
Using OpenStreetMap Data to Create Benchmarks for
Description Logic Reasoners

Thomas Eiter1, Patrik Schneider1, Mantas Šimkus1, and Guohui Xiao2

1 Institute of Information Systems, Vienna University of Technology, Vienna, Austria
2 KRDB Research Centre for Knowledge and Data, Free University of Bozen-Bolzano, Italy

1 Introduction

Description Logics (DLs) are a well-established and popular family of logics for knowl-
edge representation and reasoning [2]. They provide the logical foundations to OWL
ontology languages [10], offer high expressivity but are decidable and often have low
computational complexity. DLs are used to construct knowledge bases (KBs) that usu-
ally consist of a TBox and an ABox. A TBox describes the domain of interest in terms
of concepts and roles, while an ABox stores information about known instances of
concepts and their participation in roles.

Several systems have been developed in the last decade to reason about DL KBs.
Naturally, classical reasoning tasks like TBox satisfiability and subsumption under a
TBox have received most attention and many reasoners have been devoted to them (see
e.g. FaCT++ [15], HermiT [14], ELK [9]). These and other mature systems geared to-
wards TBox reasoning, have been rigorously tested and compared (e.g., JustBench [3])
using several real-life ontologies like GALEN and SNOMED-CT. Another important
category are reasoners for ontology-based data access (OBDA) [12]. They are de-
signed to answer queries over DL KBs in the presence of large data instances (see
e.g. Ontop [13], Stardog). TBoxes in this setting are usually expressed in low complex-
ity DLs, and are relatively small in size compared to the size of instance data. These
features make reasoners for OBDA different from classical TBox reasoners.

It has been acknowledged in the DL community that judging the performance of
OBDA reasoners and their underlying algorithms is limited due to the lack of publicly
available benchmarks consisting of large amounts of real-life instance data. Until now,
almost only the Lehigh University Benchmark (LUBM) [7] was applied to test OBDA
systems, as it is tailored for query answering and provides a generator for different
sizes of instance data. Another benchmarks are recently provided by Perez-Urbina et
al. [11] and Imprialou et al. [8] with the focus on test query generation and the aim to
compare the size and evaluation time of rewritten conjunctive queries. The mentioned
benchmarks are well designed, but missing one or more of the following components.
First, the generated data is often artificial and has a strong random component, which is
for real-life benchmarks not realistic. Second, the generators and the ontologies are not
easily modifiable and configurable because the users need programming skills. Third,
a formalization and a meta-language for benchmark generation are missing (e.g., in
LUBM), hence, desired properties can not be enforced (e.g., incompleteness) or re-
paired (e.g., inconsistency). In this paper, we consider publicly available geographic



datasets as a source of test data for OBDA systems. In particular, we describe how
benchmarks for OBDA systems can be created in a simple and extensible way by em-
ploying a rule-based data transformation framework to extract instance data from Open-
StreetMap (OSM) geospatial data.3 We note that similarly to us the Geographica [5]
suite uses OSM data for linked-data generation for testing RDF reasoners.

The OSM project aims to collaboratively create an open map of the world and has
proven to be hugely successful and is constantly updated and extended. In addition,
OSM data come with some (limited) amount of semantic information attached in the
form of tags. OSM data describes maps in terms of points, ways (geometries), and
more complex aggregate objects called relations. Each spatial object can be tagged,
thus providing non-spatial information like the type of an object (e.g., hospitals), or the
cuisine of a restaurant. OSM data seems to be an ideal source to obtain instance data
for the following cases:
- Datasets of different sizes exist; e.g., OSM dumps for all major cities, countries, and

continents are directly available.
- The data has an inherent (spatial) topology, which can be exploited to generate com-

plex hierarchies by calculating the spatial relations between them (e.g., contains).
- Beside the topology, the (semantic) information of tags or the distance between ob-

jects can be exploited to obtain either nominal (e.g., smoking/non-smoking) or metric
data (e.g., the distance to the next bus-stop).

- Depending on the location (urban versus rural), the density, separation, and compact-
ness of the objects vary strongly. 4

We proceed as follows. In Section 2, we provide a formal model for OSM data, and
then in Section 3 describe a declarative rule-based language to extract DL ABoxes from
an OSM map. We then discuss in Sections 4 and 5 the implementation of our approach
together with a generated benchmark which is evaluated with Ontop.

2 Formalization of OSM

In this section we formally describe our model for OSM data, which we later employ
to describe our rule-based language to extract instance data from OSM data. Maps in
OSM are represented using four basic constructs (a.k.a. elements):

- nodes, which correspond to points with a geographic location;
- geometries (a.k.a. ways), which are given as sequences of nodes;
- tuples (a.k.a. relations), which are given as sequences of nodes, ways and tuples;
- tags, which are used to describe metadata about nodes, ways and tuples.

Geometries are used in OSM to express polylines and polygons, in this way describing
streets, rivers, parks, etc. OSM tuples are used to relate several elements, e.g. to indicate
the turn priority in an intersection of two streets.

To formalize OSM maps, which in practice are encoded in XML, we assume in-
finite mutually disjoint sets Mnid,Mgid,Mtid and Mtags of node identifiers, geometry
identifiers, tuple identifiers and tags, respectively. We let Mid = Mnid ∪Mgid ∪Mtid and
call it the set of identifiers. An (OSM) map is a tripleM = (D, E ,L) such that:

3 http://www.openstreetmap.org
4 e.g., visible in https://www.mapbox.com/osm-data-report/



1. D ⊆ Mid is finite set of identifiers called the domain ofM.
2. E is a function from D such that:

(a) if e ∈ Mnid, then E(e) ∈ R×R;
(b) if e ∈ Mgid, then E(e) = (e1, . . . , em) with {e1, . . . , em} ⊆ D ∩Mnid;
(c) if e ∈ Mtid, then E(e) = (e1, . . . , em) with {e1, . . . , em} ⊆ D;

3. L is a labeling function L : D → 2Mtags .

Intuitively, in a mapM = (D, E ,L) the function E assigns to each node identifier a
coordinate, to each geometry identifier a sequence of nodes, and to each tuple identifier
a sequence of arbitrary identifiers.

For an example, assume we want to represent a bus route that, for the sake of sim-
plicity, goes in a straight line from the point with coordinate (0, 0) to the point with
coordinate (2, 0). In addition, the bus stops are at 3 locations with coordinates (0, 0),
(1, 0) and (2, 0). The names of the 3 stops are S0, S1 and S2, respectively. This can be
represented via the following mapM = (D, E ,L), where

- D = {n0, n1, n2, g, t} with {n0, n1, n2} ⊆ Mnid, g ∈ Mgid and t ∈ Mtid,
- E(n0) = (0, 0), E(n1) = (1, 0), E(n2) = (2, 0),
- E(g) = (n0, n2) and E(t) = (g, n0, n1, n2),
- L(n0) = {S0}, L(n1) = {S1} and L(n2) = {S2}.

The tuple (g, n0, n1, n2) encodes the 3 stops n0, n1, n2 tied to the route given by g.

Enriching Maps with Computable Relations The above formalizes the raw representa-
tion of OSM data. To make it more useful, we support incorporation of information that
needs not be given explicitly but can be computed from a map. In particular, we allow
to enrich maps with arbitrary computable relations over Mid. Let Mrels be an infinite set
of map relation symbols, each with an associated nonnegative integer, called the arity.

An enriched map is a tupleM = (D, E ,L, ·M), where (D, E ,L) is a map and ·M is
a partial function that assigns to a map relation symbolR ∈ Mrels a relationRM ⊆ Dn,
where n is the arity of R. In this way, a map can be enriched with externally computed
relations like the binary relations “is closer than 100m”, “inside a country”, “reachable
from”, etc. For the examples below, we assume that an enriched map M as above
always defines the unary relation Tagα for every tag α ∈ Mtags. In particular, we let
e ∈ TagMα iff α ∈ L(e), where e ∈ D. We will also use the binary relation Inside,
which captures the fact the location of a point x is inside a geometry y.

3 A Rule Language for Data Transformation

We define a rule-based language that can be used to describe how an ABox is created
from an enriched map. Our language is based on Datalog with stratified negation [1].

Let Drels be an infinite set of datalog relation symbols, each with an associated arity.
For simplicity, and with a slight abuse of notation, we assume that DL concept and role
names form a subset of datalog relations. Formally, we take an infinite set Dconcepts ⊆
Drels of unary relations called concept names and an infinite set Droles ⊆ Drels of binary
relations called role names. Let Dvars be a countably infinite set of variables.

An atom is an expression of the form R(t) or ¬R(t), where R is a map or a datalog
relation symbol. Elements of Mid ∪ Dvars are called terms. We call R(t) and ¬R(t)



a positive atom and a negative atom, respectively. A rule r is an expression of the
form B1, . . . , Bn → H, where B1, . . . , Bn are atoms (called body atoms) and H is a
positive atom with a datalog relation symbol (called the head atom). We use body+(r)
and body−(r) for the sets of positive and negative atoms of {B1, . . . , Bn}, respectively.
We assume datalog safety, i.e. each variable of a rule occurs in some positive body atom.
A rule r is positive if body−(r) = ∅. A program P is any finite set of rules. A rule or
program is ground if it has no occurrences of variables. A program P is positive if all
rules of P are positive. A program P is stratified if it can be partitioned into programs
P1, . . . , Pn such that:

(i) If r ∈ Pi and ¬R(t) ∈ body−(r), then there is no j ≥ i such that Pj has a rule
with R occurring in the head.

(ii) If r ∈ Pi and R(t) ∈ body+(r), then there is no j > i such that Pj has a rule
with R occurring in the head.

The semantics of a program P is given relative to an enriched mapM. The ground-
ing of a program P w.r.t.M is the ground program ground(P,M) that can be obtained
from P by substituting variables in rules of P with identifiers occurring inM or P . We
use a variant of the Gelfond-Lifschitz reduct [6] to get rid of maps atoms in a program.
The reduct of P w.r.t.M is the program PM obtained from ground(P,M) as follows:

(a) From the body of every rule r delete every map atom ¬R(t) with t 6∈ RM.
(b) Delete every rule r whose body contains a map atom ¬R(t) with t ∈ RM.

Observe that PM is an ordinary stratified datalog program with identifiers acting as or-
dinary constants. We let PM(M, P ) denote the perfect model of the program PM. See
[1] for the construction of PM(M, P ) by fix-point computation along the stratification.

We are finally ready to extract an ABox. Given a mapM and a program P , we use
ABox(M, P ) to denote the set of atoms obtained from PM(M, P ) by restricting to
atoms over concept and role names only.

Consider a toy program P with the following rules:

Point(x),Tagcinema(x),Geom(y),Tagcity(y), Inside(x, y)→ hasCinema(y, x) (1)

Geom(x),Taggarden(x),¬Tagprivate(x)→ RecreationalArea(x) (2)

The rule (1) collects in the role hasCinema the cinemas of a city. By rule (2) the
concept RecreationalArea contains all parks that are not known to be private.

4 Implementation and Data Transformation Language

The abstract rule language defined in the previous section is implemented as a mapping
language, which is inspired by the Ontop mapping language5. A mapping file contains
the following two components. (1.) Data sources declaration: Currently, we support
OWL/RDF, OSM data, relational database and even user defined functions by exter-
nal programs. (2.) Mapping axioms: A mapping axiom is defined as a pair of source
and target. The source is an arbitrary SQL query over spatial-extended RDBMSs and
the target is a triple template that contains placeholders that reference column names
mentioned in the source query.

5 http://ontop.inf.unibz.it



Since simplicity and extensibility are main goals for the instance generation tool, the
rule-based transformation language allows the user to define the data transformation in
a declarative manner. In simple cases, it is not necessary to deal with implementation
details, as the data is usually read from an RDBMS containing the OSM data sources
and is mapped directly to the input files of the reasoner. However, in certain cases we
have to use external functions for more advanced calculations, which are defined in
the mapping axioms by external (Python) scripts. For example, the spatial relation next
can be calculated in a script by measuring the distance between two objects. Further,
mappings from OSM tags to the concepts/roles of an ontology can be determined by
applying simple mapping scripts.

Implementation Details. The generation tool is implemented in Python 2.7 and re-
sembles the extract, transform, and load (ETL) process of classical data transformation
tools. 6 At the time of writing, the generation tool does not support the full expressive
power of Datalog with stratified negation and processes only non-recursive Datalog.
The extract component is implemented as an iterator, hence giving the possibility to
stream the input and provide custom iterators. The load component is also extendable
and supports the possibility to use data writers for different targets (e.g, text-files or
RDBMSs). Currently, we provide the following extraction components:
- Text-files, which reads a file and converts every line into tuples depending on the field

separator, e.g., comma-separated values (CSV) files can be read.
- RDF-files, rdf-files can be accessed using sparql queries, whereas the results are con-

verted into tuples using the Python library rdflib.
- Relational databases, which for geospatial data is the most important input, since

OSM databases are usually accessed via SQL and stored in the spatial-extended
RDBMS PostGIS 2.12 (for PostgreSQL). 7

5 Benchmarks and Evaluation

In this section we demonstrate the use of the transformation language to generate one
example benchmark with instances from different cities in OSM. This should illustrate
the feasibility and simplicity of our approach. All the test data are available online.8

Instances. Based on four cities of different size, 9 we generate four instances in Ta-
ble 1. We extract concept assertions for all the amenities (e.g., restaurants), leisure areas
(e.g., playgrounds), and shops. Then, we calculate the roles for the spatial relations in-
side between leisure areas/amenities and next between amenities/shops using a custom
script (by the distance of 50m between 2 objects).

Ontology. The benchmarks are based on a custom ontology representing the geospa-
tial domain. This ontology is used in the semantically enriched multi-Modal routing
prototype MyITS [4]. It is a DL-LiteR ontology, which acts as a global data integration
schema and is tailored to geospatial data sources and application specific sources (e.g., a

6 https://github.com/ghxiao/city-bench
7 http://postgis.net/
8 https://github.com/ghxiao/city-bench
9 http://download.bbbike.org/osm/bbbike/



Table 1. City Instances

City objects amenities leisures shops spatial rel.

Cork 11002 674 1105 278 15217
Bern 220026 2825 12828 1539 171104
Vienna 487683 8587 25440 5259 489140
Berlin 666766 16199 29127 9791 716182

Table 2. Query Evaluation (in secs)

City load q1 q2 q3

Cork 5.7 0.6 12.9 -
Bern 8.8 5.1 - -
Vienna 15.0 5.5 - -
Berlin 19.5 - -

restaurant guide). The top level is built on GeoOWL, the second level based on the nine
top-features of GeoNames, and the third level is built mainly from OSM categories.

Queries. After loading the data with the Ontop reasoner using “classic mode”, we
evaluate three queries. For instance, the query q2 determines which amenities are inside
a park and next to a shop; q3 illustrates that arbitrary role chains can be used for queries
simply by using the next relation:

q1(y, z) ← Amenity(y), inside(y, z), Leisure(z)
q2(x, y, z)← Shop(x), next(x, y), Amenity(y), inside(y, z), Leisure(z)
q3(x, y) ← Amenity(x), next(x, z), next(z, y), Shop(y)

The results in Table 2 show that our benchmark is indeed challenging (‘-’ indicates a
timeout of 10 mins). We also note that Ontop under “classic mode” is less optimal than
that under “virtual mode” in which the (virtual) ABox instances are from the database
via R2RML mappings. However, since we don’t have such mappings and instances in
the database, we cannot evaluate the “virtual mode” for the moment.

6 Conclusion and Outlook

In this paper, we presented an extensible framework for extracting instance data from
OSM databases. We introduced a formalization of OSM, which combined with a Datalog-
based rule language builds the formal underpinning. Then, we implemented an instance
generation tool using a derivation of the rule language. The generation tools resembles
the extract, transform, and load (ETL) proces. Finally, we demonstrated our approach
by generating an example benchmark based on the OSM databases of four cities of
different size. This benchmark is evaluated with the Ontop reasoner.

Future research is naturally directed to variants and extensions of the presented
framework. We aim to extend the implementation to capture the full expressivity of the
rule language, including negation and recursion. By adding new extraction components,
we will extend our approach to generate R2RML mappings for data in the relational
database. Further, we could generate TBox structures by (statistically) analyzing the
OSM data, which might lead to complex ontologies. One needs also to understand the
“texture” of OSM data better (e.g. graphs from the road network), so that more chal-
lenging benchmarks can be created. Based on our open repository, we aim to collect a
wide range of benchmarks with the related transformations and data dumps. Finally, we
will benchmark more reasoners on a wider range of generated benchmarks.



References

1. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-
Wesley, 1995.

2. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementation and Applica-
tions. 2nd edition, 2007.

3. Samantha Bail, Bijan Parsia, and Ulrike Sattler. Justbench: A framework for OWL bench-
marking. In Peter F. Patel-Schneider, Yue Pan, Pascal Hitzler, Peter Mika, Lei Zhang, Jeff Z.
Pan, Ian Horrocks, and Birte Glimm, editors, The Semantic Web - ISWC 2010 - 9th Inter-
national Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010,
Revised Selected Papers, Part I, volume 6496 of Lecture Notes in Computer Science, pages
32–47. Springer, 2010.

4. Thomas Eiter, Thomas Krennwallner, and Patrik Schneider. Lightweight spatial conjunctive
query answering using keywords. In The Semantic Web: Semantics and Big Data, 10th
International Conference, ESWC 2013, Montpellier, France, May 26-30, 2013. Proceedings,
pages 243–258, 2013.

5. George Garbis, Kostis Kyzirakos, and Manolis Koubarakis. Geographica: A benchmark for
geospatial rdf stores. CoRR, abs/1305.5653, 2013.

6. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming.
In ICLP/SLP, volume 88, pages 1070–1080, 1988.

7. Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for OWL knowledge
base systems. Web Semantics, 3(2-3):158 – 182, 2005.

8. Martha Imprialou, Giorgos Stoilos, and Bernardo Cuenca Grau. Benchmarking ontology-
based query rewriting systems. In Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence, July 22-26, 2012, Toronto, Ontario, Canada, 2012.

9. Yevgeny Kazakov, Markus Krötzsch, and František Simancı́k. Concurrent classification of
el ontologies. In Proceedings of the 10th International Conference on The Semantic Web -
Volume Part I, ISWC’11, pages 305–320, Berlin, Heidelberg, 2011. Springer-Verlag.

10. W3C OWL Working Group. OWL 2 Web Ontology Language: Document Overview.
W3C Recommendation, 27 October 2009. Available at http://www.w3.org/TR/
owl2-overview/.

11. Héctor Pérez-Urbina, Ian Horrocks, and Boris Motik. Efficient query answering for OWL 2.
In The Semantic Web - ISWC 2009, 8th International Semantic Web Conference, ISWC 2009,
Chantilly, VA, USA, October 25-29, 2009. Proceedings, pages 489–504, 2009.

12. Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio
Lenzerini, and Riccardo Rosati. Journal on data semantics x. chapter Linking Data to On-
tologies, pages 133–173. Springer-Verlag, Berlin, Heidelberg, 2008.

13. Mariano Rodriguez-Muro, Roman Kontchakov, and Michael Zakharyaschev. Ontology-
based data access: Ontop of databases. In Proc. of ISWC 2013, pages 558–573. Springer,
2013.

14. Giorgos Stoilos, Birte Glimm, Ian Horrocks, Boris Motik, and Rob Shearer. A novel ap-
proach to ontology classification. Web Semantics: Science, Services and Agents on the World
Wide Web, 14(0), 2012.

15. Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner: System descrip-
tion. In Proceedings of the Third International Joint Conference on Automated Reasoning,
IJCAR’06, pages 292–297, Berlin, Heidelberg, 2006. Springer-Verlag.


