◦ E2, then {E1, E2} ⊆ clos(Σ).

– if E = E+
1 , then E1 ⊆ clos(Σ).

Formally, ΦLDL+(Σ) is the following program:

• For each axiom B v H ∈ Σ where H is a concept name, add the rule

H (X )←B(X ) (4.4)

• For each axiom B v ∀E.A ∈ Σ where A is a concept name, add the rule

A(Y )←B(X ),E (X ,Y ) (4.5)

• For each role axiom S v T ∈ Σ, add

T (X ,Y )←S (X ,Y ) (4.6)

(Here T = P− may be an inverse for a role name P .)

• For each role name P that occurs in Σ, add the rule

P(X ,Y )←P−(Y ,X ) (4.7)

• For each concept (role) name or (role) nominal Q (Q′) in clos(Σ), add the rules

>(X ) ← Q(X )
>(X ) ← Q ′(X ,Y )
>(Y ) ← Q ′(X ,Y )

(4.8)

This ensures that newly introduced constants, e.g., in the context of dl-programs, are also
assigned to >— a relevant property for modularity.

• To deduce the top role, add

>2 (X ,Y )←>(X ),>(Y ). (4.9)

• Next, we distinguish between the types of concepts D in clos(Σ):

– if D = {o}, add
D(o)← (4.10)

– if D = D1 uD2, add
D(X )←D1 (X ),D2 (X ) (4.11)
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– if D = D1 tD2, add
D(X ) ← D1 (X )
D(X ) ← D2 (X )

(4.12)

– if D = ∃E.D1, add the rule

D(X )←E (X ,Y ),D1 (Y ) (4.13)

– if D = ≥nE.D1, add

D(X ) ← E (X ,Y1 ),D(Y1 ), . . . ,E (X ,Yn),D(Yn),
Y1 6= Y2, . . . , Yi 6= Yj , . . . , Yn−1 6= Yn

(4.14)

(where 1 ≤ i < j ≤ n).

• Finally, for each role E ∈ clos(Σ):

– if E = {(o1, o2)}, add
E (o1 , o2 )← (4.15)

– if E = F−, add
E (X ,Y )←F (Y ,X ) (4.16)

– if E = E1 u E2, add

E (X ,Y )←E1 (X ,Y ),E2 (X ,Y ) (4.17)

– if E = E1 t E2, add
E (X ,Y ) ← E1 (X ,Y )
E (X ,Y ) ← E2 (X ,Y )

(4.18)

– if E = E1 ◦ E2, add

E (X ,Y )←E1 (X ,Z ),E2 (Z ,Y ) (4.19)

– if E = F+, add
E (X ,Y ) ← F (X ,Y )
E (X ,Y ) ← F (X ,Z ),E (Z ,Y )

(4.20)

The following property is immediate.

Proposition 4.23. Let Σ be an LDL+ KB . Then, ΦLDL+(Σ) is a Datalog program whose size
is polynomial in the size of Σ . Furthermore, ΦLDL+ is modular.

Proof. The size of the elements in clos(Σ) is linear in Σ . and the size of ΦLDL+Σ is polyno-
mial in Σ. The only non-trivial case in showing the latter arises by the addition of rule (4.14)
inequalities for a number restriction ≥ nQ.E. We assume, as is not uncommon in DLs (see,
e.g., [Tob00]), that the number n is represented in unary notation

11 . . . 1︸ ︷︷ ︸
n

such that the number of introduced inequalities is quadratic in the size of the number restriction.
The modularity is easy to verify.
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The next result is the main result of this section, and shows that ΦLDL+(Σ) works as desired.

Proposition 4.24. For every (normalized) LDL+ KB Σ, a concept or role name Q, and o ⊆
∆H(Σ), it holds that Σ |= Q(o) iff ΦLDL+(Σ) |= Q(o).

Proof. We only prove the case Q is a concept C, as the case Q is a role can be proved similarly.
Due to Proposition 4.22, it suffices to show that MM(∆H(Σ),Σ) |= C(o) iff ΦLDL+(Σ) |= C(o).

Define MM
∆
= MM(∆H(Σ),Σ) and Φ(Σ) = ΦLDL+(Σ).

(⇒) Assume MM |= C(o). We define an interpretation M for Φ(Σ) as follows:

M
∆
= {D(a) | D ∈ clos(Σ),MM |= D(a)} ∪ {E(a, b) | E ∈ clos(Σ),MM |= E(a, b)}

Clearly, M |= C(o), such that it remains to show that M is a minimal model of gr(Φ(Σ)).

1. M is a model of gr(Φ(Σ)). We check satisfiability of the rules in gr(Φ(Σ)).

• Take a rule H (a)←B(a) originating from (4.4) such that B(a) ∈ M . Then, by
definition of M , MM |= B(a). Since the rule (4.4) was introduced by an axiom
B v H ∈ Σ and MM is a model of Σ, we have that MM |= H(a) and thus
H(a) ∈M .

• Take a rule A(b)←B(a),E (a, b) originating from (4.5) such that B(a), E(a, b) ∈
M . Then, MM |= B(a) and MM |= E(a, b). Since the rule (4.5) originates from
an axiom B v ∀E.A, we have that MM |= (∀E.A)(a), and thus by definition of a
value restriction, MM |= A(b) such that A(b) ∈M .

• Rules originating from (4.6) can be done similarly.

• For a rule P(a, b)←P−(b, a) originating from (4.7) with P−(b, a) ∈ M , we have
that MM |= P−(b, a) such that MM |= P (a, b) and thus P (a, b) ∈M .

• Since MM |= >(o1) and MM |= >2(o1, o2), rules (4.8) and (4.9) are satisfied as
well.

• For a rule (4.10), we have that MM |= {o}(o) such that {o}(o) ∈M .

• For a rule D(a)←D1 (a),D2 (a) originating from (4.11) with D1(a), D2(a) ∈ M ,
we have MM |= D1(a) and MM |= D2(a) such that MM |= (D1 u D2)(a) and
thus (D1 uD2)(a) ∈M where D = D1 uD2.

• All remaining rules in gr(Φ(Σ)) can be verified similarly.

2. M is a minimal model of gr(Φ(Σ)). Assume it is not, then there is a model N ⊂ M of
gr(Φ(Σ)). Define a set-interpretation NN for Σ:

NN
∆
= {A(a) | A(a) ∈ N,A concept name}

∪ {P (a, b) | P (a, b) ∈ N,P role name}
∪ {>(a1),>2(a1, a2) | a1, a2 ∈ ∆H(Σ)}

∪ {{o1}(o1), {(o1, o2)}(o1, o2) | o1, o2 ∈ ∆H(Σ)}
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Clearly, NN is a set-interpretation for Σ over ∆H(Σ) the Herbrand domain of Σ (and of
Φ(Σ)). Moreover, one can show — using thatN is a model of gr(Φ(Σ)) and by induction
— that for any b-concept expression D′ and for any b-role expression E′

NN |= D′(a)⇒ D′(a) ∈ N (4.21)

and
NN |= E′(a, b)⇒ E′(a, b) ∈ N (4.22)

We show that NN ⊂ MM and that NN is a model of Σ, contradicting the minimality of
MM , such that M is indeed a minimal model of gr(Φ(Σ)).

a) NN ⊂ MM . Note that both have the same domain ∆H(Σ) and thus NN and MM
are equal on

{>(a1),>2(a1, a2) | a1, a2 ∈ ∆H(Σ)}
∪ {{o1}(o1), {(o1, o2)}(o1, o2) | o1, o2 ∈ ∆H(Σ)}

We show first that NN ⊆ MM . Take a A(a) ∈ NN , then A(a) ∈ N ⊂ M
such that, by definition of M , MM |= A(a), i.e., A(a) ∈ MM (MM seen as a
set-interpretation); and similarly for a P (a, b) ∈ NN .
Since N ⊂ M there is a D(a) ∈ M \ N or a E(a, b) ∈ M \ N . Assume D(a) ∈
M \N . Then, MM |= D(a) and by (4.21) NN 6|= D(a). Since D is an b-concept
expression (M only contains b-concept expressions) it is monotonic (Proposition
4.15) and thus MM 6⊆ NN . Together with NN ⊆ MM , we have that NN ⊂ MM .

b) NN is a model of Σ. One can prove this using that N is a model of gr(Φ(Σ))
together with (4.21) and (4.22). For example, for an axiom B v A with concept
nameA and NN |= B(a), we have that (A(a)←B(a)) ∈ gr(Φ(Σ)) and, via (4.21)
that B(a) ∈ N . Such that, since N is a model of gr(Φ(Σ)), A(a) ∈ N . For concept
names A, we then have that A(a) ∈ NN and thus NN |= A(a).

(⇐)
Assume ΦLDL+(Σ) |= C(o).
Let MM ′ = MM(ΦLDL+(Σ)) be the minimal model ΦLDL+(Σ) of Σ .
We can show that MM ′ is a minimal model of Σ and it is also minimal using the similar

technique in the (⇒) direction. It follows that Σ |= C(o) by Proposition 4.22.

Corollary 4.25. LDL+ is (polynomial) Datalog-rewritable.

Proof. Indeed, take ΦLDL+ = Φ as in Proposition 4.24.

Example 4.26. Take the network ontology from Example 3.3.
(1) The following rules are from the closure of the concepts and roles.
For concept (≥ 1.wired), we add the following rule to ΦLDL+(Σ):
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(≥ 1.wired)(X)← wired(X,Y ).

For concept ∀wired .Node , we add the following rule:

Node(Y )← wired(X,Y ).

For role wired , we have

(wired−)(X,Y )← wired(Y,X).

For concept (≥ 4wired), we have

(≥ 4wired)(X)← wired(X,Y1),wired(X,Y2),wired(X,Y3),wired(X,Y4),

Y1 6= Y2, Y1 6= Y3, Y1 6= Y4, Y2 6= Y3, Y2 6= Y4, Y3 6= Y4.

(2) Each TBox axiom is replaced by a rule:
For TBox axiom ≥ 1.wired v Node, we add the following:

Node(X)← (≥ 1.wired)(X).

For TBox axiom > v ∀wired .Node , we add the following rule:

Node(Y )← wired(X,Y ).

For TBox axiom ≥ 4wired v HighTrafficNode , we have

HighTrafficNode(X)← (≥ 4wired)(X).

(3) Finally, the ABox assertions in Σ (e.g., Node(n1)) are transformed to Datalog facts
directly. Note that after transformation, ni 6= nj , 1 ≤ i < j ≤ 5, is dropped because of the
Unique Name Assumption (UNA) adopted by Datalog.

From the complexity of Datalog, we obtain by Datalog-rewritability of LDL+ immediately
that it is tractable under data complexity. Moreover, due to the structure of ΦLDL+(Σ), the same
holds under combined complexity.

Corollary 4.27. For every LDL+ KB Σ, concept name A, and o ∈ ∆H(Σ), deciding Σ |= A(o)
is in Punder both data and combined complexity.

Proof. All rules in ΦLDL+(Σ) except (4.14) can be grounded in polynomial time (they use
only constantly many variables). The rule (4.14) can be partially grounded for all values of X;
whether the body of such a partially grounded rule can be satisfied in a given set of ground
atoms is easily decided in polynomial time; hence, we can compute MM(ΦLDL+(Σ)) by simple
fixpoint iteration in polynomial time.
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OWL 2 RL. The OWL 2 RL Profile extends so-called Description Logic Programs [Gro+03].
The latter have a classical model semantics and correspond to the restriction of LDL+ to con-
junction and disjunction of concepts, exists restrictions, and value restrictions. Thus, Description
Logic Programs are a strict subset of LDL+, missing, e.g., nominals, qualified number restric-
tions, and role constructors.

Proposition 4.28. Description Logic Programs are a fragment of LDL+, and thus polynomially
Datalog-rewritable.

Transitive Closure vs Transitive Roles
It is a classical result that transitive closure of a binary relation can not be expressed in first

order logic; cf. [Bry+07, p.33–p.35]. In practice, in first-order logic (e.g. in OWL 2 RL), the
transitive property is often used as an approximation of transitive closure.

There are some subtle differences between transitive closure and transitive roles. We show
how it affects the reasoning results by the following example. Let LG = {edge(a, b), edge(b, c),
edge(a, d)} be an ontology about a graph. The task is to compute the reachability between the
nodes. In RL, one may attempt to use the following axioms introducing an new property reach:

TG = {edge v reach, trans(reach)}.

With TG, we can correctly compute all the reachability relations:

LG ∪ TG |= reach(a, b), reach(a, c), reach(b, c), reach(a, d)

However, we cannot conclude that two nodes are unreachable by TG. For example, the fact
that c and d are unreachable is not a logical consequence:

LG ∪ TG 6|= ¬reach(c, d).

Intuitively, the problem comes from no minimality restriction on the first-order models. The
pair (cI , dI) can be added to reachI for any model I of LG ∪ TG freely while not changing the
satisfiability. In contrast, using the transitive closure expression in LDL+, we produce not only
the positive results, but also negative information, e.g.,

LG |= ¬edge+(c, d).

Note that the translation of the transitive closure of a role expression E+ results in the
recursive rules (4.20) such that, in contrast with Description Logic Programs, the transformation
ΦLDL+ is not a first-order rewriting, justifying the term Datalog-rewritable. Although DLs with
expressive role constructs such as role sequence, role disjunction and transitive closure tend to
become undecidable (e.g., ALC+N (◦,t) [BS96]), LDL+ remains decidable. Moreover, it has
a Herbrand domain model property (a finite model property where the domain is the Herbrand
domain). Indeed, from [BS96] one can see that the undecidability proofs for expressive DLs
extensively use functional restrictions on roles, a feature which LDL+ cannot express.
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Concept constructor Syntax Semantics

top > ∆I

bottom ⊥ ∅
conjunction C uD CI ∩DI
existential restriction ∃R.C {x ∈ ∆I | 〈x, y〉 ∈ RI , for some y ∈ CI}
nominal {a} {aI}

Axiom Syntax Semantics

concept assertion C(a) aI ∈ CI
role assertion R(a, b) 〈a, b〉 ∈ RI
concept inclusion (GCI) C v D CI ⊆ DI
role inclusion R v T RI ⊆ T I
generalized role inclusion R ◦ S v T {〈x, z〉 | 〈x, y〉 ∈ RI , 〈y, z〉 ∈ RI for some y} ⊆ T I
role conjunction S1 u S2 v T SI1 ∩ SI2 ⊆ T I
concept production C ×D v T CI ×DI ⊆ T I

R v C ×D RI ⊆ CI ×DI

Table 4.1: Syntax and semantics of SROEL(u,×)

4.3 OWL 2 EL

The description logic EL is another important family of lightweight DLs. One feature missing
in LDL+ is the existential quantifier occurring in the right hand side of the concept inclusion
axioms. For example, in the well known biomedical ontology Galen 2, axioms in the form of
A ≡ B u ∃R.C are heavily used, e.g.,

LeftEar ≡ Ear u ∃hasLeftRightSelector.leftSelection,

which cannot be expressed in LDL+.
We consider the DL SROEL(u,×) [Krö10], whose syntax and semantics are given in Ta-

ble 4.1. A SROEL(u,×) KB is a set of SROEL(u,×) axioms under the restriction of using
non-simple roles [Krö10]. It is a superset of OWL 2 EL [Mot+12] disregarding datatypes, and
adds concept production, which can be seen as a generalization of domain and role restriction.

Krötzsch shows a Datalog encoding for SROEL(u,×) describing a proof system [Krö10;
Krö11]. Every TBox axiom, ABox axiom, concept name, role name, and individual is trans-
formed to a fact by an input translation Iinst in Table 4.2. A fixed set Pinst in Table 4.2 contains
the derivation rules, which are independent of the concrete SROEL(u,×) ontology.

In the following, for simplicity, when we say EL, we always mean SROEL(u,×). For an
EL ontology L, define a Datalog transformation by

ΦEL(L) = Pinst ∪ {Iinst(α) | α ∈ L} ∪ {Iinst(s) | s ∈ NI ∪NC ∪NR} . (4.23)

2http://www.opengalen.org
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C(a) isa(a,C) R(a, b) triple(a,R, b) a ∈ NI  nom(a)

> v C  top(C) A v ⊥ bot(A) A ∈ NC  cls(A)

{a} v C  subClass(a,C) A v {c} subClass(A, c) R ∈ NR  rol(R)

A v C  subClass(A,C) A uB v C  subConj(A,B,C)

∃R.Self v C  subSelf(R,C) A v ∃R.Self  supSelf(A,R)

∃R.A v C  subEx(R,A,C) A v ∃R.B  supEx(A,R,B, eAv∃R.B)

R v T  subRole(R, T ) R ◦ S v T  subRChain(R,S, T )

R v C ×D  supProd(R,C,D) A×B v R subProd(A,B,R)

R u S v T  subRConj(R,S, T )

Table 4.2: Input translation Iinst

Theorem 4.29 ([Krö10]). Given an EL ontology L, the transformation ΦEL is sound and com-
plete w.r.t. instance checking, i.e., (i) L |= C(a) iff ΦEL(L) |= isa(a,C), and (ii) L |= R(a, b)
iff ΦEL(L) |= triple(a,R, b).

Since the rules in Pinst have constant number of variables, evaluation of the Datalog pro-
gram ΦEL(L) can be done in polynomial time. For more discussion about the complexity and
how to extend this calculus to concept classification, see [Krö10; Krö11].

Example 4.30. Let L1 = {A(a), A v ∃R.B, B v C, ∃R.C v D}, and suppose we want to
decide L1 |= D(a). The axioms of L1 and the signatures NI , NC , and NR are transformed to
facts in ΦEL(L1):{

isa(a,A); supEx (A,R,B, eAv∃R.B); subClass(B,C); subEx (R,C,D);
nom(a); cls(A); cls(B); cls(C); cls(D); rol(R)

}
.

Then, P inst is added to ΦEL(L1); in particular, also the rules

isa(X,X)← nom(X)

isa(X,Z)← subClass(Y, Z), isa(X,Y )

isa(X1, Z)← subEx(V, Y, Z), triple(X1, V,X2), isa(X2, Y )

triple(X1, V,X2)← supEx(Y, V, Z,X2), isa(X1, Y )

isa(X2, Z)← supEx(Y, V, Z,X2), isa(X1, Y )

From these rules and the above facts, isa(a,D) is derivable, and thus ΦEL(L1) |= D(a).

Note that strictly, ΦEL(L) is not a Datalog rewriting as defined in Definition 4.1. The mis-
match is that ABox assertions (e.g., C(a)) are transformed into reified versions (e.g., isa(a,C));
this is easily fixed by using reification rules

P re = {C(X)← isa(X,C); isa(X,C)← C(X) | C ∈ NC} ∪
{R(X,Y )← triple(X,R, Y ); triple(X,R, Y )← R(X,Y ) | R ∈ NR} .

73



isa(X,X)← nom(X)

self(X,V )← nom(X), triple(X,V,X)

isa(X,Z)← top(Z), isa(X,Z ′)

isa(X,Y )← bot(Z), isa(U,Z), isa(X,Z ′), cls(Y )

isa(X,Z)← subClass(Y, Z), isa(X,Y )

isa(X,Z)← subConj(Y1, Y2, Z), isa(X,Y1), isa(X,Y2)

isa(X,Z)← subEx(V, Y, Z), triple(X,V,X ′), isa(X ′, Y )

isa(X,Z)← subEx(V, Y, Z), self(X,V ), isa(X,Y )

triple(X,V,X ′)← supEx(Y, V, Z,X ′), isa(X,Y )

isa(X ′, Z)← supEx(Y, V, Z,X ′), isa(X,Y )

isa(X,Z)← subSelf(V,Z), self(X,V )

self(X,V )← supSelf(Y, V ), isa(X,Y )

triple(X,W,X ′)← subRole(V,W ), triple(X,V,X ′)

self(X,W )← subRole(V,W ), self(X,V )

triple(X,W,X ′′)← subRChain(U, V,W ), triple(X,U,X ′), triple(X ′, V,X ′′)

triple(X,W,X ′)← subRChain(U, V,W ), self(X,U), triple(X,V,X ′)

triple(X,W,X ′)← subRChain(U, V,W ), triple(X,U,X ′), self(X ′, V )

triple(X,W,X)← subRChain(U, V,W ), self(X,U), self(X,V )

triple(X,W,X ′)← subRConj(V1, V2,W ), triple(X,V1, X
′), triple(X,V2, X

′)

triple(X,W,X ′)← subProd(Y1, Y2,W ), isa(X ′, Y2), isa(X,Y1)

self(X,W )← subProd(Y1, Y2,W ), isa(X,Y2), isa(X,Y1)

isa(X,Z1)← supProd(V,Z1, Z2), triple(X,V,X ′)

isa(X,Z1)← supProd(V,Z1, Z2), self(X,V )

isa(X ′, Z2)← supProd(V,Z1, Z2), triple(X,V,X ′)

isa(X,Z2)← supProd(V,Z1, Z2), self(X,V )

self(X,W )← subRConj(V1, V2,W ), self(X,V1), self(X,V2)

isa(Y, Z)← isa(X,Y ), nom(Y ), isa(X,Z)

isa(X,Z)← isa(X,Y ), nom(Y ), isa(Y,Z)

triple(Z,U, Y )← isa(X,Y ), nom(Y ), triple(Z,U,X).

Table 4.3: Deduction rules Pinst

Then Φ′EL(L) = (ΦEL(L) \ {Iinst(α) | α ∈ A})∪P re ∪A is a proper Datalog rewriting.
However, in the following, for convenience, we will use ΦEL, instead of Φ′EL.
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4.4 Horn-SHIQ
The Datalog reduction used in the previous sections for LDL+ and SROEL has some nice
complexity properties. The reduction can be done in polynomial time, and the resulting Datalog
program can also be evaluated in polynomial time. Now we move to a more expressive DL
Horn-SHIQ, the Horn fragment of the DL SHIQ. The (combined) complexity of Horn-SHIQ
is EXPTIME-complete () P), so we can not expect a worst-case polynomial Datalog rewrit-
ing algorithm resulting Datalog program which can be evaluated in polynomial time. Indeed,
simply combining the writing results of LDL+ and EL is sound but incomplete [KMR10].
Ortiz el al.[ORS10] presents a polynomial rewriting of Horn-SROIQ to Datalog with large
number of variables in the rules, which is mainly of theoretical interest for proving complexity
results. Later, a more practical algorithm (still EXPTIME in the worse case) for conjunctive
query answering over Horn-SHIQ is presented in [Eit+12b]. This algorithm has three main
components: (1) completion of TBox, (2) rules for ABox completion, and (3) rewriting queries
w.r.t to the completed TBox. Components (1) and (2) are sufficient for instance queries and will
be presented in the following of this section; component (3) will be discussed in Section 5.3.

4.4.1 Syntax and Semantics of Horn-SHIQ
We first recall the syntax of DLs SHIQ and Horn-SHIQ. The concept and role expressions
allowed in SHIQ can be found in Table 2.3 of Section 2.3.1.

• An expression C vD, where C,D are concepts, is a general concept inclusion axiom
(GCI).

• An expression rv s, where r, s are roles, is a role inclusion (RI).

• A transitivity axiom is an expression trans(r), where r is a role. A role s is transitive
in TBox T if trans(s) ∈ T or trans(s−) ∈ T . A role s is simple in T if there is no
transitive r in T s.t. r v∗T s.

A set T of axioms of GCIs, RIs and transitivity axioms is a SHIQ TBox if roles in concepts
of the form >n r.C and 6n r.C are simple.3

A TBox T is a Horn-SHIQ TBox (in normalized form), if each GCI in T takes one the
following forms:

(F1) A1 u . . . uAnvB, (F3) A1v∀r.B,
(F2) A1v∃r.B, (F4) A1v61 r.B,

where A1, . . . , An, B are concept names and r is a role. Axioms (F2) are called existential.
Without loss of generality, we treat here only Horn-SHIQ TBoxes in normalized form; our
results generalize to full Horn-SHIQ by means of TBox normalization; see e.g. [Kaz09a;
KRH07] for a definition and normalization procedures.

3In the literature, some researchers put RIs and transitivity axioms into a separate RBox. For simplicity, we do
not use a separate RBox in this section.
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A Horn-ALCHIQ TBox is a Horn-SHIQ TBox with no transitivity axioms. Horn-ALCHIQu
TBoxes are obtained by allowing role conjunction r1 u r2, where r1, r2 are roles and in any in-
terpretation I, (r1 u r2)I = rI1 ∩ rI2 (we use it for a similar purpose as [Gli+08]). We let
inv(r1 u r2) = inv(r1) u inv(r2) and assume w.l.o.g. that for each role inclusions r v s of
an Horn-ALCHIQu TBox T , (i) inv(r) v inv(s) ∈ T , and (ii) s ∈ {p, p−} for a role name
p. For a set W and a concept or role conjunction Γ = γ1 u . . . u γm, we write Γ ⊆ W for
{γ1, . . . , γm} ⊆W .

It is handy to eliminate transitivity axioms from SHIQ TBoxes (see, e.g.,[HMS07]). We
use the transformation from [Kaz09a], which ensures the resulting TBox is in normal form.

Definition 4.31. Let T ∗ be the Horn-ALCHIQ TBox obtained from a Horn-SHIQ TBox T
by (i) adding for every A v ∀s.B ∈ T and every transitive role r with r v∗T s, the axioms
Av ∀r.Br, Br v ∀r.Br and Br v B, where Br is a fresh concept name; and (ii) removing all
transitivity axioms.

The transformation does not preserve answers to CQs where non-simple roles occur. How-
ever, we can relax the notion of match and then use the translated TBox for answering arbitrary
CQs.

Definition 4.32. Let T be a Horn-SHIQ TBox. A T -match for a query q in an interpretation
I is a mapping π from variables of q to elements in ∆I that satisfies the following:

(a) If α = p(~t) is a body atom in q, where p ∈ NC or p is a simple role in T , then π(~t)∈ pI .

(b) If α = s(x, y) with s non-simple, then there exist a transitive rv∗T s and d1 ∈ ∆I , . . . , dk ∈
∆I such that d1 = π(x), dk = π(y), and (di, di+1) ∈ rT for all each 1 ≤ i < k; we call
this sequence d1 ∈ ∆I , . . . , dk ∈ ∆I an r-path from π(x) to π(y).

The set ansT (O, q) is defined as ans(O, q) but using T -matches instead of matches. The
next characterization follows from known techniques, see e.g. [EOS12] for a similar result.

Proposition 4.33. For any Horn-SHIQ ontologyO = (T ,A) and CQ q, we have ans(O, q) =
ansT ((T ∗,A), q).

4.4.2 Canonical Models

A stepping stone for the tailored query answering methods for Horn DLs and languages like
Datalog± is the canonical model property [Eit+08c; ORS11; CGL09]. In particular, for a con-
sistent Horn-ALCHIQu ontology O = (T ,A), there exists a model I of O that can be homo-
morphically embedded into any other model I ′ of O. We show that such an I can be built in
three steps:

(1) Close T under specially tailored inferences rules.
(2) Close A under all but existential axioms of T .
(3) Extend A by “applying” the existential axioms of T .

For Step (1), we tailor from the inference rules in [Kaz09a; ORS10] a calculus to support
model building for Horn-ALCHIQu ontologies.

76



M v ∃S.(N uN ′) N vA
M v ∃S.(N uN ′ uA)

Rc
v

M v ∃(S u S′).N S v r
M v ∃(S u S′ u r).N

Rr
v

M v ∃S.N u ⊥
M v⊥

R⊥

M v ∃(S u r).N Av ∀r.B
M uAv ∃(S u r).(N uB)

R∀
M v ∃(S u inv(r)).(N uA) Av ∀r.B

M vB R−∀

M v ∃(S u r).(N uB) Av 61 r.B M ′ v ∃(S′ u r).(N ′ uB)

M uM ′ uAv ∃(S u S′ u r).(N uN ′ uB)
R≤

M v ∃(S u inv(r)).(N1 uN2 uA) Av 61 r.B N1 uAv ∃(S′ u r).(N ′ uB u C)

M uB v C M uB v ∃(S u inv(S′ u r)).(N1 uN2 uA)
R−≤

Table 4.4: Inference rules. M (′), N (′), (resp., S(′)) are conjunctions of atomic concepts (roles); A,B
are atomic concepts

B(y) ← A(x), r(x, y) for each Av ∀r.B ∈ T
B(x) ← A1(x), . . . , An(x) for all A1u . . .uAnvB ∈Ξ(T )

r(x, z) ← r(x, y), r(y, z) for all transitive roles r in T
r(x, y) ← r1(x, y), . . . , rn(x, y) for all r1 u . . . u rn v r ∈ T
⊥(x) ← A(x), r(x, y1), r(x, y2), B(y1), B(y2), y1 6= y2 for each Av 61 r.B ∈ T

Γ ← A(x), A1(x), . . . , An(x), r(x, y), B(y)
for all A1u . . .uAn v ∃(r1u . . .urm).(B1u . . .uBk)
and Av 61 r.B of Ξ(T ) such that r = ri and B = Bj for some i, j
with Γ ∈ {B1(y), . . . , Bk(y), r1(x, y), . . . , rk(x, y)}

Table 4.5: (Completion rules) Datalog program cr(T ).

Definition 4.34. Given a Horn-ALCHIQu TBox T , Ξ(T ) is the TBox obtained from T by
exhaustively applying the inference rules in Table 4.4.

For Step (2), we use Datalog rules that express the semantics of GCIs, ignoring existential
axioms.

Definition 4.35. Given a Horn-ALCHIQu TBox T , cr(T ) is the Datalog program described
in Table 4.5.

Given a consistent Horn-ALCHIQu ontology O = (T ,A), the least model J of the
Datalog program cr(T ) ∪ A is almost a canonical model of O; however, existential axioms
may be violated. We deal with this in Step (3), by extending J with new domain elements as
required by axioms Av ∃r.N in Ξ(T ), akin to database chase [MM79] where fresh values and
tuples are introduced to satisfy the given dependencies.

Definition 4.36. Let T be a Horn-ALCHIQu TBox and I an interpretation. A GCIMv∃S.N
is applicable at e ∈ ∆I if

(a) e ∈MI ,
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(b) there is no e′ ∈ ∆I with (e, e′) ∈ SI and e′ ∈ NI ,

(c) there is no axiom M ′v∃S′.N ′ ∈ T such that e ∈ (M ′)I , S ⊆ S′, N ⊆ N ′, and S ⊂ S′ or
N ⊂ N ′.

An interpretation J obtained from I by an application of an applicable axiom M v ∃S.N at
e ∈ ∆I is defined as:

- ∆J = ∆I ∪ {d} with d a new element not present in ∆I (we call d a successor of e),

- For each atomic A ∈ NC and o ∈ ∆J , we have o ∈ AJ if a) o ∈ ∆I and o ∈ AI; or b) o = d
and A ∈ N .

- For each role name r and o, o′ ∈ ∆J , we have (o, o′) ∈ rJ if a) o, o′ ∈ ∆I and (o, o′) ∈ rI;
or b) (o, o′) = (e, d) and r ∈ S; or c) (o, o′) = (d, e) and inv(r) ∈ S.

We denote by chase(I, T ) a possibly infinite interpretation obtained from I by applying the
existential axioms in T . We require the application to fair: the application of an applicable
axiom can not be infinitely postponed.

We note that chase(I, T ) is unique up to renaming of domain elements. As usual in DLs, it
can be seen as a ‘forest’: application of existential axioms simply attaches ‘trees’ to a possibly
arbitrarily shaped I. The following statement can be shown similarly as in [ORS11].

Proposition 4.37. Let O= (T ,A) be a Horn-ALCHIQu ontology. Then O is consistent iff
A ∪ cr(T ) consistent. Moreover, if O is consistent, then

(a) chase(MM (A ∪ cr(T )),Ξ(T )) is a model of O, and

(b) chase(MM (A ∪ cr(T )),Ξ(T )) can be homomorphically embedded into any model of O.

Proof. Let O= (T ,A) be a Horn-ALCHIQu ontology.
Suppose O is consistent and J is a model of O. We first show that A∪ cr(T ) is consistent,

and afterwards show (a) and (b). Due to the UNA, we can w.l.o.g. assume that aJ = a for each
constant a ∈ NI. A model of A ∪ cr(T ) can built by simply restricting the domain of J to
constants. Let J ′ be the interpretation such that

- ∆J
′

= NI;

- AJ
′

= AJ ∩∆J
′

and rJ
′

= rJ ∩∆J
′ ×∆J

′
, for all concepts names A and role names r.

J ′ is a model of A∪ cr(T ) because J is a model of T and since all axioms in Ξ(T ) are logical
consequences of T .

Assume the least model IA of A ∪ cr(T ), which exists due to consistency A ∪ cr(T ). Let
IO = chase(IA,Ξ(T )). We show next that IO is a model of O, i.e. show (a). To show the
statement we need some book-keeping when building IO. We assume ∆IA = NI and prescribe
the naming of fresh domain elements introduced during the chase procedure. In particular, if d
is a successor of e according to Definition 4.36, then d is an expression of the form e · n, where
n is a integer. We show that IO satisfies each statement in O:
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(1) For assertions A(a) ∈ A and r(a, b) ∈ A, we have aIA ∈ AIA and (aIA , bIA) ∈ rIA

because IA is a model of A ∪ cr(T ). We have aIO ∈ AIO and (aIO , bIO) ∈ rIO because
IO is an extension IA by construction.

(2) Assume an axiom M vB ∈ Ξ(T ), where M is a conjunction of atomic concepts, and also
assume a domain element e ∈ MIO . Note that T ⊆ Ξ(T ). If e ∈ NI, then e ∈ BIO

since IA is a model of A ∪ cr(T ). Assume e = w ·n. We know e is a successor of w
introduced in IO by an application of some M ′ v ∃S.N ∈ Ξ(T ). By the construction of
IO, e satisfies exactly the atomic concepts in N . It remains to see that B ∈ N . This follows
from the inference rule (Rc

v). Indeed, if B 6∈ N , then we can apply (Rc
v) to obtain the

axiom M ′ v ∃S.N uB ∈ Ξ(T ). This makes M ′ v ∃S.N ∈ Ξ(T ) inapplicable at e due a
violation of (c) in Definition 4.36.

(3) To show that existential axioms are satisfied, first take an arbitrary domain element e ∈ AIO .
We say M v ∃S.N ∈ Ξ(T ) is relevant for e if there is no axiom M ′ v ∃S′.N ′ ∈ T such
that e ∈ (M ′)I , S ⊆ S′, N ⊆ N ′, and S ⊂ S′ or N ⊂ N ′. To prove that IO satisfies
each existential axiom of Ξ(T ), it suffices to show that IO satisfies each existential axiom
that is relevant for e. To this end, assume M v ∃S.N ∈ Ξ(T ) relevant for e. Suppose
e ∈ MIO and e 6∈ (∃S.N)IO . Then M v ∃S.N ∈ Ξ(T ) is applicable in IO at e according
to Definition 4.36. This leads to a contradiction: by the fairness of chase, the axiom M v
∃S.N ∈ Ξ(T ) must be applied and thus e ∈ (∃S.N)IO .

(4) Assume an axiomAv∀r.B ∈ T and a domain element e ∈ AIO . Suppose there is e′ ∈ ∆IO

such that (e, e′) ∈ rIO and e′ 6∈ BIO . Due to the definition of IO, we have 3 possible cases:

(i) e, e′ ∈ NI and (e, e′) ∈ rIA . We have that e′ ∈ BIO because IA is a model of
A ∪ cr(T ) by assumption.

(ii) e′ = e · n for some integer n, where e′ was introduced by applying some axiom
Mv∃S.N ∈ Ξ(T ). Note that, by the construction of IO, we must have e ∈MIO and
r ∈ S. From the inference rule (R∀) we know that M u A v ∃S.(N uB) ∈ Ξ(T ).
We know that e ∈ (M u A)IO . Then due to maximality of M v ∃S.N at e, we have
N uB = N , i.e. B ∈ N . By the construction of IO, e′ ∈ BIO .

(iii) e = e′ · n for some integer n, where e was introduced by applying some axiom M v
∃S.N ∈ Ξ(T ). By the construction of IO, we have r− ∈ S and A ∈ N . Then by the
inference rule (R−∀ ), we have M vB ∈ Ξ(T ). We have already shown above that IO
satisfies M vB. Since e′ ∈MIO by the construction of IO, we have e′ ∈ AIO .

(5) Assume a role inclusion S v r ∈ Ξ(T ) and a pair (e, e′) ∈ SIO . Due to the definition of
IO, we have 2 possible cases:

(i) e, e′ ∈ NI. Then (e, e′) ∈ rIO because IA is a model of A ∪ cr(T ) by assumption.

(ii) e′ = e · n for some integer n, where e′ was introduced by applying some axiom
M v ∃S′.N ∈ Ξ(T ) with S ⊆ S′. We know from the inference rule (Rr

v) that
Mv∃S′ u r.N ∈ Ξ(T ). Due to maximality ofMv∃S′.N , we must have S′ur = S′,
which implies (e, e′) ∈ rIO .
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(iii) e = e′ · n for some integer n, where e was introduced by applying some axiom M v
∃S′.N ∈ Ξ(T ) with S− ⊆ S′. Note that S− v r− ∈ T (see preliminaries). We know
from the inference rule (Rr

v) thatMv∃S′ u r−.N ∈ Ξ(T ). Again, due to maximality
of M v ∃S′.N , we must have S′ u r− = S′, which implies (e′, e) ∈ (r−)IO and
(e, e′) ∈ rIO .

(6) Assume an axiom Av 61 r.B ∈ T and a domain element e ∈ AIO . Suppose there is
e1, e2 ∈ ∆IO such that e1 6= e2, { (e, e1), (e, e2) } ⊆ rIO and { e1, e2 } ⊆ BIO . We have
the following possible cases:

(i) { e1, e2 } ⊆ NI. Then by the construction of IO we must have e ∈ NI. We arrive
at a contradiction to the assumption that IA is a model of A ∪ cr(T ); the constraint
representing Av 61 r.B ∈ T must be violated.

(ii) e1, e ∈ NI and e2 is of the form e2 = e ·n for some integer. Assume e2 was introduced
by applying an applicable axiom M v ∃S.N ∈ Ξ(T ) at e. Note we have e ∈ MIO .
By a rule of the last type in Table 4.5, we have that e1 ∈ NIA and (e, e1) ∈ SIA . This
shows that M v ∃S.N ∈ Ξ(T ) was never applicable at e. Contradiction.

(iii) e2, e ∈ NI and e1 is of the form e1 = e ·n for some integer. Symmetric to the above.

(iv) e1, e2 are of the form e1 = e ·n and e2 = e ·n′. Suppose e1, e2 where introduced
by applying axioms M v ∃S.N ∈ Ξ(T ) and M ′ v ∃S.N ∈ Ξ(T ) at e. Then by
the construction of IO we have r ∈ S, r ∈ S′, B ∈ N and B ∈ N ′. Then by the
inference rule (R≤), we have M uM ′ u A v ∃(S u S′).(N uN ′) ∈ Ξ(T ). Since
e ∈ (M uM ′ uA)IO , we have a violation of applicability of M v∃S.N ∈ Ξ(T ) and
M ′ v ∃S.N ∈ Ξ(T ) at e, i.e. they are not maximal.

(v) e = e1 ·n and e2 = e ·n′ obtained by applying some axioms M v ∃S.N ∈ Ξ(T ) and
M ′ v ∃S′.N ′ ∈ Ξ(T ) at e1 and e, respectively. By the construction of IO, we have
have A ∈ N , r− ∈ S, r ∈ S′ and B ∈ N ′. Then by the inference rule (R−≤), we have
M u B v C ∈ Ξ(T ) for all C ∈ N ′ and also M u B v ∃(S u (S′)−).N ∈ Ξ(T ).
Since e1 ∈ (M u B)IO , we have (S−)− ⊂ S by the maximality of M v ∃S.N . Due
to point (2) in this proof, we also have e1 ∈ CIO for all C ∈ N ′. This shows that
M ′ v ∃S′.N ′ ∈ Ξ(T ) was not applicable at e, i.e. maximality violated.

(7) It remains to see that ⊥IO = ∅. First note that NI ∩ ⊥IO = ∅ because IA is a model of
A ∪ cr(T ). Thus it suffices to prove the following statement: if e ·n ∈ ⊥IO , then also
e ∈ ⊥IO . Assume some e ·n ∈ ⊥IO . Suppose e ·n was introduced by applying an axiom
M v ∃S.N ∈ Ξ(T ). Then by the definition of IO, ⊥ ∈ N . By the inference rule (R⊥), we
have M v⊥ ∈ Ξ(T ). Since e ∈MIO , by point (2) in this proof we have e ∈ ⊥IO .

It remains to see (b), i.e. that IO can be homomorphically embedded into any model I of
O. A homomorphism h from IO to I can be inductively defined as follows:

- h(e) = eI for all e ∈ NI ∩∆IO . It is straightforward to see that e1 ∈ AIO and (e1, e2) ∈ rIO
imply e1 ∈ AI and (e1, e2) ∈ rI for all e1, e2 ∈ NI, concepts A and roles r.
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- Assume e ·n ∈ ∆IO was introduced in IO by an application ofMv∃S.N ∈ Ξ(T ). Note that
e ∈ MIO . It suffices to define h(e ·n) = e′ where e′ ∈ ∆I is an element such that S ⊆ { r |
(h(e), e′) ∈ rI } and N ⊆ { A | e′ ∈ AI }. Note that such e′ exists. Indeed, by the induction
hypothesis, h(e) ∈MI . Since I is a model of Ξ(T ), we must have h(e) ∈ (∃S.N)I .

It remains to show that consistency of A ∪ cr(T ) implies consistency of O. Assume O
is inconsistent and suppose A ∪ cr(T ) is consistent. Then there exists the least model IA of
A ∪ cr(T ), and thus IO = chase(MM (A ∪ cr(T )),Ξ(T )) is defined. As we shown in (a),
IO |= O. Contradiction.

In database terms, this means that (1) checking consistency of O = (T ,A) reduces to
evaluating the (plain) Datalog query cr(T ) over the database A; (2) answering concept query
C(a) over O = (T ,A) reduces to the boolean Datalog query {q ← C(a)} ∪ cr(T ) over A.

Note that Ξ(T ) can be computed in exponential time in size of T : the calculus only infers
axioms of the form M v B and M v ∃S.N , where M,N are conjunctions of atomic concepts,
B is atomic and S is a conjunction of roles. The number of such axiom is single exponential in
the size of T .

Example 4.38. Let Σ = (T ,A) be a Horn-SHIQ ontology, where

T =

{
(t1) A1 v ∃R.A2, (t2) B1 v ∀R.B2,

(t3) A2 uB2 v C, (t4) ∃R.C vD

}
,

and A = {A1(a), B1(a)}. It is not difficult to see Σ |= D(a). In the following we show how to
reduce this instance query to a Datalog query over A.

First, the TBox axiom (t4) is normalized to

(t′4) C v ∀R−.D

Next, T is saturated as following:

(t5) A1 uB1 v ∃R.(A2 uB2) R∀(t1, t2)
(t6) A1 uB1 v ∃R.(A2 uB2 u C) Rc

v(t3, t5)

(t7) A1 uB1 v C R−∀ (t′4, t6)

Then the completion rules cr(T ) are

B2(X)←B1(X), R(X,Y ) (t2)

C(X)←A2(X), B2(X) (t3)

D(X)←R(X,Y ), C(Y ) (t′4)

C(X)←A1(X), B1(X) (t7)

Finally, we can check that cr(T ) ∪ A |= D(a) holds as we expected.

81



4.5 Go Beyond Instance Queries

So far in this chapter we have only considered dl-atoms with positive instance queries of concept
or role names. Recall that a dl-query Q(t) is either

(a) a concept inclusion axiom F or its negation ¬F ; or

(b) of the forms C(t) or ¬C(t), where C is a concept, and t is a term; or

(c) of the forms R(t1, t2) or ¬R(t1, t2), where R is a role, and t1 and t2 are terms; or

(d) of the forms = (t1, t2) or 6= (t1, t2), where t1 and t2 are terms.

We show how to reduce them to dl-programs with only positive concept assertions.

Positive Concept Inclusions

It is well-known that for any DL ontology L, the concept inclusion L |= C v D holds iff
L ∪ {C(τ)} |= D(τ), where τ is a fresh constant. We can use this property to reduce the
dl-atoms with concept inclusion to those with concept instance queries.

Note that if the UNA is assumed in L, the above statement may not hold because of the
cardinality of the domain. For instance, let L = {≤ 2U.> v ⊥, A(a)}, where U is the universal
role and concept names {A,B} ⊆ NC. By default, if the UNA is assumed, the domain of L
has only one element ∆I = NI = {a}. Clearly L 6|= A v B. However, L ∪ A(τ) will trigger
≤ 2U.> v ⊥, infer that L ∪ A(τ) is inconsistent, and conclude L ∪ A(τ) |= B(τ). To exclude
this case, we always assume a large enough domain in the DL ontology.

Definition 4.39. Let KB = (L,P ) be a dl-program, we define a positive concept inclusion re-
duction, denoted Ψpci, by rewriting all dl-atomsDL[λ;CvD]() inP toDL[λ,C]Cλ;Dλ](oCλ)
and adding facts Cλ(oCλ), where Cλ is a fresh concept and oCλ is a fresh individual.

Proposition 4.40. There is a 1-1 correspondence between the models of KB = (L,P ) and
Ψpci(KB) under both well-founded semantics and stable model semantics:

• Let a be a ground atom from HBP . Then, KB |=wf a iff Ψpci(KB) |=wf a.

• Every answer set of KB is expendable to an answer set of Ψpci(KB); and

• for every answer set J of Ψpci(KB), its restriction I = J |HBP to HBP is an answer set
of KB.

Proof. We note that the interpretation I of KB can be seen as a set of Datalog facts, and we
slightly abuse the notion of Ψpci, such that

Ψpci(I) = I ∪ {Cλ(oCλ) | DL[λ;C vD]() occurs in P}

To prove this proposition, we need the following two lemmas.
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Lemma 4.41. I |= DL[λ;C v D]() iff I ∪ {Cλ(oCλ)} |= DL[λ,C ] Cλ;Dλ](oCλ)

Proof.

I |= DL[λ;C v D]()

iff L(I;λ) |= C vD
iff L(I;λ) ∪ {C(oCλ)} |= D(oCλ)

iff L(I ∪ {Cλ(oCλ)};λ,C ] Cλ) |= D(oCλ)

iff I ∪ {Cλ(oCλ)} |= DL[λ,C ] Cλ;Dλ](oCλ)

Recall that γKB(I) = MM(KBI) = T∞KB(KBI), where TKB is the immediate consequence
operator.

Lemma 4.42. Let KB = (L,P ) be a dl-program, then γKB(I) = γΨpci(KB)(Ψpci(I))|HBP

Proof. This can be proved inductively on the number n of steps of TKB needed for computing
γKB using Lemma 4.41.

Based on the above lemma and using the same techniques of the proof of Theorem 4.7 and
Theorem 4.9, we complete the proof of Proposition 4.40.4

Example 4.43. Let dl-program KB = (L,P ), where L = (T , ∅), T = {C v D,D v E},
P = {q ← DL[;C v E](), not DL[;E v C]().}

Then Ψpci(KB) = (L,P ′), where

P ′ =

{
q ← DL[C ] Cλ0 ;E](oCλ0

), not DL[E ] Eλ0 ;C](oEλ0
).

Cλ0(oCλ0
). Eλ0(oEλ0

).

}

It easy to check thatKB has a single answer set {q}, and Ψpci(KB) has a single answer set
{q, Cλ0(oCλ0

), Eλ0(oEλ0
)}. The correspondence is as expected.

Negative Concept Inclusion, Negative Concept and Role Assertions

The reasoning tasks negative concept inclusion, negative Concept and role assertions can be
reduced to instance queries.

• The negated concept inclusion axiom ¬(C v D) is equivalent to the concept membership
axiom (C u ¬D)(τ) (where τ is a fresh individual),

• The negated concept membership axiom¬(C(a)) is equivalent to the concept membership
axiom (¬C)(a).

4We skip the details of the proof here. Basically, if one changes all the Φ to Φpci in the proofs of Lemma 4.6,
Theorem 4.7 and Theorem 4.9, then we obtain a proof of Proposition 4.40.
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• The negated abstract role membership axiom {¬R(a, b)} in a DL knowledge base L can
be removed by using that L∪{¬R(a, b)} is unsatisfiable iffL∪{A(a), B(b),∃R.Bv¬A}
is unsatisfiable (whereA andB are two fresh atomic concepts and L is any DL knowledge
base).

Therefore, dl-programs with dl-atoms in the form of these axioms can be reduced to the
dl-programs with only concept assertion queries similarly as the techniques used for reducing
positive concept inclusion.

Equalities

Recall that for the simplicity of Datalog reduction, we assumed that LDL+ and Horn-SHIQ
are under unique name assumption (UNA) throughout this chapter. However, this is not a real
restriction. In fact, UNA can be dropped from LDL+ and Horn-SHIQ by adding additional
standard rules for reflexive, symmetric and transitive properties of the equality predicate (eq):

eq(X,X)←>(X). (4.24)

eq(X,Y )← eq(Y,X). (4.25)

eq(X,Z)← eq(X,Y ), eq(Y, Z). (4.26)

Then by replacing the atoms t1 = t2 to eq(t1, t2), the resulting Datalog program can handle
equalities of the individuals names.

This modification will not change the complexity of the resulting Datalog program in term
of complexity theory. However it may affect the performance of the datalog engines, because
they can not use the native identity checking of the constants.

4.6 Discussion

In this section we discuss some aspects of inline evaluation of dl-programs.

4.6.1 Direct Rewriting vs Reification based Rewriting

We can classify the Datalog rewritings of DLs into two styles based on how to handle the
signature of the ontology. The first style is called direct rewriting, which is used in LDL+

and Horn-SHIQ, where the resulting Datalog programs use predicates from concept- and role
names and convert the ABox assertions directly into facts. Another style is called reification
based rewriting and used in EL. Recall that the EL rewriting uses fixed set of predicates and
inference rules, and all the TBox and ABox assertions are reified to Datalog facts. In the OWL 2
specification [Mot+08] of W3C, the algorithm for OWL 2 RL is also reification based.

Non-reified rewritings normally preserve the structure of the ontologies, e.g. acyclicity, and
Datalog reasoners can take the advantage of such properties to optimize the evaluation. Reified
rewritings normally use fixed predicates, so they are more suitable to store the facts in RDBMS.
However, reified program is usually recursive, and the original structure of the ontology is often
lost, so it might be more difficult to evaluate on Datalog engine.
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4.6.2 Datalog Reasoner vs Proprietary Reasoner

Our Datalog rewriting is strongly related to the proprietary rule based consequence driven
reasoning [Kaz09b; Krö11; SKH11] for DLs. This technique has been successfully used in
EL [Krö11], Horn-SHIQ [Kaz09b] and ALCH [SKH11] and is implemented in the systems
ELK5, CB6, and ConDOR7. They have a fixed set of inference rules (not necessarily in Datalog
format), and implement the (optimized) evaluation of these rules directly in some programming
languages (e.g., Java for ELK, Ocaml for CB, and C for ConDOR).

The advantage of these proprietary engines is that they can fully control the evaluation, and
implement their dedicated optimizations. However, such systems normally need more effort to
develop. In case of Datalog reasoning in our framework, we can reuse the existing Datalog
engines; the systems are more flexible since changing the inference rules is much easier.

4.6.3 Relations to other Datalog Rewritings

Reductions of DLs to LP have been considered before, e.g., in [HMS04; Swi04]. Swift reduces
reasoning in the DLALCQI (in fact, consistency checking of concept expressions) to Datalog¬

under answer set semantics (employing a guess and check methodology) [Swi04], while Hustadt
el al. reduce reasoning in the DL SHIQ− to disjunctive Datalog by resolution [HMS04] and
the technique is implemented in KAON2.

With some trivial modification, the rewriting results in KAON2 could be possibly used in our
framework of inline evaluation. It is worth noting that [SKH11] points out although theoretically
optimal, compared with consequence-based approaches, resolution-based procedures normally
generate too many redundant intermediate clauses.

4.6.4 Non-Horn Description Logics

All the Datalog-rewritable description logics we considered so far (LDL+, EL, Horn-SHIQ)
are Horn logics, where we can not freely use disjunctions. Most of the non-Horn Logics (ELU ,
ALC, SHIQ) are coNP complete under data complexity [KL07; HMS07]. Recall that Datalog
is P complete under data complexity. Therefore non-Horn Descriptions cannot be reduced to
Datalog, unless P = coNP. Furthermore, recently Grau el al. proved a stronger result that it
is impossible in general to answer queries over non-Horn ontologies using Datalog rewritings
even for very simple ontology languages, and even if P = NP [Gra+13]

The data complexity of Datalog∨ is also coNP complete. To handle disjunction, instead
of Datalog in non-Horn DL reasoning, we may need Datalog∨. For example, KAON2 system
reduces the SHIQ ontologies to Datalog∨ for instance query.

However, we should be careful that we can not simply plugin the Datalog∨ program pro-
duced by KAON2 into our inline evaluation framework. The reason is that Datalog∨ is an
inference based system doing cautious reasoning; while in dl-programs we need a model-based
system. Actually in dl-programs disjunctive information from a DL knowledge base is lost to

5https://code.google.com/p/elk-reasoner/
6https://code.google.com/p/cb-reasoner/
7https://code.google.com/p/condor-reasoner/
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the ASP program [VDB10]. For instance, consider a dl-program KB = (L,P ), where

L = {Person vWoman tMan,Person(Alex )},

and P is the following program:

P (x)← DL[Woman](x).

P (x)← DL[Man](x).

Then KB does not actually imply P (Alex), because the DL knowledge base cannot de-
rive either Woman(Alex) or Man(Alex). If we directly replace the DL axiom Person v
Woman tMan by the KAON2 rewriting result

Woman(x) ∨Man(x)← Person(x)

and use the inline framework rewriting, we will get two answer sets, and P (Alex ) is in both
answer sets. However, this is different from the semantics of dl-program.

4.6.5 Operators −∪ and −∩
We have not considered the operators −∪ and −∩ in this chapter yet.

The operator −∪ can be easily removed by simply replacing all the input A−∪p with (¬A)] p.
Then we need to carefully handle the negative assertions. See section 5.1 for how to deal with
negative assertions in EL ontologies.

The operator −∩ is more difficult to handle. Wang el al. recently developed a technique
eliminating the nonmonotonic dl-atoms (using −∩) [Wan+13]. This technique can help us han-
dling some operators −∩ and the step of eliminating is not difficult. However, deciding whether a
dl-atom is monotonic is in general intractable.

4.6.6 Relaxation of Datalog-rewritability

We can consider here relaxed notions of Datalog-rewritability that allow for auxiliary rela-
tions. For Datalog¬ rewritability of a dl-program, we required that dl-atoms resp. the under-
lying description logic are Datalog rewritable. One also could consider a more liberal notion
of Datalog¬ rewritability of dl-atoms, which however would need to deal with the fact that in
principle, the program ΦDL(L) could have multiple answer sets (or none). Furthermore, simply
plugging in ΦDL(Lλ) for some dl-atom DL[λ,Q](~t] may lead to unwanted effects, due to non-
monotonicity; e.g., additional answer sets might emerge. Syntactic restrictions (e.g., acyclicity,
or more general that dl-atoms are not involved in cycles) can avoid this.

We considered some formalisms for uniform evaluation of dl-programs, For which evalu-
ation engines are available. Of course, further such formalisms (e.g., FO(·) Logic [DT08], or
F-logic [KLW95]) may be considered. But also formalisms for which reasoning engines are
yet emerging might be of interest, e.g. Datalog ± [Cal+10]. The latter extends Datalog with
existential quantification in rule head and at the same time restricts the syntax such that reason-
ing remains decidable. Datalog ± is more expressive than various description logics, including
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DL-Lite (which is captured elegantly), and allows for handling unknown individuals in the rea-
soning. It seems to be an attractive formalism in particular to host the combination of rules and
ontologies.
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CHAPTER 5
Inline Evaluation of other Hybrid

Knowledge Bases

In this chapter, we show that the ideas of inline evaluation can be used in other formalisms of
hybrid knowledge bases.

• We start with terminological default logic, which can be rewritten to dl-programs. The
resulting programs involve inferencing of negative queries; we extend Datalog rewriting
of EL to handle negative queries.

• Next, we show that DL-safe conjunctive queries can be rewritten to dl-programs naturally.

• Then we move to the general conjunctive queries and weakly dl-safe KBs over SHIQ
ontologies. We develop a query rewriting algorithm reducing these reasoning tasks to
evaluating Datalog programs.

• Finally, by combining the techniques of inline evaluation for dl-programs and query rewrit-
ing, we extend the inline evaluation framework to cq-programs.

5.1 Terminological Default Logics

Default Logics

Default logic is a well-established nonmonotonic reasoning system proposed by Reiter [Rei80].
A default theory ∆ = (W,D) consists of a set W of first-order sentences and a set D of defaults
of the form

α : β1, . . . , βn

γ
(5.1)

where α, all βi, and γ are (possibly open) first-order formulas. Reiter defines the semantics of
default logic by the extensions as the fixpoints of the operator Γ∆(S) as follows. For a set of
sentences S, Γ∆(S) is the least set of sentences such that
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(1) W ⊆ Γ∆(S);

(2) Cn(Γ∆(S)) = Γ∆(S);

(3) if α:β1,...,βn
γ ∈ D,α ∈ Γ∆(S), and ¬β1, . . . ,¬βn ∈ S then γ ∈ Γ∆(S).

Then, a set of formulas E is an extension of ∆ iff E = Γ∆(E). Extensions of open default
theories (i.e., default theories which are not closed) are defined via ground instances of defaults.
In case the defaults do not contain quantifiers, the grounding is defined analogously to logic
program rules; otherwise, skolemization step is required (see [Rei80] for details).

Terminological Default Logics

A terminological default is a default theory ∆ = (L,D), where L is a DL knowledge base, and
D consists of certain quantifier-free defaults [BH95]. We show this here for defaults of form
(5.1) where α is a conjunction of literals and all βi’s and γ are literals. Here, Reiter-style default
rules are applied to named individuals for decidability. We show the classic birds&penguins
example for illustration.

Example 5.1. The terminology default knowledge base ∆ = 〈L,D〉 consists of an EL ontology
L = {Flier uNonFlier v ⊥, P enguin v Bird, Penguin v NonFlier, Bird(tweety)},
and a (singleton) setD = {Bird(X) : Flier(X)/F lier(X)} of default rules (informally, birds
fly by default).

Transformation of Terminological Defaults to DL-Programs

There are several transformations of terminological defaults to dl-programs [Eit+08a; DEK09].
We revisit the transformation Π.

Definition 5.2. For each default δ of form

α(X) : β1(Y1), . . . , βm(Ym)

γ(Z)

(where the βi and γ are just literals), the transformation Π(δ) uses the following dl-rules:

in_γ(Z)← not out_γ(Z); out_γ(Z)← not in_γ(Z) (5.2)

g(Z)← DL[λ;α1](X1), . . . , DL[λ;αk](Xk), (5.3)

not DL[λ′;¬β1](Y1), . . . , not DL[λ′;¬βm](Ym)

fail← DL[λ′; γ](Z), out_γ(Z), not fail (5.4)

fail← not DL[λ; γ](Z), in_γ(Z), not fail (5.5)

fail← DL[λ; γ](Z), out_γ(Z), not fail (5.6)

where λ′ contains for each default δ an update γ∗ ] in_γ if γ(Z) is positive, and an update
γ∗−∪in_γ if γ(Z) is negative; λ is similar with g in place of in_γ.

The transformation Π can be naturally to a set of defaults D as Π(D) =
⋃
δ∈D Π(δ).
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Intuitively, the transformation Π implements a guess-and-check strategy, by which a suffi-
ciently large part of an extension E, including all conclusions γ of applied defaults δ, is guessed
using predicates in_γ and out_γ and described by an update λ′ of L, in which we have p] in_γ
, where p is the predicate of γ , if the literal γ is positive and p−∪in_γ otherwise. The candidate
E is then checked using a predicate g for γ to characterize Γ∆(E), which is described by an
update λ of L which includes p ] g if γ is a positive literal and p−∪g otherwise.

Reasoning over Terminological Defaults on EL ontologies

The resulting dl-programs of Π involves query of negative concepts (e.g. in DL[λ′;¬β1](Y1)).
Recall that techniques we developed in Section 4.5 only works for ground queries. Here we
present an elegant Datalog transformation answering instance queries with variables over EL
ontologies.

Trivially, L |= ¬C(a) is equivalent to unsatisfiability of L ∪ {C(a)}. To answer a negative
query ¬C(X), we need to bind X to every possible individual, and reduce it to unsatisfiability
checking. This one by one checking can be elegantly achieved via datalog encoding. The idea
is to extend isa/2 with two more arguments, representing the individual and the concept name,
to isa_n/4; in Pinst, each isa(X,Y ) is uniformly replaced with isa_n(X,Y,C, J), and each
triple(X,Y, Z) uniformly with triple_n(X,Y, Z,C, J), yielding P¬inst. This set includes e.g.
the following rules, which propagate subclass and conjunctive subclass membership:

isa_n(X,Z,C, J) ← subClass(Y,Z), isa_n(X,Y,C, J)
isa_n(X,Z,C, J) ← subConj (Y1, Y2, Z), isa_n(X,Y1, C, J), isa_n(X,Y2, C, J)
isa_n(X,Z,C, J) ← subEx (V, Y, Z), triple_n(X,V,X ′, C, J), isa_n(X ′, Y, C, J)

The individual unsatisfiability checks are then accomplished with rules P¬, which for each
check add C(a), expand all isa(X,Y ) atoms with a and C, and make an atom isnota(a,C)
true iff the test is successful:

isa_n(X,Y, Y,X)← nom(X), cls(Y ) (5.7)

isa_n(X1, Y1, Y2, X2)← isa(X1, Y1), cls(Y2), nom(X2) (5.8)

isnota(X,Y )← isa_n(N,Z, Y,X), nom(N), bot(Z), nom(X) (5.9)

Let the extended EL reduction for negative query of an EL ontology L be defined as

Φ¬EL(L) = P¬inst ∪ {Iinst(α) | α ∈ L} ∪ {Iinst(s) | s ∈ NI ∪NC ∪NR} ∪ P¬.

Proposition 5.3. For every EL ontology L, concept C, and individual a, we have L |= ¬C(a)
iff Φ¬EL(L) |= isnota(a,C).

Proof. By comparing the structure of ΦEL and Φ¬EL, we can show that ΦEL(L ∪ {C(a)}) |=
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isa(x, y) if and only if Φ¬EL |= isa_n(x, y, C, a) for any constants x, y. Then

L |= ¬C(a)

iff L ∪ {C(a)} is unsatisfiable

iff L ∪ {C(a)} |= ⊥(n) for some individual n

iff ΦEL(L ∪ {C(a)}) |= isa(n, z) and ΦEL(L ∪ {C(a)}) |= nom(n)

and ΦEL(L ∪ {C(a)}) |= bot(z)

iff Φ¬EL(L) |= isa_n(n, z, C, a) and Φ¬EL(L) |= nom(n) and Φ¬EL(L) |= bot(z)

[ by Rule 5.9 ]

iff Φ¬EL(L) |= isnota(a,C)

Example 5.4. Consider the terminological default KB in Example 5.1. The semantics of the KB
∆ is captured by the following dl-program (L,Π(D)) under answer set semantics (i.e., default
extensions correspond to answer sets), where Π(D) is

in_Flier(X)← not out_Flier(X) (5.10)

out_Flier(X)← not in_Flier(X) (5.11)

Flier+(X)← DL[λ;Bird](X), not DL[λ′;¬Flier](X) (5.12)

fail ← DL[λ′;Flier](X), out_Flier(X), not fail (5.13)

fail ← DL[λ;Flier](X), in_Flier(X), not fail (5.14)

fail ← DL[λ;Flier](X), out_Flier(X), not fail (5.15)

where λ = {Flier ] in_Flier} and λ′ = {Flier ] Flier+}.
To rewrite KB to Datalog¬, we replace all the dl-atoms DL[λ;Q] by Qλ and DL[λ;¬Q] by

(¬Q)λ. For example, rule (5.12) is replaced by

Fly+(x)← Birdλ(X), not(¬Fly)λ′(X).

The rules for defining Birdλ and (¬Fly)λ′ are:

Birdλ(X)← isaλ(X,Bird)

(¬Fly)λ′(X)← isnotaλ′(X,F ly)

We skip the rest of the rewriting, as the are straightforward from the inline evaluation frame-
work. The Datalog¬ program has a single answer set, which contains Flier(tweety), as ex-
pected.

Reasoning over Terminological Defaults on other DLs

The technique used for answering negative concept queries C(X) in EL can also be used for the
other DL, e.g., LDL+ and Horn-SHIQ by extending the predicates in the rewritten Datalog
with additional two arities for C and X . Then reasoning of terminological Defaults over other
DLs can be handled similarly in the inline evaluation framework.
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5.2 DL-safe Conjunctive Queries

In this section, we consider DL-safe conjunctive queries (CQs) (i.e. CQs interpreted under DL-
safeness condition; see 3.18). Recall that, given a DL vocabulary (NC,NR), a CQ ρ can be
represented as a rule of the form:

ans(X)← s1(Y1), . . . , sn(Yn) (5.16)

where si ∈ NC ∪ NR and ans is a fresh predicate.
DL-safeness requires that every variable in the rule must also appear in some positive non-

DL-atoms of the body (Definition 3.17). Clearly, rule (5.16) is not DL-safe in general, because
there is no non-DL predicate in the rule body. To make it DL-safe, one can (1) append auxiliary
atoms O(X) to the body for all the variables inside it and (2) add facts O(a) for all the named
individual a to the program.

Equivalently, we can transform CQ (5.16) into a dl-rule by replacing every atom si(Yi) with
the dl-atom DL[si](Yi) having empty input list:

ans(X)← DL[s1](Y1), . . . , DL[sn](Yn). (5.17)

The equivalence is guaranteed by the semantics of the dl-atoms in dl-programs, where only
named individuals can be results of the dl-query. When the DL component is Datalog-writable,
we can apply the inline evaluation framework to the resulting dl-program.

Example 5.5. The following CQ retrieves pairs of wired HighTrafficNode X and Y :

ans(X,Y )←HighTrafficNode(X),wired(X,Y ),HighTrafficNode(Y )

It can be converted to a DL-rule:

ans(X,Y ) ← DL[HighTrafficNode](X),DL[wired ](X,Y ),DL[HighTrafficNode](Y )

5.3 Conjunctive Queries and Positive Weakly DL-safe KBs

In this section, we show how to answer conjunctive queries and positive weakly DL-safe KBs
over Horn-SHIQ ontologies. Based on the results of section 4.4, we develop a writing algo-
rithm for CQ over Horn-SHIQ, and we show that this algorithm can be naturally extended to
positive weakly DL-safe KBs.

The following is immediate from Propositions 4.33 and 4.37:

Theorem 5.6. Let O= (T ,A) be a Horn-SHIQ ontology and q be a CQ. Then A ∪ cr(T ∗) is
consistent iff O is consistent. Moreover, if O is consistent, then ans(O, q) = ansT (IO, q) for
every CQ q, where IO = chase(MM (A ∪ cr(T ∗),Ξ(T ∗)).

Computing ansT (IO, q) is still tricky because IO can be infinite. Hence we rewrite q into a
set Q of CQs such that ansT (IO, q) =

⋃
q′∈Q ans(MM (A∪ cr(T ∗), q′). That is, we only need

to evaluate the queries in Q over the Datalog programA∪ cr(T ∗). Since this can be easily done
directly in Datalog, we have an algorithm for answering q over O, which we later generalize to
positive weakly DL-safe KBs.
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Figure 5.1: Example 5.7, query rewriting with only simple roles

5.3.1 Rewriting rules with simple roles only

We will first present a simplified version of our rewriting algorithm that rewrites a rule ρ assum-
ing that r is a simple role for all atoms of the form r(x, y) that occur in its body. This version
can be explained more easily, and it will allow us to give a better explanation of the general
algorithm.

The intuition is the following. Suppose that ρ has a non-distinguished variable x, and that
there is some match π in IO such that π(x) is an object in the ‘tree part’ introduced by the chase
procedure and it has no descendant in the image of π, that is, π(x) it is a leaf in the forest shaped
image of ρ under π. Then for all atoms r(y, x) of ρ, the “neighbor” variable y must mapped
to the parent of π(x). A rewrite step makes a choice of such an x, and employs an existential
axiom from Ξ(T ) to ‘clip off’ x, eliminating all query atoms that mention it. By repeating this
procedure, we can clip off all variables matched in the tree part and obtain a rule that has a match
in MM (A ∪ cr(T )).

The one-step clipping off works as follows. For a CQ ρ and a Horn-ALCHIQu TBox T ,
we write ρ→T ρ′ if ρ′ can be obtained from ρ in the following steps:

(S1) Select in ρ an arbitrary non-distinguished variable x such that there are no atoms of the
form r(x, x) in ρ.

(S2) Replace each role atom r(x, y) in ρ, where y is arbitrary, by the atom inv(r)(y, x).

(S3) Let Vp = {y | ∃r : r(y, x) ∈ body(ρ)}, and select some M v ∃S.N ∈ Ξ(T ) such that

(a) {r | r(y, x) ∈ body(ρ) ∧ y ∈ Vp} ⊆ S, and

(b) {A | A(x) ∈ body(ρ)} ⊆ N .

(S4) Drop from ρ each atom containing x.

(S5) Rename each y ∈ Vp of ρ by x.

(S6) Add the atoms {A(x) | A ∈M} to body(ρ).

We illustrate the rewriting step with two examples:
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(b) Example 5.10: Query rewriting with non-simple roles

Example 5.7. Let ρ : q(x1)←A1(x1), r2(x1, x2), A2(x2), r3(x2, x3), A3(x3), r1(x1, x4), A4(x4),

r4(x3, x4) in Figure 5.1, and assume that A v ∃(r u r3 u r−4 ).(B uA3) is in Ξ(T ) and that all
roles are simple. We choose the variable x3, replace r4(x3, x4) by r−4 (x4, x3) in step (S2), and
get Vp = {x2, x4}. Intuitively, if π(x3) is a leaf in a tree-shaped match π, then x2 and x4 must
both be mapped to the parent of π(x3). Since the GCI A v ∃(r u r3 u r−4 ).(B uA3) in Ξ(T )
satisfies (S3.a,b), we can drop the atoms containing x3 from ρ, and perform (S5) and (S6) to
obtain the rewritten query ρ′ : q(x1)←A1(x1), r1(x1, x3), r2(x1, x3), A4(x3), A2(x3), A(x3).

Example 5.8. In this example, illustrated in Figure 5.2a, we again assume that all roles are
simple. Let ρ : q(x1) ← C(x1), B(x2), r1(x1, x2), r1(x3, x2), r2(x2, x4), and assume A v
∃(r1 u r−1 u r−2 ).B ∈ Ξ(T ∗). In (S1) we select the non-distinguished variable x2. Next, in (S2),
we replace r2(x2, x4) by r−2 (x4, x2). Since all roles are simple, we do nothing in (S3). In (S4)
we choose V` = {x2} and Vp = {x1, x3, x4}, and in (S5), Av∃(r1u r−1 u r−2 ).B. Then we clip
off x2 in (S6), merge all variables in Vp and rename them to x2 in (S7), and add A(x2) in (S8),
to obtain ρ′ : q(x2)←C(x2), A(x2).

5.3.2 Rewriting arbitrary rules

Now we present the rewriting algorithm for the general case, and show that it is sound and
complete.
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As above, suppose that ρ has a match and π(x) is a leaf of its forest shaped image, for some
variable x. The most significant difference in the presence of non-simple roles is that if the
query has an atom r(y, x) and r is non-simple, then π(y) is not necessarily the parent p of π(x).
Instead, π(y) can be an ancestor of p, or π(y) = π(x) may hold. Hence, instead of just x, we
guess a set of distinguished variables V` that are mapped together at some leaf node π(x). Then
we guess a subset of the neighbor variables whose match is higher up in the tree, and for them
we introduce an ‘intermediate’ variable u that can be matched at the parent p. In this way we can
forget about the variables that are matched to ancestors of p, and assume that all the neighbours
Vp of the variables in V` are matched at p. We can then proceed similarly as above and clip
off all variables in V` using an axiom from M v ∃S.N that ensures the existence of a match
for them. This axiom must now also ensure that π(x) is an r-successor of itself for every atom
r(x, y) such that x, y ∈ V`. This is verified by the new condition (S5c), which relies on the fact
that a node e is an r-successor of itself in IO iff both e, e′ ∈ sIO and e′, e ∈ sIO hold for some
transitive sv∗T r, where e′ is either the parent or a child of e in IO.

Definition 5.9. For a rule ρ and a Horn-SHIQ TBox T , we write ρ→T ρ′ if ρ′ is obtained from
ρ by the following steps:

(S1) Select an arbitrary non-empty set V` of non-distinguished variables in ρ.

(S2) Replace each role atom r(x, y) in ρ, where x ∈ V` and y 6∈ V` is arbitrary, by the atom
inv(r)(y, x).

(S3) For each atom α = s(y, x) in ρ, where where x ∈ V`, y 6∈ V` is arbitrary and s is non-
simple, either leave α untouched or replace it by two atoms r(y, u), r(u, x), where u is a
fresh variable and r is a transitive role with r v∗T s.

(S4) Let Vp = {y | ∃r : r(y, x) ∈ body(ρ) ∧ x ∈ V` ∧ y 6∈ V`}.

(S5) Select some M v ∃S.N ∈ Ξ(T ∗) such that

(a) {r | r(y, x) ∈ body(ρ) ∧ x ∈ V` ∧ y ∈ Vp} ⊆ S,

(b) {A | A(x) ∈ body(ρ) ∧ x ∈ V`} ⊆ N , and

(c) for each atom r(x, y) in body(ρ) with x, y ∈ V` there is a transitive sv∗T r such that

i. {s, s−} ⊆ S, or
ii. there is an axiom M ′ v ∃S′.N ′ ∈ Ξ(T ∗) such that M ′ ⊆ N and {s, s−} ⊆ S′.

(S6) Drop each atom from ρ containing a variable from V`.

(S7) Select some x ∈ V` and rename each y ∈ Vp of ρ by x.

(S8) Add the atoms {A(x) | A ∈M} to ρ.

We write ρ →∗T ρ′ if ρ′ can be obtained from ρ by finitely many rewrite iterations. We let
rewT (ρ) = {ρ′ | ρ→∗T ρ′}. For a set P of rules, rewT (P) =

⋃
ρ∈P rewT (ρ).
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Figure 5.3: Example 5.11

Example 5.10 (ctd). Recall ρ : q(x1) ← C(x1), B(x2), r1(x1, x2), r1(x3, x2), r2(x2, x4) and
A v ∃(r1 u r−1 u r−2 ).B ∈ Ξ(T ∗) from Example 5.8, but now assume that trans(r1) ∈ T . As
shown in Figure 5.2b, in (S1) we choose V` = {x2}, and in (S3) we choose to replace r1(x1, x2)
with r1(x1, u), r1(u, x2). In (S4) we get Vp = {u, x3, x4}. Then we proceed similarly as above
to obtain ρ′′ : q(x1)←C(x1), r1(x1, x2), A(x2).

Example 5.11. Assume T = {r v r−, trans(r), A v ∃r.B, B v ∃r.C, C v D}. Let
ρ : q(X)←A(x), r(x, y), C(y), D(z), r(y, z). By saturation rules Rc

v and Rr
v, we have B v

∃(r u r−).(C uD) ∈ Ξ(T ).
In the first round, in (S1) we select y. In (S2), we replace r(y, z) by r−(z, y). In (S3), as r is

transitive, we replace r(x, z) by r(x, u) and r(u, y). In (S4), we choose V` = {y, z}, Vp = {u}.
In (S5), we choose B v ∃(r u r−).(C uD) ∈ Ξ(T ), which satisfies (S5.a), (S5.b), and (S5.c1).
In (S6), we drop atoms containing y or z from body(ρ). In (S7), we rename u to y. Finally in
(S8), we add B(y) to the body and get ρ1 : q(x)←A(x), r(x, y), B(y).

In the second round, we select y in (S1), V` = {y}, Vp = {x} in (S3), and Av∃r.B in (S5).
Following the similar steps, we get another rewritten rule ρ2 : q(X)←A(x).

The following is crucial:

Theorem 5.12. Assume a consistent Horn-SHIQ ontology O = (T ,A) and a conjunctive
query q. Then ans(O, q) =

⋃
q′∈rewT (q) ans(MM (A ∪ cr(T ∗)), q′).

Proof. Let IO = chase(J ,Ξ(T ∗)), where J = MM (A ∪ cr(T ∗)) . It suffices to show
ansT (IO, q) = ans(J , rewT (q)).

We first show ansT (IO, q) ⊇ ans(J , rewT (q)). Suppose h(~x) is the head atom of q.
Assume a tuple ~u ∈ ans(J , rewT (q)). Then there is a query q′ ∈ rewT (q) and a match πq′ for q′

in J such that ~u = πq′(~x). By the construction of IO, we also have ~u ∈ ansT (IO, q′). If q′ = q,
then we are done. Suppose q′ 6= q. Then there is n > 0 such that q0 →T q1, · · · , qn−1 →T qn
with q0 = q and qn = q′. Thus to prove the claim it suffices to show that ~u ∈ ansT (IO, qi)
implies ~u ∈ ansT (IO, qi−1), where 0 < i ≤ n.

Suppose πqi is a match for qi in IO with ~u = πq′(~x), i.e. ~u ∈ ansT (IO, qi). Let V` be the
set chosen in (S1), let x ∈ V` be the variable chosen in (S7), and let M v ∃S.N be the axiom
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chosen in (S5). Moreover, let d = πqi(x). Due to step (S8) in the rewriting and the fact that IO
is a model of O, we have d ∈ (∃S.N)IO . Then there is d′ ∈ ∆IO such that (d, d′) ∈ SIO and
d′ ∈ NIO . Define the mapping πqi−1 for the variables of qi−1 as follows: (a) πqi−1(z) = d′ for
all variables z ∈ V`, (b) πqi−1(u) = d for all variables u ∈ Vp, and (c) πqi−1(z) = πqi(z) for the
remaining variables z. Then πqi−1 is a match for qi−1 in IO. To see this, assume an atom α in
qi−1. We show that πqi−1 makes α true in IO. There can be two possibilities:

(i) α has an occurrence of a variable from V`. In this case we have 3 more possibilities:

a) α is a unary atom of the form α = A(z). Then z ∈ V` and πqi−1(z) = d′ by
construction of πqi−1 . As noted above, d′ ∈ NIO . By (S5.b) we have A ∈ N .

b) α is a binary atom α = r(y, x), where y ∈ Vp. We know πqi−1(y) = d and
πqi−1(x) = d′. As noted above, (d, d′) ∈ SIO . By (S5.b) we have r ∈ S.

c) α is a binary atom α = r(y, x), where y ∈ V`. We know πqi−1(y) = πqi−1(x) = d′.
By (S5.c), there is a transitive s v∗T r such that {s, s−} ⊆ S, or there is an axiom
M ′v∃S′.N ′ ∈ Ξ(T ∗) such that M ′ ⊆ N and {s, s−} ⊆ S′. Since IO is a model of
O, we have (d′, d′) ∈ rIO .

(ii) α does not have an occurrence of a variable from V`. We distinguish the following cases:

a) α has no variables from Vp. Then α ∈ body(qi) and the claim follows from (c) in the
definition of πqi−1 .

b) α is a unary atom α = A(u) with u ∈ Vp, which was replaced by A(x) in (S7).
By construction of πqi−1 we have πqi−1(u) = d. As A(x) ∈ body(qi), we have that
πqi(x) = d implies d ∈ AIO as desired.

c) α is a binary atom α = r(u, z) with u ∈ Vp and z 6∈ Vp, which was replaced
by r(x, z) in (S7). Since πqi is a match for qi in IO and r(x, z) ∈ body(qi), πqi
satisfies r(x, z). By construction of πqi−1 we have πqi−1(u) = πqi(x) = d and
πqi−1(z) = πqi(z), hence πqi satisfies r(u, z).

d) the cases α = r(z, u) with either u ∈ Vp and z 6∈ Vp, or {z, u} ⊆ Vp, are both
analogous to the previous one.

We show ansT (IO, q) ⊆ ans(J , rewT (q)). To show this we need some book-keeping
when chasing J w.r.t. Ξ(T ∗). We prescribe the naming of fresh domain elements introduced
during the chase procedure. In particular, if d is a successor of e according to Definition 4.36,
then d is an expression of the form e · n, where n is a integer. For d ∈ ∆J , let |d| = 0. For the
elements w · n ∈ ∆IO , let |w · n| = |w|+ 1.

Suppose h(~x) is the head atom of q. Assume a tuple ~u ∈ ansT (IO, q). By definition, there
is match πq for q in IO such that ~u = πq(~x). We have to show that there exists q′ ∈ rewT (q)
and a match πq′ for q′ in J such that ~u = πq′(~x). For any match π′ in IO, let

deg(π′) =
∑

y∈rng(π′)

|π′(y)|.
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Then, given that q ∈ rewT (q), to prove the claim it suffices to prove the following statement: if
q1 ∈ rewT (q) has a match πq1 for q1 in IO such that ~u = πq1(~x) and deg(πq1) > 0, then there
exists q2 ∈ rewT (q) that has a match πq2 for q2 in IO such that ~u = πq2(~x) and deg(πq2) <
deg(πq1).

Assume q1 ∈ rewT (q) as above. Since deg(πq1) > 0 by assumption, there must exists a
variable x of q1 such that πq1(x) 6∈ NI. Take such an x for which there is no variable x′ of q1 with
πq1(x) being a prefix of πq1(x′). That is, there is no variable x′ of q1 with πq1(x′) = πq1(x) · w
for some w. Intuitively, the image of πq1 induces a subforest in IO; the variable x is mapped
into a leaf node in this forest.

Let dx = πq1(x), and dp be the parent element of dx, i.e. dx = dp · n for some integer
n. We know from the construction of IO that dx was introduced by an application of an axiom
ax = M v ∃S.N ∈ Ξ(T ∗) such that dp ∈ MIO . We take a query q2 obtained from q1 as
follows:

- For Step (S1) choose V` = {y ∈ var(q1) | πq1(y) = dx} (note that since dx 6∈ NI, all such y
are non-distinguished).

- For Step (S3) let Γ = {s(y, x) ∈ q1 | x ∈ V` ∧ πq1(y) 6= dx ∧ πq1(y) 6= dp} be the set of
atoms we choose to rewrite. Note that due to the selection of the atoms in Γ and since πq1
is a T -match for q1, by definition of T -matches, for every atom s(y, x) ∈ Γ there exists a
transitive role rs with rs v∗T s such that there is an rs-path from πq1(y) to πq1(x). Using this
role rs, we rewrite s(y, x) into rs(y, u), rs(u, x). Observe that, since dp is the parent of dx in
IO and π1(y) 6= dp, then dp is in the rs-path from πq1(y) to πq1(x) and the following holds:

(†) there is an rs-path from πq1(y) to dp, and (dp, dx) ∈ rsIO .

Observe also that if Γ 6= ∅, then in Step (S4) we get that u ∈ Vp.

- For Step (S5), choose ax given above. To see that (S5.a) holds, take any r(y, x) where x ∈ V`
and y ∈ Vp. We have to show r ∈ S, and we have two cases:

i. y ∈ var(q1) and πq1(y) = dp. Since πq1 is a T -match for q1 and dx is a successor of dp,
we must have (πq1(y), πq1(x)) ∈ rIO . Then due to the construction of IO, r ∈ S.

ii. if y = u is the fresh variable introduced in Step (S3), then r is the role rs chosen above
and by (†) we have (dp, dx) ∈ rIO , which implies r ∈ S due to the construction of IO.

To see that (S5.b) holds, take any A(z) where z ∈ V`. We have to show A ∈ N . Since πq1 is
a T -match for q1, we have πq1(z) ∈ AIO . Since πq1(z) = dx, by construction of IO we have
A ∈ N .

Finally, we check that (S5.c) holds. Take an atom r(x, y) in q1 such that x, y ∈ V`. Since
πq1(z) = πq1(x) = dx and πq1 is a T -match, we have a “self-loop” from dx to itself, that is,
there is a transitive sv∗T r and an s-path from dx to dx. This path must pass through a domain
element d 6= dx, an in particular it muss pass a d that is either the parent dx or some child of
dx. Due to the construction of IO, (i.) is satisfied in the former case and (ii.) is satisfied in the
latter case.
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Finally, a match πq2 for q2 in IO such that ~u = πq2(~x) and deg(πq2) < deg(πq1) is obtained
from πq1 by setting (a) πq2(z) = πq1(z) for all z of q2 with z 6= x, and (b) πq2(x) = dp. It is
easy to check that πq2 is a T -match for q2 because q2 is intuitively a subquery of q1. Observe
that vars(q2) ⊆ vars(q1) because any new variable introduced in Step (S3) is eliminated in
Step (S7). Hence, deg(πq2) < deg(πq1) follows from the fact that (i) |πq2(z)| = |πq1(z)| for all
z of q2 with z 6= x, and (ii) |πq2(x)| = |πq1(x)| − 1.

By the above reduction, we can answer q over O = (T ,A) by posing rewT (q) over the
Datalog program A ∪ cr(T ∗).

5.3.3 Rewriting Positive Weakly DL-safe KBs

The rewriting method for CQs over Horn-SHIQ ontologies can be naturally generalized to the
more general positive weakly DL-safe KBs.

Positive Weakly DL-safe KBs

Following [LR98] we now define positive weakly DL-safe knowledge bases (KBs for short
in this section). Let NI, NV and ND be countable infinite sets of constants (or, individuals),
variables and Datalog relations, respectively; we assume these sets as well as NC and NR are
all mutually disjoint. A (positive weakly DL-safe) KB is a triple K = (T ,A,P), where T is
a TBox and P is a program of rules in the following format which are weakly DL-safe (see
Definition 3.18).

h(~u)← p1(~v1), . . . , pm( ~vm), (5.18)

where h(~u) is an atom (the head), pi ∈ NC ∪ NR ∪ ND, {p1(~v1), . . . , pm( ~vm)} are also atoms
(the body atoms, denoted body(ρ)), and ~u, ~v1, . . . , ~vm are tuples of variables.

The semantics for a KBK = (T ,A,P) is given by extending an interpretation I to symbols
in NI ∪ND. For any c ∈ NI and p ∈ ND of arity n, we have cI ∈ ∆I and pI ⊆ (∆I)n. A match
π for a rule ρ of the form (5.18) in I is a mapping from variables in ρ to elements in ∆I such
that π(~t)∈ pI for each body atom p(~t) of ρ. We define:

(a) I |= ρ if π(~u)∈hI for every match π for ρ in I,

(b) I |= P if I |= ρ for each ρ ∈ P ,

(c) I |= A if (~c)I ∈ pI for all p(~c) ∈ A,

(d) I |= K if I |= T , I |= A and I |= P .

Finally, given a ground atom p(~c), K |= p(~c) if (~c)I ∈ pI for all models I of K. We remark that
weakly DL-safe KBs are a natural extension of conjunctive queries.
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Reducing positive weakly DL-safe KBs to Datalog

The ground atomic consequences ofK can be collected by fixed-point computation: until no new
consequences are derived, pose rules in P as CQs over (T ,A) and put the obtained answers into
A. If we employ the rewriting in Definition 5.9, this computation can achieved using a plain
Datalog program.

Theorem 5.13. For a ground atom α over a KBK = (T ,A,P) where T is a Horn-SHIQ TBox
and P is positive weakly DL-safe, we have (T ,A,P) |= α iff cr(T ∗) ∪ rewT (P) ∪ A |= α.

Proof. First of all, let K1 |=T α1 be defined as K1 |= α1 but using the notion of a T -match
instead of a (plain) match. Since (T ,A,P) |= α iff (T ∗,A,P) |=T α, it suffices to show
(T ∗,A,P) |=T α iff cr(T ∗) ∪ rewT (P) ∪ A |= α.

Let P ′ = cr(T ∗) ∪ rewT (P).
For the “if” direction, the interesting case is where (T ∗,A) is consistent. Note first that

(T ∗,A,P) |=T α′ for all α′ ∈ A. Hence, intuitively, it suffices to show that the rules of P ′
applied on A derive consequences of (T ∗,A,P). In particular, assume a rule

r = h(~u)← b1(~v1), . . . , bm( ~vm)

in P ′ and take a mapping π : vars(r) → NI. To prove the claim it suffices to show that
(T ∗,A,P) |=T b1(π(~v1)), . . . , (T ∗,A,P) |=T bm(π( ~vm)) implies (T ∗,A,P) |=T h(π(~u)).

The statement is straightforward if r is a rule in cr(T ∗), because cr(T ∗) encodes a subset of
Ξ(T ∗), which contains only logical consequences of T ∗.

Suppose r ∈ rewT (r′), for some rule r′ ∈ P . Let K′ = (T ∗,A′,P), where

A′ = A ∪ {b1(π(~v1)), . . . , bm(π( ~vm)}.

By applying Theorem 5.12, we get h(π(~u)) ∈ ans((T ∗,A′), r′). Hence, K′ |=T h(π(~u)).
Since K′ ≡ (T ∗,A,P) due to the induction hypothesis, we also get (T ∗,A,P) |=T h(π(~u)).

We prove the “only if” direction. The only interesting case is where cr(T ∗)∪ rewT (P)∪A
is consistent. In this case, it suffices to show the existence of a model I of (T ∗,A,P) such that
I 6|= α for all α such that cr(T ∗)∪rewT (P)∪A 6|= α. LetA′ be the set of all ground α such that
cr(T ∗) ∪ rewT (P) ∪ A |= α. We let I = chase(A′,Ξ(T ∗)). Since the chase procedure does
change the ground atoms that are entailed, I 6|= α for all α such that cr(T ∗)∪rewT (P)∪A 6|= α.
It only remains to see that

(a) I |= (T ∗,A). Due to consistency of cr(T ∗)∪ rewT (P)∪A, we also have that cr(T ∗)∪A′
is consistent. Due to Theorem 4.37, it suffices to show that A′ = MM(cr(T ∗) ∪ A′).
Trivially, A′ ⊆ MM(cr(T ∗) ∪ A′). For A′ ⊇ MM(cr(T ∗) ∪ A′), assume there is β ∈
MM(cr(T ∗)∪A′) with β 6∈ A′. Then β is derived via a rule r ∈ cr(T ∗) using some match
π in A′. Then it must be the case that β ∈ A′ because by construction A′ is closed under
the rules in cr(T ∗).

(b) I |= P . Assume a rule r ∈ P with a mapping π from variables of r to ∆I such that I |=
b(π(~v)) for each body atom b(~v) of r. We have to show that I |= h(π(~u)), where h(~u) is the
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head of r. Due to weak DL-safety of P , π(x) ∈ NI for each variable x in ~u. In other words,
π is an ordinary match for a conjunctive query. In particular, π(~v) ∈ ans((T ∗,A′), r)
since A′ = MM(cr(T ∗) ∪ A′). Then due to Theorem 5.12, we have a match π′ for some
r′ ∈ rewT (P) inA′. SinceA′ is closed under rules in rewT (P), we have h(π(~u)) ∈ A′ and
thus I |= h(π(~u)).

The algorithm obtained by the above reduction is worst-case optimal in terms of combined
and data complexity.

Theorem 5.14. For a ground atom α over a KB K = (T ,A,P) where T is a Horn-SHIQ
TBox and P is weakly DL-safe, checking (T ,A,P) |= α is EXPTIME-complete in general, and
P-complete when only the size of A is counted (i.e. in data complexity).

Proof. By Theorem 5.13, checking (T ,A,P) |= α is equivalent to deciding cr(T ∗)∪rewT (P)∪
A |= α. We analyze the computational cost of the latter check.

We first recall that Ξ(T ∗) can be computed in exponential time in size of T and is indepen-
dent from A: the calculus in Table 4.4 only infers axioms of the form M v B and M v ∃S.N ,
where M,N are conjunctions of atomic concepts, B is atomic and S is a conjunction of roles.
The number of such axiom is single exponential in the size of T .

Observe that rewT (P) is finite and computable in time exponential in the size of T and P:
rules in rewT (ρ), where ρ ∈ P , use only relation names and variables that occur in ρ and T
(fresh variables introduced in (S3) are eliminated in (S6) and (S7)). Hence, the size of each rule
resulting from a rewrite step is of size polynomial in the size of T and P , and thus the number of
rules in rewT (P) is at most exponential in the size of T and P . The size of rewT (P) is constant
when data complexity is considered.

Furthermore, the grounding of cr(T ∗)∪ rewT (P)∪A is exponential in the size of K, but
polynomial for fixed T and P . By the complexity of Datalog, it follows that the algorithm
resulting from Theorem 5.13 is exponential in combined but polynomial in data complexity.

The above complexity result is worst-case optimal, and applies already to plain conjunctive
queries [Eit+08c].

5.4 CQ-Programs

Reduction of CQ-Programs to Datalog¬

The reduction of CQ-Programs to Datalog¬ is similar to the reduction of DL-Programs to
Datalog¬.

We first extend the the notion of Datalog rewritability for instance query (Definition 4.1) to
conjunction query.

Definition 5.15. A Description Logic DL is Datalog-rewritable for conjunctive query if there
exists a transformation ΦDL from DL KBs to Datalog programs such that, for any DL KB Σ
and CQ α = q(X)← β(X,Y) over Σ,
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(i) Σ |= α(o) iff ΦDL(Σ, α) |= q(o) for any individual(s) o from Σ;

(ii) ΦDL is modular, i.e., for Σ = 〈T ,A〉 where T is a TBox and A an ABox, ΦDL(Σ, α) =
ΦDL(T , α) ∪ A;

Clearly, as instance query of concept or role name Q can be seen as a conjunctive query
q(X) ← Q(X), the above definition is a proper extension of Definition 4.1. It is easy to verify
that DLs LDL+ and Horn-SHIQ are Datalog-rewritable for conjunctive query.

Definition 5.16. The translation of CQ-Programs (Σ, P ) to a Datalog¬ program is then built
up of the following four components:

• A Datalog program
⋃

DL[λ;α] in P

[ΦDL(Σ, α)]λ,α where [·]λ,α is obtained by subscripting

allq ip concept and role names inside with λ, α.

• A Datalog program ρ(P ) containing the rules Si ,λ,α(Xi)← pi(Xi), 1 ≤ i ≤ m, for all
DL[λ;α] in P and λ = S1 ] p1, . . . , Sm ] pm where the arity of Xi matches the one of
Si.

• A set TP of Datalog facts >(a) and >2(a, b) for all a, b in the Herbrand domain of P to
ensure their introduction in Σ.

• Finally, P ord results from replacing each dl-atom DL[λ;α](t) in P with a new atom
qλ,α(t).

The transformation of the dl-program KB is then defined as

Ω(KB) =
⋃

DL[λ;α] in P

[ΦDL(Σ, α)]λ,α ∪ P ord ∪ ρ(P ) ∪ TP (5.19)

Analogous to Theorem 4.7 and Theorem 4.9, we establish the correctness of Ω(KB):

Theorem 5.17. Let KB = (L,P ) be a cq-program over a Datalog-rewritable for CQ DL. Then
the answer sets of KB correspond 1-1 to the answer sets of Ω(KB):

(i) every answer set of KB is extendible to an answer set of Ω(KB); and

(ii) for every answer set J of Ω(KB), its restriction I = J |HBP to HBP is an answer set of
KB.

Theorem 5.18. Let KB = (L,P ) be a cq-program over a Datalog-rewritable for CQ DL and
a be a ground atom from HBP . Then,
KB |=wf a iff Ω(KB) |=wf a.
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We can prove the above two theorems using exactly the same techniques in the proofs of
theorems 4.7 and 4.9 by adapting the notion IΨ to IΩ as following.

For a cq-program KB = (Σ, P ) over a Datalog-rewritable for CQ DL and an interpretation
I over HBP , we define an interpretation IΩ for Ω(KB):

IΩ = I ∪
⋃

DL[λ;α]∈P

MM(Ω(Σλ,α ∪ S(λ, α, I)))

where
S(λ, α, I) = {Sλ,α(c) | S ] p ∈ λ, p(c) ∈ I}.

We show a concrete example of reducing CQ-Programs over Horn-SHIQ ontologies to
Datalog¬ program.

Example 5.19. Let CQ-Program KB = (L,P ), where L = (T ,A), T = {A v ∃R.B},
A = {R(a, b), A(c), A(b), D(a)}, and

P =

{
p(x)← DL[D ] s;D(x), R(x, y), B(y)](x), not DL[D](x)

s(a). s(b). s(c).

}
.

As the ontology L is in Horn-SHIQ, we could reduce the CQ-Program KB to a Datalog¬

program using the query rewriting for Horn-SHIQ.
Let λ1 = D ] p, λ2 = ε, α1 = q(x)← D(x), R(x, y), B(y), α2 = q(x)← D(x),

• We apply the query rewriting algorithm of Horn-SHIQ for CQs in the DL-atoms.

The rules for α1 in DL[λ1;α1] are

Φ(L,α1) =


q(x)← D(x), R(x, y), B(y)

q(x)← D(x), A(x)

R(a, b). A(c). A(b). D(a).

 .

The subscripted version is

[Φ(L,α1)]λ1,α1 =


qλ1,α1(x)← Dλ1,α1(x), Rλ1,α1(x, y), Bλ1,α1(y)

qλ1,α1(x)← Dλ1,α1(x), Aλ1,α1(x)

Rλ1,α1(a, b). Aλ1,α1(c). Aλ1,α1(b). Dλ1,α1(a).


Similarly, the rules for α1 in DL[λ2;α2] are

Φ(L,α2) =

{
q(x)← D(x)

R(a, b). A(c). A(b). D(a).

}
,

and the subscripted version is

[Φ(L,α2)]λ2,α2 =

{
qλ2,α2(x)← Dλ2,α2(x)

Rλ2,α2(a, b). Aλ2,α2(c). Aλ2,α2(b). Dλ2,α2(a).

}
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• Rules ρ(P ):

For DL[λ1;α1], we add
Dλ1,α1(x)← s(x).

For DL[λ2;α2], as λ2 = ε, we do not need to add new rules.

• Facts for introducing the individuals: TP = {>(u),>(u, v) | u, v ∈ {a, b, c}}

• Finally, we have

P ord =

{
p(x)← DL[D ] s;D(x), R(x, y), B(y)](x), not DL[D](x)

s(a). s(b). s(c).

}
.

The result of the reduction is the Datalog¬ program

Ω(KB) = [ΦDL(L,α1)]λ1,α1
∪ [ΦDL(L,α2)]λ2,α2

∪ P ord ∪ ρ(P ) ∪ TP .

It is not difficult to check that KB has a single answer set I = {s(a), s(b), s(c), p(b)} and
Ω(KB) has a single answer set J ⊃ I; all elements in J \I are subscripted. The correspondence
is as we expected.

5.5 Related Work

The framework of terminological default theory is proposed in [BH95], where Baader and
Hollunder showed that to avoid the semantics problems and undecidability issues of embed-
ding defaults to description logics, we have to restrict the application of Reiter’s style rules
to named individuals only. The first result of embedding terminological default theory to dl-
programs is in [Eit+08a]. Later, more transformations and optimization techniques are devel-
oped in [DEK09] and are implemented as a front end inside the dl-plugin for the DLVHEX sys-
tem. Since the generated dl-programs have recursions through the dl-atoms, they are still very
challenging for DLVHEX even with optimizations. In contrast, our techniques transformation
using Datalog¬ as the targeting linage, which is much easier to evaluate on ASP engines.

We note that DL-safe CQs are a proper fragment of the more general DL-safe KBs, because
DL-safe KBs have more features, e.g., multiple rules, DL-predicates in the rule head, and non-
DL-predicates in the rules [HMS04]. It is worth mentioning that the general DL-safe KBs can
be reduced to dl-programs [Eit+08a] by a “guess-and-check” encoding. Although the reduction
in section 5.2 only works for DL-safe CQs, it is already useful in the many practical cases and
is very easy to implement on top of the inline evaluation framework. Actually, DL-safe CQs
have been considered and implemented in many DL reasoners (e.g., KAON2 and Pellet). Our
technique is strongly related to KAON2 approach, where they use Datalog∨ as the targeting
language. Systems KAON2, HermiT, and Pellet even support SWRL rules under dl-safeness,
which can be seen as another fragment of the general DL-safe KBs.

In the field of query answering over DL ontologies, since Calvanese el al. introduced query
rewriting in their seminal work on DL-Lite [Cal+07], many query rewriting techniques have
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been developed and implemented, (e.g., [PMH09], [RA10], [CTS11], [GOP11]), usually aiming
at an optimized rewriting size. Some of them also go beyond DL-Lite; e.g. Perez-Urbina el
al. cover ELHI [PMH09], while Gottlob el al. consider Datalog±[GOP11]. Most approaches
rewrite a query into a (union of) CQs; Rosati and Almatelli generate a non-recursive Datalog
program [RA10], while Perez-Urbina el al. produce a CQ for DL-Lite and a (recursive) Datalog
program for DLs of the EL family [PMH09]. Our approach can be seen as a hybrid, which
rewrites a CQ into a union of CQs, but generates (possibly recursive) Datalog rules to capture
the TBox.

Another comparable technique of query answering is the combined approach of Lutz el
al. [LTW09]. In order to do query answering in EL with off-the-shelf RDBMSs, the authors
expand the data in the ABox ‘materializing’ a part of the canonical model that can be used
for query answering after some query rewritings. Viewing our approach as a variation of the
combined approach suggests an alternative query evaluation technique: we can first close the
ABox under the rules in cr(T ), and then evaluate the rewritten query rew(q) over the closed
ABox.

Our query rewriting of Horn-SHIQ technique resembles Rosati’s [Ros07] for CQs in EL,
which replaces query atoms by existential concepts, then applies some TBox saturation and
translates the rewritten queries and the TBox into Datalog. The main difference is that in Rosati’s
technique the rewriting takes place before TBox saturation, resulting in an algorithm that is best-
case exponential in the size of the query. This is avoided in our approach since a rewriting step
occurs only if the saturated TBox has an applicable existential axiom.

Rewriting approaches for more expressive DLs are less common. The most notable excep-
tion is Hustadt el al.’s translation of SHIQ terminologies into disjunctive Datalog [HMS07],
which is implemented in the KAON2 reasoner. The latter can be used to answer queries over
arbitrary ABoxes, but supports only instance queries. To our knowledge, the extension of the
rewriting in [PMH09] to nominals remains to be implemented [PMH10]. In [ORS10] a Datalog
rewriting is used to establish complexity bounds of standard reasoning in the Horn fragments of
SHOIQ and SROIQ, but it does not cover CQs.

To the best of our knowledge, there is no practical algorithm and implementation for reason-
ing over weakly dl-safe KBs. Rosati proposed a “guess and check” algorithm forDL+ log [Ros06],
which is only of theoretical interest. He also showed that for DL-Lite+log, the data complexity
does not increase with respect to the data complexity of the Datalog program alone. However,
the optimization and implementation was left for future work. Our algorithm for weakly dl-safe
KBs naturally extends the rewriting techniques for CQ and is not difficult to implement.

The framework of cq-programs are proposed in [Eit+08b], and are implemented in the
DLVHEX system. We note that because the DL engine RacerPro used in DLVHEX does not fully
support conjunctive queries, the results of dlvhex for cq-programs can be incomplete. Regarding
the performance, as usual, we expected our inline evaluation approach over cq-programs is more
efficient than the approach in DLVHEX.
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CHAPTER 6
The DReW System

Our primary motivation of this thesis is to develop an efficient and practical system for reasoning
over hybrid knowledge base, with a focus on dl-programs. To validate the efficiency of the inline
evaluation strategy, we implemented most of the techniques developed in the chapter 4 and 5 in a
new system DReW. In this chapter, we describe the implementation details of the DReW system
and some applications.

6.1 System Overview

The DReW (Datalog ReWriter) system1 is a reasoning engine for dl-programs. The system im-
plements the inline evaluation framework of dl-programs (Section 4.1), over OWL 2 RL (Sec-
tion 4.2) and OWL 2 EL (Section 4.3), and additionally support terminological default theory
over OWL 2 EL (Section 5.1) and conjunctive queries under DL-safeness condition over OWL
2 RL and OWL 2 EL (Section 5.2). The techniques for conjunctive queries over Horn-SHIQ
are implemented in another system clipper [Eit+12b; Eit+12c]. Finally, the technique for CQ-
programs over Horn-SHIQ (Section 5.4) is not implemented yet because of the time constrains
and of low priority for the moment.

The DReW system is open sourced and publicly hosted in a git repository at GitHub 2.

6.1.1 Architecture

Fig. 6.1 shows a schematic overview of the components of DReW in charge of reasoning with
dl-programs by Datalog¬ rewriting.

• The Ontology parser and DL-Rules parser together parse the input dl-programs into the
internal representation.

1http://www.kr.tuwien.ac.at/research/systems/drew/
2https://github.com/ghxiao/drew
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• The main component DL-Program Rewriter is responsible for rewriting the dl-programs
into Datalog¬ programs based on a DL Profile (e.g. EL or RL).

– The DL Rewriter rewrites the ontology into a set of Datalog rules according to the
input DL Profile.

– The DL-Atom Extractor extracts the dl-atoms from the dl-rules.

– The Duplicator generates subscripted versions of the Datalog rules form the DL
Rewriter according to the dl-atoms.

– The DL-Rules Rewriter rewrite the dl-rules to a normal Datalog¬ program by re-
placing the dl-atoms in the dl-programs to an ordinary Datalog predicates.

– The DL-Atom Rewriter generates datalog rules simulating the dl-atoms.

– The Datalog Generator combines the input dl-rules into a single Datalog¬ program.

• Finally, the Model Builder calls an external Datalog¬ reasoner to compute the answer sets
(or well-founded models) of the generated Datalog¬ program, and converts them to the
models of the original dl-program.

OWL Ontology L DL-Rules P

Ontology
Parser

DL-Rules
Parser

DL RewriterDL Profile
DL-Atom
Extractor

DL-Rules
Rewriter

Duplicator
DL-Atom
Rewriter

Datalog
Generator

DL-Program
Rewriter

Model
Builder

Results

Datalog¬

Engine
data flow

conrol flow

Figure 6.1: Architecture of the DReW System
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Supported DLs

The current version of DReW supports ontologies in the OWL 2 RL and OWL 2 EL. The rewrit-
ings are based on the Datalog rewriting algorithms described in Section 4.2 and 4.3. To comply
with the OWL 2 standard, we adapted these rewriting techniques.

OWL 2 RL rewriter is based on the algorithm for LDL+ (Section 4.2). Since some of
the constructors in LDL+ (role conjunctions, transitive closure and role nominals) are not in
OWL 2, we did not support these features in DReW. Actually, in the first implementation of
DReW [XHE10], we supported full LDL+ fragment by using a modified version of OWL API.
However, these non-OWL constructions are dropped in the later versions of DReW for compat-
ibility.

OWL 2 EL rewriter is based on the algorithm for SROEL(u,×) (Section 4.3). As role
conjunction (u) and concept production (×) are not available in OWL 2 EL, we have to adapt
them from Pinst. Specifically, the following rules with subRConj (u) and subProd(×) are
dropped from Pinst in the implementation:

triple(X,W,X ′)← subRConj(V1, V2,W ), triple(X,V1, X
′), triple(X,V2, X

′)

self(X,W )← subRConj(V1, V2,W ), self(X,V1), self(X,V2)

triple(X,W,X ′)← subProd(Y1, Y2,W ), isa(X ′, Y2), isa(X,Y1)

self(X,W )← subProd(Y1, Y2,W ), isa(X,Y2), isa(X,Y1)

Concept production are seen as domain and range assertions. In the DReW system, we
convert them into facts range(V,R) and domain(V,D) meaning that the range of V is R and
the domain of V is D. The rules about the supProd predicate in Pinst

isa(X,Z1)← supProd(V,Z1, Z2), triple(X,V,X ′)

isa(X,Z1)← supProd(V,Z1, Z2), self(X,V )

isa(X ′, Z2)← supProd(V,Z1, Z2), triple(X,V,X ′)

isa(X,Z2)← supProd(V,Z1, Z2), self(X,V )

are replaced by the followings:

isa(Y,R)← range(V,R), triple(X,V, Y )

isa(X,R)← domain(V,R), triple(X,V, Y )

isa(X,R)← range(V,R), self(X,V )

isa(X,R)← domain(V,R), self(X,V )

Using the same techniques in [Krö11], we can show that the modified calculus is complete
for instance queries over SROEL ontologies.
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Semantics

The DReW system support both the (strong) answer set semantics and well-founded semantics.
The default option is the answer set semantics. The transformation preserve the models under
both semantics, so as long as the underlying Datalog¬ engine supports both semantics, the
implementation of these two semantics make no much difference.

Front Ends

Besides dl-programs, DReW also supports conjunctive query (CQ) and default reasoning front
end.

Conjunctive Query front end DReW can answer conjunctive queries over DL ontologies
under DL-safeness restriction based on the algorithms in Section 5.2 over OWL 2 EL and OWL
2 RL. The input query must be in the SPARQL format which corresponds to a conjunctive query,
i.e. SPARQL query with only basic graph patterns.

Example 6.1. The following CQ used in Example 5.5

ans(X,Y )←HighTrafficNode(X),wired(X,Y ),HighTrafficNode(Y )

can be represented by a SPARQL query assuming the prefix of the URI of the predicates is
“http://www.example.org/” :

PREFIX : <http://www.exmaple.org/>
SELECT ?X ?Y
WHERE {
?X a :HighTrafficNode .
?Y a :HighTrafficNode .
?X :wired ?Y .
}

Default Logic front end DReW also supports terminological default reasoning described in
Section 5.1. We currently only supports ontology in OWL 2 EL.

Example 6.2. we consider here an access control policy, borrowed from [BFS11] and couched
into a terminological default KB ∆ = 〈L,D〉, where the the TBox of L is

T =


Staff v User , Blacklisted v Staff , Deny u Grant v ⊥,
UserRequest ≡ ∃hasAction.Action u ∃hasSubject .User u ∃hasTarget .Project ,
StaffRequest ≡ ∃hasAction.Action u ∃hasSubject .Staff u ∃hasTarget .Project ,
BlacklistedStaffRequest ≡ StaffRequest u ∃hasSubject .Blacklisted


and the defaults are
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D =



UserRequest(X) : Deny(X)

Deny(X)
,

StaffRequest(X) : ¬BlacklistedStaffRequest(X)

Grant(X)
,

BlacklistedStaffRequest(X) : >
Deny(X)


.

Informally, D expresses that users normally are denied access to files, staff is normally
granted access to files, while to blacklisted staff any access is denied.

6.1.2 Implementation Details

The main part of DReW is written in Java 7, as Java platform is universally available on all the
major operation systems and there are many Java libraries for semantic web, e.g., OWL API.
The supporting scripts are in bash so that the user can use DReW as a command line tool. The
source code is organized by Apache Maven3, which makes the project building process easier
and in particular can handle the library dependencies. The development is version controlled
under Git4 and hosted at GitHub5.

DReW uses OWL API6[HB11] for parsing and representing ontologies. OWL API supports
all the major OWL syntax, including RDF/XML, OWL/XML, and Turtle formats. The parser
for dl-rules is generated by JavaCC7. The input format of dl-rules follows the undocumented
syntax used in dl-plugin v1.78 of dlvhex, which is an extension of DLV syntax. This format
is very close to the mathematical notion used in this thesis. For CQ front end, we use Jena
API9 [Car+04] to parse SPARQL queries.

The underlying Datalog engine we use is DLV10 [Leo+06], which supports both answer set
semantics and well-founded semantics. DLV itself is a command line tool implemented in C++,
but there is a Java wrapper (DLV-Wrapper11 [Ric03]) available.

Supported Operation Systems The DReW system is not designed for a particular operation
system (OS). The Java platform is available on all the major OSes. The binary of DLV is avail-
able on Linux, FreeBSD, Windows, and Mac OS X (Intel PC). Therefore DReW should be able
to run on all these OSes. We have tested it on Ubuntu Linux 12.10, Windows 7, and Mac OS X
10.8.

3http://maven.apache.org/
4http://git-scm.com/
5https://github.com/ghxiao/drew
6http://owlapi.sourceforge.net/
7https://javacc.java.net/
8http://www.kr.tuwien.ac.at/research/systems/dlvhex/dlplugin.html
9http://jena.apache.org/

10http://www.dlvsystem.com/dlv/
11http://www.dlvsystem.com/dlvwrapper/
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6.2 Use Cases

The DReW system is already used in several practical applications. In this section, we present
two use cases of DReW system in the EDImine project12, which is about inter-organizational
business process mining [Eng+11] in the context of Electronic Data Interchange (EDI) [KB96].
EDImine project uses OWL ontology to model and process the EDI messages and other Business
information (BI). The DReW system is used to perform rule based reasoning over the ontologies.

The first use case is to analyze Success Factor (SF), and the second one is to analyze Key
Performance Indicator (KPI). Two use cases need different reasoning services from DReW.

6.2.1 Success factor for Inter-organizational relationships

In the business domain, success factor (SF) is an element that influences a mission of an organi-
zation or project [Dan61; Roc79]. For example, a success factor which influences Performance
is Trust [CF05; LLL09]. Understanding success factors in inter-organizational relationships
(IORs) helps organizations managing their collaboration toward right direction. In this use case,
we conducted a review of 182 publications published during 2000–2012 identifying SFs related
to IORs as well as study their influencing relationships on each other. Based on the manually
extracted influence relations, we want to derive implicit relations and understanding the “core”
of these relations. Specifically, we are using DReW for the two tasks:

(1) computing all the implicit influencing relations, and

(2) retrieving a relative part fragment of the extracted influencing relations which is complete
w.r.t the original inputs. This fragment is useful for the understanding.

Modeling Success Factors and Influencing Relations

Success Factor Ontology We build an EL ontology for success factor. The 56 success fac-
tors with a hierarchy structure, manually extracted from the literature reviews, are naturally
modeled as an OWL ontology OSF , in which constructs are modeled as OWL concepts. The
constructs having the same definition or the same measurement are referred as the same SFs.
For example, the construct Collaboration, Cooperation, Integration have similar
definitions which relate to co-working among business partners, or in DL syntax:

Collaboration ≡ Cooperation ≡ Integration

Some constructs have hierarchy relations. For instance, by considering the definition of
construct Connectedness described in [Che11] as “Connectedness indicates the dependence
on each other for assistance, information, commitments or in respect of other behaviors that
encourage coordination among individuals, departments or organizations”, we conclude that
Connectedness is a part of Dependency since according to its definition it is a kind of depen-
dency in terms of behaviors or relationships, which is in turn modeled as a subclass between

12http://edimine.ec.tuwien.ac.at/
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concepts:
Connectedness v Dependency.

Influencing relationship According to the review, 263 influencing relations between the con-
structs are found. The relationships are modeled as Datalog style facts. For instance, the relation
“Trust influences Performance” is model as a fact inf (Trust, Performance). Note that here
we follow the punning of concepts and individuals as in OWL 213, and constructs Trust and
Adaptability are treated as individuals.
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Figure 6.2: Inference rules and redundancy checking rules

Rules for Influencing relationship inference and Redundancy checking

In this step, we model the inferencing of influencing relationship and redundancy checking using
rules.

Influencing relationship inference rules New influencing relationships which are not explic-
itly found in the studies are inferred by inference rules which consider the successful factor
ontology and influencing relationships.

We develop four inference rules as depicted in Figure 6.2 (Rule #1, #2, #3, and #4). For
instance, rule #1 is says if construct Z influences X , then Z influences all the subclasses of X
(e.g. Y ). Rule #3 says that if construct Z influences all the subclasses (Y1, . . . , Yn) of X and
X ≡ Y1 t . . .t Yn, then Z influences X . We can express them using the Datalog syntax mixed
with DL axioms:

13http://www.w3.org/2007/OWL/wiki/Punning
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inf(Z, Y )← inf(Z,X), Y v X (6.1)

inf(Y, Z)← inf(X,Z), Y v X (6.2)

inf(Z,X)← inf(Z, Y1), . . . , inf(Z, Yn), X ≡ Y1 t . . . t Yn (6.3)

inf(X,Z)← inf(Y1, Z), . . . , inf(Yn, Z), X ≡ Y1 t . . . t Yn (6.4)

Again, in these rules, we used the OWL 2 punning of individuals and concepts; X is treated
as a variable for individual in inf(Z,X) and as a variable for an OWL concept in Y v X .

Redundancy inference checking rules To better understanding the influencing relationships,
we can extract a relatively small fragment by identifying redundant relationships. Two examples
of the redundancy checking rules are depicted in rule #5 and #6 of Figure 6.2. For example, rule
#5 said that if Z influences X and Y subclass of X , then influencing relation between Z and Y
is redundant. and formally as as follows:

redundant_inf (Z, Y )← inf (Z,X), Y v X, inf (Z, Y ) (6.5)

redundant_inf (Y,Z)← inf(X,Z), Y v X, inf (Y, Z) (6.6)

Reasoning using DReW

Note that there are variables in Rule (6.1) to (6.6) for reasoning of subclass relations. In order to
apply these rules overOSF , we slightly abuse of the DReW system to do some simple yet useful
high order reasoning:

(1) Using DReW system, we apply the Datalog rules of materialization calculus Ksc [Krö10;
Krö11], which is an extension of the Datalog rewriting for instance query of SROEL(u,×)
ontologies (see section 4.1), for classifying the ontologyOSF . By adding one additional rule

ρ : subClass(A,B)← inst_sc(A,B,A)

we have that Ksc(L)∪{ρ} |= subClass(A,B) iff L |= A v B for any SROEL(u,×) on-
tologiesL. Note that the ontologyOSF uses some disjunctions which are not in SROEL(u,×),
so the results might be incomplete. We have to fix the incompleteness by manually adding
some missing subClass facts.

(2) Keep the influence facts as Datalog facts.

(3) Replace all the X v Y by subset(X,Y ) in the inference rules and redundancy checking
rules. For instance, rule 6.1 is transformed to

inf(Z, Y )← inf(Z,X), subClass(Y,X).

(4) Put the above rules together into a single program and use DLV to compute the model and
filter out the facts with predicates redundant_inf .

We find that half of the inferences directly from the literature reviews are redundant. These
“core” influencing relations can be further analyzed by business experts.
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6.2.2 Key Performance Indicator

A performance indicator or key performance indicator (KPI) is a performance measure indi-
cating the success of particular activities or objectives [Par10]. The EDImine project aims at
deriving knowledge by means of business performance from Electronic Data Interchange (EDI)
messages exchanged between business partners. The objective is to develop business cockpit
supporting business performance analysis based on the Balanced Scorecard (BSC) methodol-
ogy [Kra+12]. The essence of BSC is to align business objectives with Key Performance In-
dicators (KPIs) via success factors [KN92]. That is success factors are used as intermediary
elements connecting business objectives to KPIs. Therefore there are three main elements (i.e.
business objectives, success factors, and KPIs) playing key roles in the BSC implementation.
We use DReW system for (i) deriving KPIs from EDI messages as well as (ii) connecting those
elements together.

The EDI ontologies are developed for capturing business information in EDI messages at a
semantic level according to EDIFACT standard [Ber94]. The ontologies used in this work are
developed in OWL and has several components. Figure 6.3 describes the overview of ontologies
architecture.The EDIFACT standard as well as the specification of EDIFACT message types
are described in the EDIFACT Standards Ontology, EDIFACT Message Ontology, and Message
Types KB. The values in EDIFACT messages are parsed into the ontologies according to the
aforementioned ontological model. For more details we refer the reader to [Eng+12]. Further-
more, in order to represent those parsed values at the conceptual level which is understandable
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for an analysis task we develop business information ontologies to group those values into busi-
ness information concepts. The Meta-BI Ontology and BI Concept KB describes the mapping
between business information concept. By using the mapping information, the BI Ontology
is generated on top of EDIFACT ontologies. The BI Ontology described high-level business
information concept such as ordered quantity, invoiced amount, order number, etc. Such busi-
ness information concepts are used to classify EDIFACT values into the corresponding business
information. The detail of the BI Ontology can be found in [Kra+12].

The EDIFACT and Business Information ontologies are further used as an information in-
frastructure for implementing BSC as illustrated in Figure 6.4. As mentioned earlier, the ob-
jective of this work is to develop business analysis cockpit which allows users implement the
BSC to evaluate their business objectives at strategic level. From this, the user can define their
own business objectives and select the relevant success factors that suit with their objectives.
By providing knowledge base of success factors and the related KPIs which in turn link to the
raw EDIFACT data in the ontologies, the system can infer the relationship between business
objectives via the success factors as well as suggest related KPIs which is possible to calculated
from the available data. The implementation of the BSC and the reasoning task is support by the
DReW system. The advantage of using DReW system is twofold. (1) Comparing to general DL
reasoners (Pellet, Hermit, etc.), the DReW system performs much faster when dealing with large
ABoxes. (2) It allows us working in combination with OWL and logical rules. While the main
ontologies are modeled in OWL, some of inference rules can be model as datalog style rules.
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Find business objective which has no KPIs as its measurement

businessobjectiveWithKPI(X):- DL[measures](Y, X), DL[BusinessObjective](X), DL[KPI](Y).
businessobjectiveWithNoKPI(X):- DL[BusinessObjective](X),

not businessobjectiveWithKPI(X).

Check if the BSC model doesn’t contain any business objectives

notexistBusinessObjective:- not existBusinessObjective.
existBusinessObjective:- DL[BusinessObjective](X).

Check if a business objective have total KPI weight as 100

q1(O, K, W):- DL[measures](K, O), DL[hasWeight](K, W).
sum(O, X):- X = #sum{W, K : q1(O, K, W)}, DL[BusinessObjective](O).

BO_WeightViolation(O):- sum(O, X), X != 100.
safeBusinessObjective(O):- DL[BusinessObjective](O),

not BO_WeightViolation(O).

Table 6.1: Rules in KPI use case

Modeling rules in Datalog syntax provides us more intuitive way to formulate the complex rules.
We show one example of using dl-programs for checking the completeness of BSC model.

The complete BSC model should contains some business objectives; each business objectives
must be measured by some KPIs and the total weight of KPIs of each business objective must
be sum as 100. These rules are modeled in dl-programs as shown in Table 6.1 in order to check
if there are some violation in the BSC model.

6.3 Related Systems

NLP-DL NLP-DL [Eit+04a; Eit+08a] is the first experimental system for dl-programs which
supports both well-founded semantics and answer set semantics. This prototype is implemented
in scripting language PHP and is mainly used for demonstration. NLP-DL is superseded by
DLVHEX.

DLVHEX The most related system of DReW is DLVHEX, the successor of NLP-DL, targeting
HEX-programs. We list some major differences in term of features as below.

• External sources. DLVHEX is a reasoning engine for HEX-programs, which are an exten-
sion of dl-programs towards integration of external computation sources (not necessarily
DL ontologies). DLVHEX has plugins for several external resources, e.g. action, merging
and string.

• Expressivity of the DL component. DLVHEX supports DL ontologies by dl-plugins using
the external reasoner RacerPro. The DLs supported by DReW depends on the underlying
rewriting algorithms. Current implementation of DReW support OWL 2 RL and OWL 2
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EL; the algorithm for Horn-SHIQ is ready to implement. In contrast, DLVHEX supports
more expressive DL (SHIQ) via RacerPro.

• Semantics of dl-programs. For dl-programs, DLVHEX supports only answer set seman-
tics, while DReW supports both answer set semantics and well-founded semantics.

• Safeness conditions. DLVHEX explicitly requires the DL-safeness condition that every
variable occurs in the rules must occur in some non-DL body atoms. For instance, the rule
q(X) ← DL[Q](X) is not DL-safe, because the variable X does not occur in non-DL
atoms. In practice, we usually add auxiliary atoms to the rule to ensure the DL-safeness,
e.g. q(X) ← DL[Q](X), dom(X), and explicitly insert assertions dom(a), for all the
individuals a that occur in the ontology and rules. This step of retaining DL-safeness
is domain dependent and tedious and makes the rules verbose. In DReW, we implicitly
apply the DL-safeness condition, and allow rules like q(X)← DL[Q](X).

• Datatypes. Simple XML Schema Datatypes can be used in RDF and OWL. Current
implementation of DLVHEX does not support any datatypes, while DReW supports some
simple datatypes including string (e.g.,"abc"^^xsd:string) and integer (e.g.,
"123"^^xsd:integer).

MOR MOR is an experimental prototype system for first order rewritable dl-programs [Sch10].
MOR supports DL-Lite ontologies and acyclic dl-rules. The backend engine is RDBMS (cur-
rently PostgreSQL) rather than ASP engine. Compared with other systems for dl-programs,
MOR is designed to work with larger data set, but sacrificing expressivity.

ASPIDE ASPIDE14 is a integrated development environment for ASP [FRR11], which has
a list of input, rewriting, and output plug-ins for ASPIDE 15[Feb+12; Nar+13]. Some notable
plugins are:

• ASPIDE OWL to Facts is a rewriting plugin which creates a Datalog view in term of facts
representing the ABox of an ontology;

• ASPIDE OWL to DLVEx is a rewriting plugin which creates a Datalog Exist program out
of an OWL ontology (supports DL-Lite only);

• ASPIDE Requiem is a rewriting plugin exploiting the Requiem query rewriter [PMH09]
for query answering on lightweight ontologies.

These plugins let ASPIDE access DL ontologies. Compared with dl-programs, ASPIDE can
not express the bidirectional info between the ontology and rules.

14https://www.mat.unical.it/ricca/aspide/
15https://www.mat.unical.it/ricca/aspide/plugins.html
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CHAPTER 7
Performance Evaluation

In this chapter, we present the performance evaluation of inline evaluation by DReW system
comparing existing systems. The results imply that inline evaluation outperforms the classical
approaches of reasoning over dl-programs. The benchmarks suites also show that dl-programs
are a expressive and powerful language for query answering over DL ontologies.

7.1 Introduction

We build five benchmark suites (namely Graph, University, GeoData, EDI and Policy) in differ-
ent scenarios for evaluating the following aspects:

• Effects of reduction of DL calls. The main motivation of this thesis is to reduce the
external calls to DL reasoners. Two suites (Graph and Policy Suite) are in particular
used to show comparison results when multiple calls to DL reasoners are required in the
classical approach.

• Scalability. We are interested in the performance of the DReW system over dl-programs
with large ABoxes. We generate relatively large ABoxes in the GeoData, University and
EDI benchmark suites.

• Expressivity. Since dl-programs are a very expressive language, we build dl-programs
with features (e.g., non-monotonic negations, multiple rules, recursions, and dl-inputs)
which are not commonly available in other query languages.

• Underlying DL rewriting algorithms. Recall that we implemented rewriting of two styles:
direct rewriting (i.e. RL rewriting) and reification based rewriting (i.e. EL rewriting) in
DReW system. We evaluate benchmarks using both settings to compare the performance.

We run DReW and DLVHEX systems on benchmark suites and have the following insights:
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• DReW shows a clear advantage when multiple calls to the external DL reasoners are
required by classical dl-program reasoners.

• The performance of DReW on large ABoxes scales polynomially in general.

• Queries with more expressive features do not affect much on the performance of DReW.

• In most of the evaluations, the direct rewriting approach (RL) is faster than the reification-
based rewriting (EL).

7.2 Experiments

We present the details of experiments in this section. Firstly, in Section 7.2.1 we introduce five
benchmark scenarios used in the evaluation. Next we show the experimental platform in Sec-
tion 7.2.2. Lastly, the detailed results of the evaluation on theses benchmark suites are reported
in Section 7.2.3.

7.2.1 Benchmark scenarios

In our setting, a benchmark instance is a pair of an ontology and a dl-program. A benchmark
suite consists of a set of ontologies sharing the same TBox but with different ABoxes, and a set
of dl-programs. Thus every combination of an ontology and a dl-program from a benchmark
suite forms a benchmark instance. We evaluate all the instances from the all benchmark suites.

We build five benchmark suites in this chapter by adapting exiting benchmarks and by creat-
ing new ones from other domains. A summary of the ontology component of these benchmarks
suites are shown in Table 7.1. The Graph and Policy benchmarks are syntactical benchmarks
modifying existing benchmarks. We had a problem when evaluate the scalability on ontologies
with relatively large ABoxes, since such ontologies in the DL community are not common. In
contrast most of the benchmarks used in the DL community are either with small ABoxes or
only for TBox reasoning (e.g., concept classification and query rewriting for DL-Lite)1. The
LUBM test suite is the only one for ABox benchmarking which we are aware of. To solve this,
we collaborated with other research projects and developed two benchmark suites: the Geo-
Data benchmark suite is developed with MyITS project about the geography domain; the EDI
benchmark suite is developed with EDIMine project about the business domain.

(1) Graph Benchmark Suite The graph benchmark suite is adapted from that in [Eit+04a].
For some instances in this benchmark suite, classical evaluation method needs multiple calls
to the DL reasoner. So it is particularly useful for evaluating the effect of inline evaluation of
dl-programs reducing many calls to external DL reasoners.

The graph ontology uses an empty TBox. The individuals in the ontology model the nodes
of the graph; the property arc is used for the arcs between the nodes. The task in this scenario is

1The problem of lacking reasonable benchmark suites is confirmed by communication with several professors in
the DL community
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Suite Name DL #CON #OP #DP #TA #RA

Graph AL 1 1 0 0 0
University ALEHI 128 28 7 183 6
GeoData DL-Lite 345 32 5 397 19

EDI SHOI 152 61 35 303 68
Policy EL 9 3 0 6 0

Table 7.1: TBox and RBox size of benchmark suites. #CON=number of concepts, #OP=number of
object properties, #DP=number of data properties, #TA=number of TBox axioms, #RA=number of
RBox axioms

to compute the transitive closure of the graph in the ABox by dl-programs. Different programs
may need different numbers of calls to DL reasoners in classical approach.

(2) University Benchmark Suite Lehigh University Benchmark (LUBM) is a widely used
benchmark in the DL community, which consists of a TBox, an ABox generator and a set of
predefined queries [GPH04]. ModLUBM is a modified DL-Lite version of LUBM [Lut+12].
The concepts and properties used in ModLUBM is a superset of that in LUBM. Compared
with the original LUBM data generator, ModLUBM additionally introduces customizable num-
ber of subclasses of Department, Student and Professors by adding concepts SubjiDepartment,
SubjiStudent and SubjiProfessors. Therefore, the results of ModLUBM ABox generator can be
much larger than those of the original LUBM generator. The TBox of ModLUBM is restricted
to DL-Lite Axioms.

To make the evaluation more interesting, we combined the TBoxes and RBoxes from LUBM
and ModLUBM into our University benchmark suite. The resulting ontologies are classified as
ALEHI. For the ABox part, we use the generator of the ModLUBM.

(3) GeoData Benchmark Suite OpenStreetMap (OSM) is a well known user-generated street
map [HW08]. OSM has huge amount data which uses a topological data structure with nodes,
ways, relations and tags. GeoData Benchmark suite is a novel benchmark derived from OSM.
This ontology of this benchmark suite is developed in KBS group of Vienna University of Tech-
nology in the context MyITS project2.

The TBox used in GeoData benchmark suite is GeoConceptsMyITS-v0.9-Lite3, which is
a DL-Lite ontology. The ABoxes are extracted from OSM. We first load the OSM raw data to
PostgreSQL database with PostGIS extension using osm2pgsql4. Then the features (e.g., leisure,
shop, metro, bus, tram, and admin) are extracted from PostGIS. The spatial relations (e.g., next,
within) between the features are computed and materialized into OWL files by our Python scripts
(using GDAL library).

2http://www.kr.tuwien.ac.at/research/projects/myits/
3http://www.kr.tuwien.ac.at/staff/patrik/GeoConceptsMyITS-v0.9-Lite.owl
4http://wiki.openstreetmap.org/wiki/Osm2pgsql
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(4) EDI (EDIMine) Benchmark Suite Electronic data interchange (EDI) is a approach of
transferring data between different computer systems or computer networks [KB96].

The EDI Benchmark suite is developed in Institute of Software Technology & Interactive
Systems of Vienna University of Technology in the context of EDIMine Project5. This bench-
mark scenario is a part of the KPI use case in Section 6.2.2.

The TBox component of the benchmark suite contains the EDI ontology (derived from the
UN/EDIFACT standard [Ber94]) and the business information (BI) ontology. The ABoxes are
converted from the EDI messages. The dl-programs are used for querying messages and the
results can be used for further analysis by business experts.

(5) Policy Benchmark Suite This benchmark suite is used for evaluating the default logic
front end of DReW. we consider here an access control policy terminological default KB ∆ =
〈L,D〉 as in Example 6.2, where the the TBox of L and the defaults D are shown bellow:

T =


Staff v User , Blacklisted v Staff , Deny u Grant v ⊥,
UserRequest ≡ ∃hasAction.Action u ∃hasSubject .User u ∃hasTarget .Project ,
StaffRequest ≡ ∃hasAction.Action u ∃hasSubject .Staff u ∃hasTarget .Project ,
BlacklistedStaffRequest ≡ StaffRequest u ∃hasSubject .Blacklisted


D =


UserRequest(X) : Deny(X)/Deny(X),
StaffRequest(X) : ¬BlacklistedStaffRequest(X)/Grant(X),
BlacklistedStaffRequest(X) : >/Deny(X)


Informally, D expresses that users normally are denied access to files, staff is normally granted
access to files, while to blacklisted staff any access is denied. We generate ABox assertions
about the users and the requests and use DReW and DLVHEX to query whether the requests are
granted or denied.

7.2.2 Platform

We mentioned in section 6.3, that we are aware of three existing systems for dl-programs, namely
NLP-DL, DLVHEX, and MOR. However, we only compared DReW with DLVHEX for the fol-
lowing reasons.

• NLP-DL is implemented in PHP and only available from a web interface. It is not main-
tained and there is no easy way to automate the evaluation. Most importantly, it is super-
seded by DLVHEX.

• MOR is an experimental prototype system supports only DL-Lite ontologies and first-
order rewritable dl-programs. Instead of Datalog engine in other dl-program reasoners,
MOR uses a relational database as backend. Setting up such database is non-trivial and
not well-documented.

5http://edimine.ec.tuwien.ac.at/
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The evaluation is performed on a Linux Server running Ubuntu 12.04. The DLV used in
DLVHEX and DReW is DLV version 2012-12-17 and the Java version is Oracle jdk1.7.0_21. we
use DLVHEX 1.7.2 as the current version 2 does not support the old input formats of dl-programs
(which is the same as DReW) and compared to version 1.7.2, there is no much performance
difference on the dl-programs used in this thesis. For the dl-plugin of DLVHEX, we use RacerPro
version 1.9.2 beta (released on October 25, 2007). Unfortunately, we can not test against the lat-
est version of RacerPro 2.0 preview because it is not fully compatible with DLVHEX. For DReW
system, we use DReW[RL] (resp. DReW[EL]) to denote using the RL (resp. EL) rewritings.

To make the evaluation fully automated, we implemented an experiment platform using the
HTCondor system6 [TTL05]. The platform is inspired by the VCWC system [Cha+13] used for
the ASP competition 2013. Thanks to HTCondor, we can schedule the experiments and restrict
the resources of each test. The workflow of the evaluation is as following:

(1) Benchmark suite generation. Each benchmark suite is physically put in one folder with two
subfolders: (a) ontologies (b) programs. Then we can evaluate all the instances from all the
combination of the ontologies and programs.

(2) HTCondor submission files generation. We write scripts to generate the submission files for
HTCondor, where we specify that each run of DReW system is restricted to 8G of memory
(6G allocated for Java VM). Since each run of DReW creates a new process of DLV, multiple
runs of DReW can be performed simultaneously. In case of DLVHEX, we have to run them
sequentially because DLVHEX communicates RacerPro through fixed ports (8080 and 8088).

(3) Execution of the benchmarks. We submit the HTCondor submissions files, and HTCondor
takes care of the execution. The results are stored in log files.

(4) Log files analysis. We run scripts for analyzing the log files and there are three possible
results for each run:

(a) the reasoner finished in time and successfully output results;

(b) the reasoner failed on the instance, which is normally caused by out of memory; and

(c) the reasoner run out of time (> 600s).

7.2.3 Evaluation

We present the detailed evaluation results of DReW and DLVHEX on the five benchmark suites.

(1) Graph Benchmark Suite

To build arbitrary large ABoxes, we did not directly adopt the instances of the graph from [Eit+04a].
Instead, the ABoxes are generated by a random graph generator7, which generates random sim-
ple connected graphs with prescribed degree sequence [VL05]. We generated ten ABoxes of
graphs (graph-n) with different numbers of nodes and edges, which are listed in Table 7.2. We

6http://research.cs.wisc.edu/htcondor/
7http://www-rp.lip6.fr/~latapy/FV/generation.html
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note that here all the concept assertions are actually declaration of the nodes and all the object
property assertions are of the form arc(a, b) for edges (a, b) in the graph. The numbers of edges
are always set to five times of the number of the nodes, that is, larger graphs are more sparse.
The OWL files of these ABoxes are very small when measured in MB on the disk.

To compute the transitive closure of the arc relations in the ABox, we use four dl-programs
in Table 7.3, which are evaluated by DReW[RL], DReW[EL] and DLVHEX. The evaluation
results are shown in Table 7.4. We make the following observations:

• DLVHEX needs different numbers of calls to RacerPro for different programs. By analyz-
ing the log files, we found that DLVHEX access only once to RacerPro for tc1 and tc2, but
multiple times for tc3 and tc4. This could explain that for DLVHEX the performances on
tc1 and tc2 are better than those on tc3 and tc4.

• For t3 and t4, DLVHEX fails on graphs with more than 300 nodes because that RacerPro
crashes and reports an out of memory problem. The reason could be that RacerPro is a
32bit program, which can only access up to 4G of memory. Every time DLVHEX queries
RacerPro with a dl-input, RacerPro will actually create a copy of the whole ontology.
When there are many such queries, RacerPro may run out of memory because of these
copies.

• DReW is always faster than DLVHEX. When more than one calls to RacerPro is needed
(tc3 and tc4), the advantage is more clear. This shows that inline evaluation strategy
indeed reduces the overhead of calling external DL reasoners.

• For all of the three reasoners, the runnings on tc2 are in quadratic time w.r.t the number of
nodes, but the runnings on the rest programs are roughly in exponential time. We checked
the log of DReW[RL] and DReW[EL] and found that most of the running time (over 99%)
is spent on DLV. It shows that DLV performs better on the linear recursion version (used
in tc2) of this transitive closure computation.

• Comparing the performance of DReW[EL] and DReW[RL], we found that DReW[EL] is
in general faster than DReW[RL].

To conclude, in graph benchmark suite DReW outperforms DLVHEX clearly, especially
when multiple calls to RacerPro are needed by DLVHEX. The failures of the runs of DLVHEX can
come from the either the DLV part or the RacerPro part. DReW[EL] runs faster than DReW[RL]
on most instances.
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Ontology #IND #CA #OPA #DPA File size

graph-10 10 10 50 0 0M
graph-100 100 100 500 0 0M
graph-200 200 200 1000 0 0M
graph-300 300 300 1500 0 0M
graph-400 400 400 2000 0 0M
graph-500 500 500 2500 0 0M
graph-600 600 600 3000 0 0M
graph-700 700 700 3500 0 0M
graph-800 800 800 4000 0 0M
graph-900 900 900 4500 0 0M

Table 7.2: ABox Sizes of the Graph Benchmark Suite. #IND: individuals, #CA: concept assertions,
#OPA: object property assertions, #DPA: data property assertions.

tc1 This program extracts the arc relations from the ontology and computes
the closure by binary recursion

tc(X, Y) :- DL[arc](X, Y).
tc(X, Y) :- tc(X, Z), tc(Z, Y)

tc2 This program extracts the arc relations from the ontology and computes
the closure by linear recursion

edge(X, Y) :- DL[arc](X, Y).
tc(X, Y) :- edge(X, Y).
tc(X, Y) :- edge(X, Z), tc(Z, Y).

tc3 This program extracts the arc relations from the ontology and computes
the closure by recursion while feeding back the arc relations

tc(X, Y) :- DL[arc](X, Y).
tc(X, Y) :- DL[arc] tc; arc](X, Z), tc(Z, Y).

tc4 This program extracts the arc relations from the ontology while feeding
back the arc relations by tc and computes the closure by recursion

edge(X, Y) :- DL[arc ] tc; arc](X, Y).
tc(X,Y) :- edge(X, Y).

tc(X, Y) :- DL[arc](X, Z), edge(Z, Y).

Table 7.3: dl-programs in the Graph benchmark suite
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tc1 tc2 tc3 tc4

graph-10 1.1 1.0 1.1 1.2
graph-100 2.6 1.5 2.5 2.5
graph-200 12.1 2.2 11.8 10.7
graph-300 40.4 3.0 38.7 38.8
graph-400 97.8 4.3 93.4 90.4
graph-500 195.3 5.8 192.3 194.6
graph-600 350.5 7.9 350.3 365.4
graph-700 579.87 10.3 562.2 577.1
graph-800 OT 12.3 OT OT
graph-900 OT 16.7 OT OT

(a) Results by DReW[RL]

tc1 tc2 tc3 tc4

graph-10 1.0 1.1 1.1 1.0
graph-100 2.5 1.4 2.5 2.4
graph-200 11.3 2.2 10.5 11.1
graph-300 40.1 3.1 32.5 31.9
graph-400 93.6 4.3 75.8 82.8
graph-500 185.0 5.8 163.9 153.6
graph-600 359.6 7.9 259.3 263.2
graph-700 556.1 9.9 411.1 430.2
graph-800 OT 12.9 525.2 555.2
graph-900 OT 16.2 OT OT

(b) Results by DReW[EL]

tc1 tc2 tc3 tc4

graph-10 1.4 0.3 1.8 1.7
graph-100 2.8 0.5 9.8 10.4
graph-200 13.6 1.3 52.8 57.5
graph-300 52.5 2.6 162.6 160.4
graph-400 133.6 4.6 OM OM
graph-500 266.1 6.9 OM OM
graph-600 478.6 10.1 OM OM
graph-700 OT 13.7 OM OM
graph-800 OT 18.4 OM OM
graph-900 OT 23.9 OM OM

(c) Results by DLVHEX

Table 7.4: Evaluation results of Graph benchmark suite (OT: > 600s; OM: out of memory)
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(2) University Benchmark Suite

P1 This program queries all the students X and universities Y , such that X gets both undergraduate
degree and master degree from Y , but does not get doctoral degree from Y .

q(X, Y) :- DL[undergraduateDegreeFrom](X, Y), DL[mastersDegreeFrom](X, Y),
not DL[doctoralDegreeFrom](X, Y).

P2 This program queries all the students X and courses Y , such that X is the teaching assistant of
Subject2Course Y , but X is not a student in Subject2.

q(X, Y) :- DL[teachingAssistantOf](X, Y), DL[Subj2Course](Y), DL[Student](X),
not DL[Subj2Student](X).

P3 This program queries all the people who has degrees from two different places.

q(X, Y1, Y2) :- DL[degreeFrom](X, Y1), DL[degreeFrom](X, Y2), Y1 != Y2.

P4 This program queries all the triples (X,Y, Z) such that X is the advisor of Y , and X and Y are
coauthors of P .
coauthor(P, X, Y) :- DL[publicationAuthor](P, X), DL[publicationAuthor](P, Y), X != Y.

q(P, X, Y) :- coauthor(P, X, Y), DL[advisor](X, Y).

P5 This program queries all the PersonsX who are in the transitive closure of the coauthor relationship
of FullProfessor1 in Department0 of University0.

coauthor(X, Y) :- DL[publicationAuthor](P, X), DL[publicationAuthor](P, Y), X != Y.
tc_coauthor(X, Y) :- coauthor(X, Y).
tc_coauthor(X, Y) :- coauthor(X, Z), tc_coauthor(Z, Y).

q(X) :- tc_coauthor(X, “<http://www.Department0.University0.edu/FullProfessor1>”).

P6 This program queries all the professors who are not in the transitive closure of the coauthor relation
of FullProfessor1 in Department0 of University0.

coauthor(X, Y) :- DL[publicationAuthor](P, X), DL[publicationAuthor](P, Y), X != Y.
tc_coauthor(X, Y) :- coauthor(X, Y).
tc_coauthor(X, Y) :- coauthor(X, Z), tc_coauthor(Z, Y).

q(X) :- DL[Professor](X),
not tc_coauthor(X,“<http://www.Department0.University0.edu/FullProfessor1>”).

Table 7.5: dl-programs in the University benchmark suite

We generated large ABoxes using the generator of ModLUBM [Lut+12] to test the scalabil-
ity. The incompleteness was set to 5%. The ABoxes are in Table 7.6, in which each Ui stands for
an ABox with i universities. We build six dl-programs in Table 7.5. We note that these programs
can not be be directly expressed by conjunctive queries, since P1 and P2 use negations, P3 and
P4 use inequalities, and P5 and P6 use recursions.

The test programs are evaluated on DLVHEX and DReW. Surprisingly, DLVHEX cannot ter-
minate on the programs with U1 in 600s, so we only list the running time of DReW[RL] and
DReW[EL] in Table 7.7. We see that both DReW[RL] and DReW[EL] scale well. For most of
the instances, DReW[RL] outperforms DReW[EL].
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Ontology #IND #CA #OPA #DPA File Size

U1 17138 28023 47640 33201 9M
U2 37403 61924 107362 74710 22M
U4 76710 128160 224805 155951 46M
U6 115998 194106 341204 236702 69M
U8 159193 266617 468928 325563 95M
U10 200992 336870 593388 411768 121M
U15 311875 523097 922763 640069 188M
U20 426837 716556 1265316 876971 259M

Table 7.6: ABox sizes of the University benchmark suite. #IND: individuals, #CA: concept asser-
tions, #OPA: object property assertions, #DPA: data property assertions

p1 p2 p3 p4 p5 p6

U1 11.5 11.0 12.8 11.3 16.7 17.3
U2 18.5 17.0 20.8 19.3 30.4 28.9
U4 25.8 26.1 35.0 32.9 59.4 56.8
U6 36.0 38.0 41.7 42.2 85.9 90.5
U8 47.0 47.5 59.3 49.1 133.6 136.4
U10 81.2 84.3 94.0 90.5 169.6 175.3
U15 97.9 104.2 117.6 101.6 205.2 229.6
U20 150.8 156.2 165.7 158.0 322.6 337.0

(a) Results by DReW[RL]

p1 p2 p3 p4 p5 p6

U1 21.1 18.4 21.3 22.6 23.2 25.7
U2 28.3 28.4 29.4 29.6 39.9 40.9
U4 54.9 58.0 61.4 57.9 79.4 82.1
U6 142.1 144.6 186.6 183.0 192.0 192.2
U8 247.7 248.5 261.5 246.0 247.8 248.2
U10 295.7 308.7 306.3 315.5 307.5 306.1
U15 504.7 508.9 503.2 502.3 536.2 533.0
U20 OT OT OT OT OT OT

(b) Results by DReW[EL]

Table 7.7: Evaluation Results of the University benchmark suite
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(3) GeoData Benchmark Suite

#IND #CA #OPA #DPA #next #within File Size

Salzburg 12971 13037 539 19513 79615 455 11M
Vienna 33405 33531 1303 50520 292985 2610 36M
Austria 150911 151616 5326 222189 893438 6712 133M

Upper Bavaria 70837 71201 2182 106140 414512 3772 55M

Table 7.8: ABox Sizes of the GeoData benchmark suite. #IND: individuals, #CA: concept asser-
tions, #OPA: object property assertions, #DPA: data property assertions, #next and #within: geo-
graphical relations next and within.

P1 List all the subway stations with at least two restaurants nearby.

q(XN1, XN2, YN) :- DL[Restaurant](X1), DL[featurename](X1, XN1),
DL[Restaurant](X2), DL[featurename](X2, XN2), X1 6= X2,
DL[next](X1, Y), DL[next](X2, Y),
DL[SubwayStation](Y), DL[featurename](Y, YN) .

P2 List all the restaurants without cuisine information

q(XN) :- DL[Restaurant](X), DL[featurename](X, XN), not hasCuisine(X).
hasCuisine(X) :- DL[hasCuisine](X, Y).

P3 List all the subway stations in the ontology, but not known from rule part.

q(X, Xname) :- DL[SubwayStation](X), DL[featurename](X, Xname), not metro_stop(Xname).
metro_stop(Stop1) :- metro_next(Line, Stop1, Stop2).
metro_stop(Stop2) :- metro_next(Line, Stop1, Stop2).
% facts of the subway lines
metro_next(“U1”,“Reumannplatz” , “Keplerplatz”).
metro_next(“U1” , “Keplerplatz” , “Suedtiroler Platz”).
. . .
metro_next(“U6”, “Handelskai”, “Neue Donau”).
metro_next(“U6”, “Neue Donau”, “Floridsdorf”).

Table 7.9: dl-programs in the GeoData Benchmark Suite (P1 – P3)

Recall that the data of the ontology of this suite contain two parts: (1) the features directly
extracted from OSM stored in PostgreSQL, (2) the geographical relations computed by our
scripts using Python . In this thesis, we extracted features (including types of leisure, shop,
muse, metro, bus, tram, admin) from the four areas: Salzburg, Vienna, Austria, and Upper
Bavaria. Two geographical relations next and within are extracted. The statistics of ABoxes
is in Table 7.8, where the next and within relations are shown in separated columns.

We build six dl-programs in Table 7.9 and 7.10. Some of the programs use the extracted
graph of subway lines of Vienna. The evaluation results are in Table 7.11. Note that we did
not list the results of DLVHEX because it can not terminate even on q1 over Salzburg or Vienna
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P4 List all the distances (number of stops) of the subway stations to “Karlsplatz” .
q(YN, N) :- DL[SubwayStation](X), DL[featurename](X, ”Karlsplatz”),

DL[SubwayStation](Y), DL[featurename](Y, YN),
stops(XN, YN, N).

stops(X, Y, 1) :- metro_next(Line, X, Y).
stops(X, Y, N1) :- stops(X, Z, N), metro_next(Line, Z, Y), N1 = N + 1,

not stops_less_than(X, Y, N1), #int(N1).
stops_less_than(X, Y, N1) :- stops(X, Y, N2), N2 < N1, #int(N1), #int(N2).

metro_next(Line, Stop1, Stop2) :- metro_next(Line, Stop2, Stop1).
% and the facts of the subway lines as in P3

P5 List all the Italian restaurants next to a subway station which can be reached from “Karlsplatz” by
one change.

q(YN, ZN, L1, L2) :- metro_connect_1_change(L1,L2,“Karlsplatz”, YN),
DL[SubwayStation](Y),
DL[featurename](Y, YN), DL[Restaurant](Z),
DL[next](Y, Z), DL[featurename](Z, ZN),
DL[hasCuisine](Z, “ItalianCuisine”).

metro_next(Line, Stop1, Stop2) :- metro_next(Line, Stop2, Stop1).
metro_connect_0_change(L, Stop1, Stop2) :- metro_next(L, Stop1, Stop2).
metro_connect_0_change(L, Stop1, Stop2) :- metro_connect_0_change(L, Stop1, Stop3),

metro_connect_0_change(L, Stop3, Stop2).
metro_connect_1_change(L1, L2, Stop1, Stop2) :- metro_connect_0_change(L1, Stop1, Stop3),

metro_connect_0_change(L2, Stop3, Stop2), L1 != L2.
% and the facts of the subway lines as in P3

P6 Select restaurants next to “Karlsplatz” with preference: ChineseCuisine > AsianCuisine > Other
restaurant(X) :- DL[Restaurant](X), DL[next](X,Y),

DL[SubwayStation](Y), DL[featurename](Y, “Karlsplatz”).
chinese_restaurant(X) :- restaurant(X), DL[hasCuisine](X, “ChineseCuisine”).

asian_restaurant(X) :- restaurant(X), DL[hasCuisine](X, “AsianCuisine”).
exists_chinese_restaurant :- chinese_restaurant(X), restaurant(X).

exists_asian_restaurant :- asian_restaurant(X), restaurant(X).
sel(X) :- chinese_restaurant(X), exists_chinese_restaurant.
sel(X) :- asian_restaurant(X), not exists_chinese_restaurant,

exists_asian_restaurant.
sel(X) :- restaurant(X), not exists_asian_restaurant,

not exists_chinese_asian_restaurant.
q(XN) :- sel(X), DL[featurename](X, XN).

Table 7.10: dl-programs in the GeoData Benchmark Suite (P4 – P6)

in 20 mins. We see that both the running times of DReW[EL] and DReW[RL] scales well, but
DReW[RL] outperforms DReW[EL] clearly.
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p1 p2 p3 p4 p5 p6

Vienna 25.81 25.38 25.47 32.15 28.83 23.31
Salzburg 13.84 14.88 13.35 20.11 15.79 10.78
Austria 78.1 74.5 74.0 81.9 82.2 77.9

Upper Bavaria 33.15 33.36 32.27 36.21 31.65 28.9

(a) Evaluation results by DReW[RL]

p1 p2 p3 p4 p5 p6

Vienna 60.56 58.93 57.92 65.42 63.31 53.89
Salzburg 21.28 23.89 21.15 30.43 23.25 20.85
Austria 172.0 166.9 169.8 171.9 176.2 175.3

Upper Bavaria 89.09 87.05 85.84 87.42 92.82 82.36

(b) Evaluation results by DReW[EL]

Table 7.11: Query Evaluation of the GeoData Benchmark Suite

(4) EDI Benchmark Suite

ABox #Invoice #Order #IND #CA #OPA #DPA File Size

EDI_5 1 4 19326 19326 41487 54480 12M
EDI_10 2 8 23063 23063 63674 61305 16M
EDI_25 5 20 36085 36085 141009 85090 28M
EDI_50 10 40 57448 57448 268104 124260 50M
EDI_75 12 63 67893 67893 330384 143621 60M
EDI_100 15 85 77542 77542 387863 161435 70M
EDI_125 15 110 81407 81407 411105 168794 73M
EDI_150 20 130 97343 97343 505978 198040 89M
EDI_175 20 155 101679 101679 532055 206289 94M
EDI_200 25 175 117309 117309 625097 234952 109M

Table 7.12: ABox sizes of EDI benchmark suite. #IND: individuals, #CA: concept assertions,
#OPA: object property assertions, #DPA: data property assertions.

In this benchmark suite, we considered two types of EDI messages: D01B8 (invoices) and
D96A9 (orders). The ABoxes are extracted from the EDI messages of these two types. EDI
messages are very compact and contain many information. For example, D01B specification
defines 53 segment groups and each group can contain two to ten segments. Each segment will
be transformed to at least one ABox assertion. The sizes are shown in the Table 7.12. There are

8http://www.unece.org/trade/untdid/d01b/trmd/invoic_c.htm
9http://www.unece.org/trade/untdid/d96a/trmd/quotes_c.htm
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two columns (#Invoice and #Order) for the number of the corresponding invoice messages and
order messages.

We build five dl-programs shown in Table 7.13 and evaluate them. The ontologies are in
SHOI and most of the axioms are in RL. Some import axioms use inverse roles and they are
not in EL, so we only evaluated this benchmark suite on DReW[RL] and the evaluation results
are in Table 7.14. Again, we did not list the results of DLVHEX because it can not terminate in a
reasonable time. In contrast, DReW[RL] behaves almost linearly.
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P1 get line item invoiced quantities, where the itemnumber = “xxxxxxxxxxxxx” (for specific product)
q(Y, N, X, Q) :- DL[INVOIC_LineItemQuantity_invoicedquantity](X),

DL[D01B:containedInSegmentInstance](X, S),
DL[D01B:containedInSegmentGroupInstance]( Y, SG),
DL[D01B:contains](SG, Y),
DL[INVOIC_LineItemItemNumber](Y),
DL[D01B:hasValue](Y, “xxxxxxxxxxxxx”),
DL[D01B:hasValue](X, Q),
DL[D01B:hasValue](Y, N).

P2 get all ordered quantities
q(X, Y) :- DL[D01B:ORDERS_LineItemQuantity_orderedquantity](X), DL[D01B:hasValue](X,Y)
q(X, Y) :- DL[D96A:ORDERS_LineItemQuantity_orderedquantity](X), DL[D96A:hasValue](X,Y)

P3 get requested delivery date/time in order messages and related actual delivery date/time in invoice
messages (order number (in ORDERS messages) must equal to the reference order number (in IN-
VOIC messages) )

q(X, A1, W, A2) :- order(X, A1, ON), invoice(W, A2, ON).
order(X, A1, ON) :- DL[ORDERS_DateTime_deliverydatetimerequested](X) ,

DL[D96A:hasValue](X, A1),
DL[D96A:containedInSegmentInstance](X, S),
DL[D96A:containedInMessage](S, MSG),
DL[D96A:contains](MSG, Y),
DL[ORDERS_DocumentNumber](Y),
DL[D96A:hasValue](Y, ON).

invoice(W, A2, ON) :- DL[INVOIC_ReferenceIdentifier_ordernumberpurchase] (Z),
DL[D01B:hasValue](Z, ON),
DL[D96A:containedInSegmentInstance](Z, SI) ,
DL[D96A:containedInMessage](SI, MSGI),
DL[D96A:contains](MSGI, W),
DL[INVOIC_DateTime_deliverydatetimeactual](W),
DL[D01B:hasValue](W, A2).

P4 get orders without related invoices

temp(X) :- DL[D96A:Message](X), DL[D96A:isOfMessageType](X, “ORDERS”),
DL[D96A:contains](X, OON), DL[ORDERS_DocumentNumber](OON),
DL[D96A:hasValue](OON, OV), DL[D01B:Message](Y),
DL[D01B:isOfMessageType](Y, “INVOIC”), DL[D01B:contains](Y, ION),
DL[INVOIC_ReferenceIdentifier_ordernumberpurchase](ION),
DL[D01B:hasValue](ION, IV), OV=IV.

q(X) :- not temp(X), DL[D96A:Message](X), DL[D96A:isOfMessageType](X,“ORDERS”).

P5 get invoices without related orders

temp(Y) :- DL[D96A:Message](X), DL[D96A:isOfMessageType](X, “ORDERS”),
DL[D96A:contains](X, OON), DL[ORDERS_DocumentNumber](OON),
DL[D96A:hasValue](OON, OV), D01B:Message(Y),
DL[D01B:isOfMessageType](Y, “INVOIC”), DL[D01B:contains](Y, ION),
DL[INVOIC_ReferenceIdentifier_ordernumberpurchase](ION),
DL[D01B:hasValue](ION, IV), OV=IV.

q(Y) :- not temp(Y), DL[D01B:Message](Y), DL[D01B:isOfMessageType](Y, “INVOIC”).

Table 7.13: dl-programs in the EDI benchmark suite
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P1 P2 P3 P4 P5

EDI_5 1.3 1.3 1.3 1.4 1.4
EDI_10 1.8 1.8 1.8 1.8 1.9
EDI_25 4.2 4.0 4.0 4.0 4.1
EDI_50 7.9 7.6 7.7 7.7 7.8
EDI_75 9.4 9.5 9.4 9.7 9.7
EDI_100 11.4 11.3 11.0 11.5 11.5
EDI_125 11.9 11.6 12.1 12.3 12.3
EDI_150 14.8 15.2 15.0 15.4 15.7
EDI_175 16.4 16.3 16.4 16.6 16.7
EDI_200 18.9 17.8 18.1 20.0 20.1

Table 7.14: Evaluation of EDI benchmark suite using DReW[RL]
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(5) Policy Benchmark Suite

Deny+(X)← DL[λ; UserRequest ](X), not DL[λ′;¬Deny ](X)

Grant+(X)← DL[λ; StaffRequest ](X), not DL[λ′; BlacklistedStaffRequest ](X)

Deny+(X)← DL[λ; BlacklistedStaffRequest ](X).

in_Deny(X)← not out_Deny(X)

out_Grant(X)← not in_Grant(X)

fail ← DL[λ′; Deny ](X), out_Deny(X), not fail

fail ← DL[λ;Deny](X), in_Deny(X), not fail

fail ← DL[λ;Deny](X), out_Deny(X), not fail

fail ← DL[λ′; Grant ](X), out_Grant(X), not fail

fail ← DL[λ; Grant ](X), in_Grant(X), not fail

fail ← DL[λ; Grant ](X), out_Grant(X), not fail

where λ′ = {Deny]in_Deny ,Grant]in_Grant}, and
λ = {Deny]Deny+,Grant]Grant+}.

Table 7.15: dl-programs in the policy benchmark suite

In the test, we created ontology instances Li, i ∈ {1, 5, 10, 25}, that have a fixed TBox
and increasing ABoxes with i∗1000 instances of user requests. For experimentation, we have
populated the ABox with varying numbers of individuals, with varying properties: 1/3 of users
are normal users; 1/3 are non-blacklisted staff, and 1/3 are blacklisted staff.

The query imposed was then whether a set of particular individuals, designated by concepts
Qk, k ∈ {5, 50, 100}, are granted access (under answer set semantics); the application of de-
faults, using Qk as a typing concepts, is thus restricted to the k queried individuals. As we see
in Table 7.16, DReW[EL] scales sublinearly in this experiment, on top of both DLV and clingo.

DLVHEX internally transforms the default logic KB (L,D) to the dl-program (L,Π(D)) as
in Table 7.15. This dl-program is highly recursive through the dl-inputs and is quite challenging
for DLVHEX. Our tests show that DLVHEX with DF-front end can only handle up to 5 requests
(∆1 in Table 7.16 already has 1000 request) and runs almost 3 mins. So we did not put the result
of dlvhex into the result table.
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KB Typing DReW[EL]
DLV clingo

∆1 5 1.1 0.8
50 2.4 1.3
100 6.0 3.0

∆5 5 6.6 4.4
50 8.3 5.0
100 12.2 7.4

∆10 5 13.9 9.4
50 15.7 10.1
100 20.5 13.3

∆25 5 35.8 26.0
50 40.0 26.4
100 43.7 32.7

Table 7.16: Evaluation of the Policy Benchmark Suite (Time in second)

7.3 Discussion

In this chapter, we have conducted an extensive evaluation of the reasoning of dl-programs on
five novel benchmark suites by DReW and DLVHEX system. The results show that DReW
always outperforms DLVHEX. Regarding the two rewritings used in DReW, DReW[RL] is better
on most of the instances. The results indicate that inline evaluation strategy indeed improves the
performance of evaluating dl-programs.

There are several reasons contributing to the bad performance of DLVHEX in these evalu-
ations. (1) When DLVHEX needs to call RacerPro multiple times, we see that there is a big
overhead even the DL reasoning is very simple. (2) When multiple calls are needed, RacerPro
is easily running out memory because of the multiple copies of the ontologies. (3) Sometimes
when DLVHEX needs to call RacerPro with a large ontology, we see that RacerPro had bad
performance. When we have to deal with data properties, such performance problem is more
visible. This might be a known issue with the version 1.9.2 of RacerPro. By the time of writing
this thesis, RacerPro v2 is still not stable. Hopefully the new version will fix this. Observing
these points, DLVHEX could be improved by trying coupling with other DL reasoners or the
newer version of RacerPro. However, changing DL reasoners still cannot fix the inefficiency
caused the overhead of DL calls.

Compared to DLVHEX, the DReW system improves the efficiency a lot using the inline
evaluation. However, we still see that there are big rooms for improvements. For instance, it
is in general unacceptable to wait several minutes for results of planning in a real geographic
information system. There are several further possible optimizations such as caching Datalog
rewritings of ontologies. Furthermore we note that in some applications only a small subset of
ABox is relevant to the results, e.g., objects in a certain bounding box in some geo information
systems. Such application dependent properties can also be exploited for optimizations.
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CHAPTER 8
Summary and Outlook

8.1 Summary

The main motivation of this thesis was to improve the performance of reasoning over hybrid
KBs, which allow combining KBs formulated in different logics. As a prominent example, dl-
programs are a well-studied KR language of combining ASP and DL reasoning in a flexible yet
powerful way. Because of the loose coupling nature of dl-programs, one can build engines for
dl-programs on top of legacy reasoners. For instance, the DLVHEX system with dl-plugin, which
is a state-of-the-art system for dl-programs, is built on top of the ASP reasoner (DLV or Clingo)
and the DL reasoner RacerPro. Although this architecture is very elegant, the performance of
this implementation is suboptimal.

Observing that the overhead of calling external reasoners in the classical approach can be the
bottleneck of the performance, we proposed a new evaluation strategy called inline evaluation
by “compiling” the hybrid knowledge base into a knowledge base of a single formalism. In case
of dl-programs, we designed an abstract framework rewriting the dl-programs to ASP, by com-
piling every components (dl-rules, ontology, and dl-atoms) carefully and put them together into
a single ASP program. The reduction is sound and complete for the “Datalog-rewritable” DLs
with respect to ground queries under both answer set and well-founded semantics. We showed
that many DLs, e.g.,LDL+, OWL 2 RL, SROEL(u,×) (OWL 2 EL), and Horn-SHIQ are
Datalog-rewritable by introducing concrete rewriting algorithms.

We further showed that inline evaluation can be used in hybrid KBs of other formalisms.
First, terminological default logic KBs and dl-safe conjunctive queries can be reduced to the
dl-programs, which then can be inline evaluated when the DL component is Datalog-rewritable.
Next, the general conjunctive queries over Horn-SHIQ can be reduced to the evaluation of
Datalog programs via query rewriting. Then this query rewriting algorithm can be naturally ex-
tended to more general weakly-safe KBs. Finally, using the rewriting techniques of conjunctive
queries, we can extend the inline evaluation to cq-programs.

To confirm the hypothesis that the inline evaluation is superior to the classical approach of
“ASP + external DL reasoner”, we implemented most of the algorithms of this thesis in the
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DReW system, which is a open source reasoner for dl-programs with additional front ends for
dl-safe conjunctive queries and terminological default theory. We did extensive evaluations on
several novel benchmark suites and showed that DReW system outperforms DLVHEX in general,
especially when DLVHEX needs multiple access to RacerPro or the dl-programs are with large
ABoxes.

8.2 Outlook

We outlook possible future works and challenges raised by the inline evaluation.

Optimization of the DReW system. Although DReW shows promising performance in the
experiments, there are still opportunities for further enhancement on the implementation.

• We observed that a large amount of time is spent on the DL rewriting and grounding.
Since the rewriting of the DL ontology is independent of the dl-rules, we could cache the
writing results of the DLs for future use and even the grounding.

• DReW is a Java program but DLV itself is not implemented in Java. Currently, we invoke
DLV from Java by DLVWrapper which starts a new process of DLV. Then DLV needs to
parse the rewritten Datalog¬ program and do the actual reasoning. The overhead of creat-
ing new process, parsing and inter-process communication can be significant and should
be reduced. One possibility is to build tighter integration of ASP reasoner (e.g., Clingo
or DLV) via Java Native Interface (JNI) and let them share the same data structure of the
Datalog¬ programs in memory.

Recently the DLV team is developing a “DLV Server” which can possibly be accessed remotely
(as a DBMS server) and be able to maintain a sort of session information where e.g., the ground-
ing can be shared by several calls 1. This would be particularly useful in the setting of the DReW
system for reducing the overhead of creating DLV instances and grounding Datalog programs.

Backend Engines Now the inline evaluation framework uses ASP as the backend engine. We
could think of other backend engines (such as relational database management system (RDBMS)
or DLV∃) for better performance or for more expressivity.

• To use RDBMS was considered in the MOR system [Sch10] to gain scalability. However,
RDBMS is not as expressive as ASP, and MOR is limited to the first-order rewritable
DL-Lite ontologies. One possibility for supporting more expressive DLs is to use the
approximation techniques [BCR10].

• DLV∃ is a reasoner for (a large fragment of) Datalog∃, which is the extension of Datalog
allowing existentially quantified variables in rule heads [Leo+12]. DLV∃ is an attractive
backend for dl-programs because Datalog∃ is very expressive and can already capture a
large fragment of DLs naturally without complicated query rewriting.

1This message is from the personal email communication to the DLV team
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Supporting more dl-programs. Note that our current inline evaluation does not work on all
dl-programs. The ontologies are restricted to Datalog-rewritable DLs and the dl-atoms can only
use ]. As we discussed in Section 4.6, we could extend our framework by considering the
following:

• To support more DLs, we need to discover more Datalog-rewritable DLs. The most ex-
pressive Datalog-rewritable logic we know is Horn-SROIQ [ORS10]. We note that
for expressive Datalog-rewritable DLs, the rewriting step is in general intractable so
the optimization will be important. Going beyond Horn logics is even more challeng-
ing. Grau el al. proved that it is impossible in general to answer queries over non-
Horn ontologies using Datalog rewritings even for very simple ontology languages, and
even if P = NP [Gra+13]. We may need to relax Datalog-rewritability to Datalog∨-
rewritability and extend our framework accordingly.

• Our current algorithm only supports dl-atoms with the operator ]. The operator −∪ could
be supported by replacing all C−∪p to C]¬p. Supporting −∩ is possible by eliminating
non-monotonic dl-atoms using the techniques in [Wan+13].

More Front Ends Although dl-programs are a very expressive logic formalism, it is not al-
ways suitable as a query language to end users. For example, people often don’t know how
to use the feature of dl-inputs. We could think of dl-programs as a lower level language and
“compile” the languages that are more user-friendly or more domain-oriented to the end users
into dl-programs and try to inline evaluate the resulting programs. For instance, terminolog-
ical default logics can be compiled to dl-programs. We are planning to investigate more for-
malisms, e.g., high-order reasoning which is implemented in DLVHEX and regular path queries
over DLs [CEO09; BOS13].
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