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The Web Ontology Language (OWL) is a family of description logic based ontology
languages for the Semantic Web and gives well defined meaning to web accessible
information and services. The study of inconsistency-tolerant reasoning with description
logic knowledge bases is especially important for the Semantic Web since knowledge is
not always perfect within it. An important challenge is strengthening the inference power
of inconsistency-tolerant reasoning because it is normally impossible for paraconsistent
logics to obey all important properties of inference together. This paper presents a non-
classical DL called quasi-classical description logic (QCDL) to tolerate inconsistency in OWL
DL which is a most important sublanguage of OWL supporting those users who want the
maximum expressiveness while retaining computational completeness (i.e., all conclusions
are guaranteed to be computable) and decidability (i.e., all computations terminate in
finite time). Instead of blocking those inference rules, we validate them conditionally and
partially, under which more useful information can still be inferred when inconsistency
occurs. This new non-classical DL possesses several important properties as well as its
paraconsistency in DL, but it does not bring any extra complexity in worst case. Finally,
a transformation-based algorithm is proposed to reduce reasoning problems in QCDL to
those in DL so that existing OWL DL reasoners can be used to implement inconsistency-
tolerant reasoning. Based on this algorithm, a prototype OWL DL paraconsistent reasoner
called PROSE is implemented. Preliminary experiments show that PROSE produces more
intuitive results for inconsistent knowledge bases than other systems in general.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

As an extension of the World Wide Web (WWW), the Semantic Web [3] becomes more constantly changing and highly
collaborative. Ontologies considered one of the pillars of the Semantic Web will rarely be perfect due to many reasons, such
as modeling errors, migration from other formalisms, merging ontologies, and ontology evolution [35,13,32,11,28,5]. As a
fragment of predicate logic [8], description logic (DL), which is the logical foundation of the Web Ontology Language [26]
(e.g., sublanguages OWL Lite and OWL DL correspond to SHIF(D) and SHOIN (D) respectively), is unable to tolerate
inconsistencies occurring in knowledge bases (KBs). Thus, the topic of inconsistency handling in OWL and DL has received
extensive interests in the community in recent years [35,32,24].

There are several approaches to handling inconsistencies in DLs. All of them can be functionally roughly classified into
two different types. One type is based on the assumption that inconsistencies indicate erroneous data which are to be re-
moved in order to obtain a consistent knowledge base (KB) [35,13,18,33,15,22,10]. In these approaches, researchers hold a
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common view that KBs should be completely free of inconsistencies, and thus try to eliminate inconsistencies from them to
recovery consistency immediately by any means possible. However, there are some different opinions about the first type
of treating inconsistency. For instance, [4] regarded the first type as “too simplistic for developing robust intelligent systems,
and fails to use the benefits of inconsistent knowledge in intelligent activities, or to acknowledge the fact that living with inconsis-
tencies seems to be unavoidable”. And [4] argues that inconsistencies in knowledge are the norm in the real world, and so
should be formalized and used, rather than always rejected. The other, called inconsistency-tolerant (or paraconsistent) ap-
proaches, is to not simply avoid inconsistencies but apply non-standard reasoning methods (e.g., non-standard inference
or non-classical semantics) to obtain meaningful answers [38,23,30,12,45,20,29,24,43]. In the second type of approaches,
inconsistency treated as a natural phenomenon in realistic data, should be tolerated in reasoning. So far, the main idea
of existing paraconsistent methods for handling inconsistency is introducing either non-standard inference or non-classical
semantics to draw meaning conclusions from inconsistent KBs [38]. Those paraconsistent approaches with non-standard in-
ference presented by [43,12] are employing argument principles where consistent subsets are selected from an inconsistent
KB as substitutes in reasoning. Those paraconsistent approaches are based on multi-valued semantics (a popular kind of
non-classical semantics) such as four-valued DL studied by [38,23,30,24] based on Belnap’s four-valued semantics [2], para-
doxical DL presented by [45] based on Priest’s paradoxical semantics, three-valued DL discussed by [29] based on Kleene’s
three-valued semantics, and [20] based on a dual interpretation semantics.

Multi-valued logic, as a family of non-classical logics, are successful in handling inconsistency and uncertainty in DL
such as four-valued DL [39,23,24] and fuzzy DLs [40,6,5,9]. Because four-valued logic is a basic member of the family
of multi-valued logics, four-valued semantics of DL has got a lot of attention [38,23,24]. However, the inference power
of four-valued DL is rather weak as noted/argued by [23,45,20,24] although three kinds of implications (namely, material
implication, internal implication and strong implication, see Section 3) are introduced in four-valued DL to improve inference
power. Some important properties (their formalizations can be found in Section 3.1) about inference such as disjunctive
syllogism, resolution and intuitive equivalence are invalid in four-valued DL. For instance, assume that Wade is a student or
a staff in a university and Wade is not a student. However, we do not conclude that Wade is a staff in that university
since disjunctive syllogism fails in four-valued DL. And, though we know that all PhD students are students, we cannot
infer that all persons are non-PhD students or students since intuitive equivalence also fails in four-valued DL. Moreover,
there exist some quite differences among three implications. For instance, modus ponens is valid for internal implication and
strong implication while it is invalid for material implication. Modus tollens is valid for strong implication while it is invalid
for material implication and internal implication. Thus users have to make a suitable choice before reasoning. The weak
inference power of four-valued DL is because a concept and its negation treated as two fully independent concepts.

We use two practical examples to show why the properties of disjunctive syllogism, modus ponens and modus tollens
are useful in daily life ontology.

In wine ontology,1 we have an axiom WineDescriptor ≡ WineColor � WineTaste. If we additionally know that both
WineDescriptor(Strong) and ¬WineColor(Strong), we will expect that Strong is a WineTaste, which can be inferred by the
property of disjunctive syllogism.

In the Pizza ontology, we know that IceCream � ¬Pizza. On the one hand, if we additionally know IceCream(a), we will
expect ¬Pizza(a), which is captured by the property of modus ponens. In the other hand, if we additionally know Pizza(a),
we will expect ¬IceCream(a), which is captured by the property of modus tollens. In addition, if we additionally know
IceCream(a) and Pizza, then we will expect the inconsistency about a to be tolerated in the reasoning.

Indeed, the weak inference power is one of common characteristics of the family of paraconsistent logics where some
important inference rules are prohibited in order to avoid the explosion of inference [4]. As a result, this topic of making
more properties about inference valid under preventing the explosion of inference becomes interesting and important since
more useful information can be inferred from inconsistent KBs [30].

To avoid the shortcomings of four-valued DL, in this paper, we investigate the problem of defining a suitable non-classical
DL based on the quasi-classical logic (QC logic) proposed by [19]. This problem is challenging in that it is not straightforward
to extend the semantics of QC logic to DLs. Specifically, in the setting of DLs, it is difficult to define a suitable meaning for
the two logical connectives “�” and “�”, which are two key constructors in DLs. To solve this problem, we define a new
description logic called quasi-classical description logic (QCDL, for short), which allows to infer more useful information from
inconsistent KBs. To achieve QCDL, we first extend the syntax of DLs by introducing a new connective called QC negation
and then we introduce a new semantics for our proposal DL by two satisfactions, namely weak satisfaction and strong
satisfaction. Informally, the former is to obtain a satisfactory paraconsistency while the latter is to make most properties
of inference mentioned above (their formalization can be found in Section 2) valid. We show that QCDL can be applied to
tolerate inconsistency in reasoning with DLs and our proposal approach can improve paraconsistent reasoning by using a
different principle from four-valued DL. To employ off-the-shelf DL reasoners, we develop a transformation-based algorithm
by reducing QCDL into classical DL and then implement a prototype reasoning system named prose. Our implementation
can be seen as an extension of classical DL reasoners in this sense that prose can still infer meaningful information in
an inconsistent ontology while classical DL reasoners will crash when there is an inconsistency. Finally, we show that the
complexity of QC consistency problem in QCDL is not higher than that of consistency problem in DL. It should be noted

1 http://www.w3.org/TR/owl-guide/wine.rdf.
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that our technique can be feasibly extended in the whole DL family including SROIQ(D) (i.e., the logical foundation of
OWL 2 [26]). In this paper, we still use SHOIN (D), as a logical foundation of OWL DL, to simplify our discussion and
make readers understand our technique clear.

Compared with classical QC logic [19], a new connective defined in the syntax of QCDL called QC negation, is helpful
for implementing paraconsistent reasoning in a intuitive way. Because of this, the language of DL is a sublanguage of QCDL.
The semantics of QCDL can tolerate inconsistency occurring in DL KBs and two important reasoning tasks of QCDL can be
reduced into the corresponding tasks of DL. Moreover, we define a suitable meaning for the two logical connectives “�”
and “�”, which consist of two key constructors in DLs. In this sense, we generalize classical QC logic and discuss some new
interesting reasoning tasks such as QC satisfiable problem and QC inconsistent problem in QCDL.

Our previous work [44] introduces primary quasi-classical semantics for ALC , a simple member of description logics, and
presents some properties of it and the relationship with the method by using four-valued logic. However, we investigated
that there exist three insufficiencies as follows:

1. The approach presented in [44] is not enough to characterize all features of DLs. As we all known, DL is used in
artificial intelligence (AI) for formal reasoning on the concepts of an application domain [1]. However, in our previous
approach [44], we did not really introduce a new logic with quasi-classical negation, but rather viewed negation as
a transformation on formulas (axioms). This makes it impossible to directly represent the “opposite” concept of a
given concept, because the negation of a concept ¬C is not taken as the “opposite” concept but rather as a concept
unrelated to C . In this paper, we can directly introduce the QC negation of a concept as the “opposite” concept. Thus,
we can further discuss QC satisfiable concepts. Moreover, our previous approach cannot capture the natural relationship
between “�” and “�”.

2. The basic approach of [44] cannot be generalized to more expressive description logics such as SROIQ(D) (i.e., the
logical foundation of OWL 2 [26]) which can be obtained by generalizing the present paper. One of important reasons
is the complement of axioms ∼ φ presented in [44] cannot capture expressive DL axioms. For instance, ∼ (� n R.C)(a)

cannot be represented by both � (n − 1)R(a) and ∼ C(b). Instead, the QC negation of concept C introduced in this
paper can capture expressive DL axioms, e.g., � n R.C(a) ≡� (n − 1) R.C(a). We investigated that the QC negation can
also capture all DL axioms even in SROIQ(D).

3. The complement of inclusions ∼ (C � D) can be no longer translated into a corresponding DL concept inclusions.
Because of this, it is impossible to transform this logic into classical DL. On the contrary, our proposal QCDL can be
exactly transformed into DL.

In short, this paper does not merely attempt to give a QC semantics to a standard description logic, but instead we define
a QC description logic (called QCDL).

This paper extends our previous DL-2009 and ESWC-2009 papers by developing a transformation-based algorithm and
implementing it as a paraconsistent prototype reasoner. In addition, we analyze and evaluate some experimental results.

The rest of this paper is organized as follows: Section 2 reviews briefly DLs and paraconsistent logics. Section 3 in-
troduces the syntax and semantics of QCDL and applies QCDL in paraconsistent reasoning with DL. Section 4 develops a
transformation-based algorithm. Section 5 presents our prose and some evaluation results. Section 6 compares QCDL with
others paraconsistent DLs. Finally, Section 7 concludes the paper.

2. Preliminaries

In this section, we give a brief introduction of description logics and paraconsistent logic.

2.1. Description logics

In description logics (DLs), elementary descriptions are concept names (unary predicates) and role names (binary predi-
cates). Complex descriptions are built from them inductively using concept and role constructors provided by the particular
DLs under consideration. In this section, we review the syntax and semantics of DLs. For more comprehensive background
knowledge of DLs, we refer the reader to some basic references [1,16].

Let NC , NR , and NI be countably infinite sets of concept names, role names, and individual names. NR = RA ∪ RD where
RA is a set of abstract role names and RD is a set of concrete role names. The set of roles is then NR ∪ {R− | R ∈ NR}
where R− is the inverse role of R . The function Inv(·) is defined on the sets of roles as follows, where R is a role name:
Inv(R) = R− and Inv(R−) = R . For roles R1 and R2, a role axiom is either a role inclusion, which is of the form R1 � R2 for
R1, R2 ∈ RA or R1, R2 ∈ RD , or a transitivity axiom, which is of the form Trans(R) for R ∈ RA . A role hierarchy R (or an RBox)
is a finite set of role axioms. Let ∗�R be the reflexive–transitive closure of � on R as follows: {(R1, R2) | R1 � R2 ∈ R or
Inv(R1) � Inv(R2) ∈R}. A role R is transitive in R, if a role R ′ exists such that R ′ ∗�RR , R ∗�RR ′ , and either Trans(R ′) ∈R or
Trans(Inv(R ′)) ∈R. A role S is simple if no transitive role R exists such that R ∗�RS . Rtc denotes the transitive closure of R .

Concrete datatypes are used to represent literal values such as numbers and strings. A type system typically defines as
a set of “primitive” datatypes, such as string or integer, and provides a mechanism for deriving new datatypes from existing
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Table 1
Syntax and semantics of SHOIN (D).

Elements Syntax Semantics

individual (NI ) a aIc ∈ �Ic

atomic concept (NC ) A AIc ⊆ �Ic

abstract role (RA ) R RIc ⊆ �Ic × �Ic

concrete role (RD ) T T Ic ⊆ �Ic × �
Ic
D

datatype (D) d dD ⊆ �D

inverse abstract role Inv(R) {(x, y) | (y, x) ∈ RIc }
Complex concepts

top concept � �Ic = �Ic

bottom concept ⊥ ⊥Ic = ∅Ic

negation ¬C (¬C)Ic = �Ic \ CIc

conjunction C � D (C � D)Ic = CIc ∩ DIc

disjunction C � D (C � D)Ic = CIc ∪ DIc

exist restriction ∃R.C {x | ∃y.(x, y) ∈ RIc and y ∈ CIc }
value restriction ∀R.C {x | ∀y.(x, y) ∈ RIc implies y ∈ CIc }
nominal (O) {o} {o}Ic ⊆ �Ic , �({o}Ic ) = 1

number restriction (N ) � nR {x | �({y.(x, y) ∈ RIc }) � n}
� nR {x | �({y.(x, y) ∈ RIc }) � n}

datatype exists ∃T .d {x ∈ �Ic | ∃y.(x, y) ∈ T Ic and y ∈ dD}
datatype value (D) ∀T .d {x ∈ �Ic | ∀y.(x, y) ∈ T Ic implies y ∈ dD}

ones. To represent concepts such as “persons whose age is at least 21”, a set of concrete datatypes D is given, and, with
each d ∈ D, a set dD ⊆ �D is associated, where �D is the domain of all datatypes. Assume that:

(1) the domain of interpretation of all concrete datatypes �D (the concrete domain) is disjoint from the domain of inter-
pretation of our concept language (the abstract domain); and

(2) there exists a sound and complete decision procedure for the emptiness of an expression of the form dD
1 ∩ · · · ∩ dD

n ,
where di is a (possibly negated) concrete datatype from D (where ¬d is interpreted as �D \ dD).

A set of datatypes is conforming if it satisfies the above criteria. The set of concepts is the smallest set such that each
concept name A ∈ NC is a concept, complex concept in SHOIN (D) are formed according to the following syntax rule by
using the operators shown in Table 1:

C, D → A | d | � | ⊥ | ¬C | C � D | C � D | ∃R.C | ∀R.C | {o} |� nR |� nR | ∃T .d | ∀T .d; (1)

where o ∈ NI , C, D concepts, R an abstract role, T a concrete role, S a simple role and d ∈ D a concrete datatype.
Note that the disjunction of nominals {o1} � · · · � {om}, where oi (1 � i � m) and m is a positive integer, is still taken as

a nominal, denoted by {o1, . . . ,om}. Indeed, nominals can be technically treated as complex concepts.
In this paper, let A, B (or with Ai, Bi) be concept names, C, D (or with Ci, Di ) (general) concepts, R (or with Ri ) an

abstract role, T (or with Ti ) a concrete role, S (or with Si ) a concrete datatype d and lowercases (or with di ) individual
names, unless otherwise stated.

A terminology or a TBox T is a finite set of general concept inclusion axioms (GCIs) C � D (possibly contains nominals and
datatypes in the language of O). In an ABox, one describes a specific state of affairs of an application domain in terms of
concept and roles. It is the statement about how concepts are related to each other. We use C ≡ D as an abbreviation for
the symmetrical pair of GCIs C � D and D � C , called concept definition. An ABox A is a finite set of assertions of the forms
C(a) (concept assertion), R(a,b) (role assertion), a

.= b (equality assertion), and a � .= b (inequality assertion). In general, axioms
are GCIs, role axioms, concept assertions, role assertions, transitive axioms, equality assertions and inequality assertions. In
an ABox, one describes a specific state of affairs of an application domain in terms of concepts and roles. A knowledge base
(KB) K is a triple (R,T ,A).

The semantics is given by means of interpretations. A(n) (classical) interpretation Ic = (�Ic , ·Ic ) consists of a non-empty
domain �Ic , disjoint from the concrete domain �D , and a mapping ·Ic which maps atomic and concepts, roles, and nomi-
nals according to Table 1 (� denotes set cardinality).

Note that there are an important more expressive concepts called qualified number restrictions (Q), � n R.C (at most
number restriction) and � n R.C (at least number restrictions) than number restrictions. Though qualified number restriction
is not a constructor in SHOIN (D), we can apply Q to obtain more expressive DLs such as SHOIQ(D) and SROIQ(D)

(i.e., the logical foundation of OWL 2 [26]). They are interpreted as follows:



X. Zhang et al. / International Journal of Approximate Reasoning 55 (2014) 557–584 561
(� n R.C)Ic = {
x | �({y.(x, y) ∈ RIc ∧ y ∈ CIc

})
� n

}; (2)

(� n R.C)Ic = {
x | �({y.(x, y) ∈ RIc ∧ y ∈ CIc

})
� n

}
. (3)

An interpretation Ic satisfies a role inclusion axiom R1 � R2 if and only if RIc
1 ⊆ RIc

2 , and it satisfies a transitivity axiom
Trans(R) if and only if RIc = (RIc )+ . An interpretation Ic satisfies an RBox R if and only if it satisfies each axiom in R. In
this case, Ic is named a model of R, denoted by Ic |� R. An interpretation satisfies a GCI C � D if and only if CIc ⊆ DIc .
An interpretation Ic satisfies a terminology T if it satisfies each axiom in T . In this case, Ic is named a model of T ,
denoted by Ic |� T . An interpretation Ic satisfies an concept assertion C(a) (resp. a role assertion R(a,b)) if aIc ∈ CIc (resp.
〈aIc ,bIc 〉 ∈ RIc ). An assertion called individual inequality a � .= b if aIc �= bIc for each interpretation Ic . The unique name
assumption (UNA), i.e., different names always referring to different entities, is not chosen but replaced by the individual
inequality � .=. Thus, two nominals might refer to the same individuals.

An interpretation Ic satisfies an ABox A if it satisfies each assertion or individual inequalities in A. In this case, Ic is
named a model of A, denoted by Ic |�A.

A concept C is satisfiable w.r.t. a role hierarchy R if there is a model Ic of R such that CIc �= ∅. A concept C is satisfiable
w.r.t. a terminology T and a role hierarchy R if there is a model Ic of T and R such that CIc �= ∅. A KB is coherent if all of
its concept names are satisfiable; and incoherent otherwise. A concept C is subsumed by a concept D w.r.t. a role hierarchy
R if CIc ⊆ DIc for each model Ic of Ic .

An interpretation Ic is called model of a KB K if all A, T and R are satisfied by Ic . Mod(K) is a collection of models
of a KB K. A KB K is consistent if there exists a model of K. An ABox A is (classically) consistent w.r.t. a terminology T
and a role hierarchy R if there is a model Ic of T and R which satisfies A. A KB K entails a KB K′ if Mod(K) ⊆ Mod(K′),
denoted by K |�K′ .

In DLs, there are two kinds of reasoning tasks, namely, consistency problem (whether a KB is consistent) and entailment
problem (whether a KB entails an axiom) and entailment problem contains two subproblems: instance checking (checking
whether a KB entails a concept assertion) and subsumption (checking whether a KB entails a GCI).

Indeed, entailment problems can be reduced into inconsistency checking problem.

Lemma 1. (See [16].) Let T be a terminology, R a role hierarchy, A an ABox and C, D concepts. Let U be a transitive super-role
of all roles occurring in T and their respective inverses but not occurring in T , C, D,A, or R (called universal role) where UIc =
�Ic × �Ic for any interpretation Ic . We set

RU := R∪ {R � U | R occurs in T , C, D,A, or R}. (4)

Then

(1) (T ,R,A) |� C(a) if and only if (T ,R,A∪ {¬C(a)}) is inconsistent w.r.t. RU ;
(2) (T ,R,∅) |� C � D if and only if (T ,R, {(C � ¬D)(ι)}) is inconsistent w.r.t. RU for some new individual ι ∈ �.

Similar to inference rules of the proof system in propositional logic, there exist some corresponding properties in DLs
[24] as follows: let C, D, E be DL concepts,

(1) (modus ponens, MP) {C(a), C � D} |� D(a);
(2) (modus tollens, MT) {¬D(a), C � D} |� C(a);
(3) (disjunctive syllogism, DS) {¬C(a), (C � D)(a)} |� D(a);
(4) (resolution) {(C � D)(a), (¬C � E)(a)} |� (D � E)(a);
(5) (disjunction introduction, DI) {C(a)} |� (C � D)(a);
(6) (intuitive equivalence, IE) K |� C � D if and only if K |� (¬C � D)(a) for any a ∈ NI ;
(7) (transitivity) if K1 |�K2 and K2 |�K3 then K1 |�K3;
(8) (excluded middle, EM) ∅ |� (C � ¬C)(a).

DS is a special case of the property of resolution. IE can be used to reduce the subsumption problem can be reduced to
the satisfaction problem

We say an entailment relation |�x satisfies a property P above if it is true when |� is replaced by |�x .
In the end of this section, we introduce two kinds of special axioms, namely, tautology and contradiction although they

provide no valuable information for users. An axiom is a tautology if for each interpretation of an arbitrary non-empty
domain, it satisfies that axiom (e.g., ⊥ � �, �(a), (A �¬A)(a), (A �¬A) � (A �¬A)) and an axiom is a contradiction if there
exists no any interpretation of some non-empty domain such that it satisfies that axiom (e.g., � � ⊥, ⊥(a), (A � ¬A)(a),
(A � ¬A) � (A � ¬A)). EM can capture some tautologies.
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2.2. Paraconsistent logic and quasi-classical logic

2.2.1. Paraconsistent logic
In practical reasoning, it is common that there exists “too much” information (classically inconsistent information) about

some situation. However, the reasoning of classical logic would be trivialized when treating inconsistent information because
of a curious feature, known as the principle of explosion or (ex falso quodlibet) can be expressed formally as: for any formulas
ϕ,ψ , {ϕ,¬ϕ} |� ψ .

This is the need to derive reasonable inferences without deriving the trivial inferences that follow the ex falso quodlibet.
In other words, we need a logic, called paraconsistent logic (or inconsistency-tolerant logic) where the principle of explosion
fails in its reasoning [4].

Description logic fails to be paraconsistent because an inconsistent KB K does not possess any model, i.e., Mod(K) = ∅.
In this sense, we say that the entailment |� satisfies the principle of explosion. Thus, the entailment of a paraconsistent
description logic does not satisfy the principle of explosion, called a paraconsistent entailment.

Indeed, if some properties about inference are allowed together then conclusions inferred from inconsistent knowledge
become explosive.

For instance, let |�p be an entailment. Assume that |�p satisfies DS, DI and transitivity. Given an ABox A1 =
{A(a),¬A(a)}, A1 is inconsistent. Because |�p satisfies DI, A1 |�p A � B(a) for arbitrary B . Let A2 = {A(a),¬A(a), (A � B)(a)}.
We conclude that A1 |�p A2. Because |�p satisfies DS, we conclude that A2 |�p B(a). Then, {A(a),¬A(a)} |�p B(a) for any
B since |�p satisfies transitivity. In this sense, |�p loses a property so-called “relevance”, which requires sharing of variables
between premises and conclusion, in relevance logic [34].

A feasible method to make the principle of explosion invalid is weakening inference power by prohibiting some inference
rules in reasoning [18].

2.2.2. Quasi-classical logic (QC logic)
QC logic, roughly taken a variant of Belnap’s four-valued logic which is an important paraconsistent logic, presented in

[19] exhibits the nice feature that no attention need to be paid to a special form that premises should have. An important
feature that QC logic has stronger inference power than Belnap’s four-valued logic [2].

Let p be an atom. p and ¬p are literals. A clause is a set of literals. Let � be a set of literals (as a domain). We denote

�± = {+l | l ∈ �} ∪ {−l | l ∈ �}; (5)

where +l is a positive object and −l is a negative object.
For any non-empty M⊆ �± , M is called a model (or possible world) in �.
The meaning for positive and negative objects being in or out of some model are as follows: given a model M and a

literal α,

• +l ∈M means l is “satisfiable” in the model;
• −l ∈M means ¬l is “satisfiable” in the model;
• +l /∈M means l is not “satisfiable” in the model;
• −l /∈M means ¬l is not “satisfiable” in the model.

Two satisfiability relations, namely, strong satisfaction (|�s) and weak satisfaction (|�w ), are introduced as follows: let �

be a domain, l, l1, . . . , ln literals, Cl, Cl1, . . . , Clm clauses and M a model in �,

• |�s is defined as follows:
(1) M |�s l if +l ∈M;
(2) M |�s ¬l if −l ∈M;
(3) M |�s {l1, . . . , ln} if M |�s li for all i ∈ {1, . . . ,n};
(4) M |�s {Cl1, . . . , Clm} if M |�s Cli for all i ∈ {1, . . . ,m};
(5) M |�s Cl1 ∨ · · · ∨ Clm if and only if ((M |�s Cl1 or . . . or M |�s Clm) and (if M |�s ¬li for some i ∈ {1, . . . ,n} where

Cl j = {l1, . . . , ln} then M |�s Cl1 ∨ · · · ∨ Cli−1 ∨ Cli+1 ∨ · · · ∨ Clm)) (for some j ∈ {1, . . . ,m}).
• |�w is defined as follows:

(1) M |�w Cl if M |�s Cl for any clause Cl;
(2) M |�w Cl1 ∨ Cl2 if M |�s Cli (i = 1 or 2);
(3) M |�w {Cl1, . . . , Clm} if M |�w Cli for all i ∈ {1, . . . ,m}.

Let � be a domain and Cl, Cl1, . . . , Clm be clauses in �. The quasi-classical entailment (or QC entailment), denoted by
|�Q , is defined as follows: {Cl1, . . . , Clm} |�Q Cl if for all models M in �, M |�s Cl1, . . . ,M |�s Clm implies M |�w Cl.

Let K be a set of formulas (as a KB). Every formula ϕ ∈ K is equivalent to the disjunction form of clauses C1 ∨ · · · ∨ Cm

where Ci is a clause (i ∈ {1, . . . ,m}). Therefore, the QC entailment is indeed also introduced between two KBs.
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The following example illustrates that QC logic is paraconsistent. That is, the rule of ex falso quodlibet fails in QC logic.
Let C = {p,¬p} be a clause and � = {p,q}. Let M = {+p,−p} be a model of �. However, M |� C while M �|�w q because
+q /∈M.

Different from the four-valued entailment, the QC entailment satisfies the modus ponens rule, that is, {ϕ ∨ ψ,¬ϕ} |� ψ

for any formulas ϕ,ψ . For instance, � = {p,q} and K = {p ∨ q,¬p} be a KB. Let C1 = {p}, C2 = {q} and C3 = {¬p} be
clauses. For all models M in �, if M |�s C1 ∨ C2 and M |�s C3 where C3 = {¬p} and C1 = {p} then M |� C2. Therefore,
K |� q.

3. Using QCDL to improve paraconsistent reasoning with DL

Based on four-valued DL, this section aims to introduce a paraconsistent version of DL, called quasi-classical DL (briefly,
QCDL) and employs QCDL to tolerate inconsistencies occurring DL KBs.

3.1. Quasi-classical description logic

The QC logic presented by [19] is built on Belnap’s four-valued logic [2]. In four-valued DL, the negation of a concept
¬C is no longer taken as its “opposite” concept of C but a different concept from C . The “opposite” concept is important to
represent many properties about inference.

To represent the “opposite” concept of a given concept, we need to introduce a weaker version of concept negation called
the quasi-classical negation (QC negation) of a concept. The QC negation of a concept C is denoted C .

Thus QCDL extends the syntax of classical DLs slightly.
The QC negation is inspired from a so-called total negation [23] which is also introduced in rough description logic [7]

with different meanings.
Intuitively, the QC negation reverses both the information of being true and of being false.
Axioms are a special kind of QC axioms. Thus A and T are an ABox and a terminology of QCDLs respectively. In this

case, we also say A, T , R and K a QC ABox, a QC terminology or a QC TBox and a QC role hierarchy or a QC KB respectively.
In other word, each KB in DLs is also a QC KB without the QC negation.

For instance, let A = {Penguin(tweety), ¬Bird(tweety), ¬Fly(tweety), ∃HasChild.Penguin(tweety)} be a QC ABox and T =
{Bird � ¬Fly} be a QC TBox. Two new axioms ¬Bird(tweety) (tweety is known not to be a non-bird) and Bird � ¬Fly (all
birds are known not to be flightless) are called a QC concept assertion and a QC GCI. However, ¬Bird(tweety) does not mean
that tweety is necessarily known to be a member of Bird under our proposal non-classical semantics.

In syntax, concept descriptions in QC-SHOIN (D) are formed according to the following syntax rule:

C, D → A | d | � | ⊥ | ¬C | C � D | C � D | ∃R.C | ∀R.C | C | {o} |� nR |� nR | ∃T .d | ∀T .d. (6)

A novelty in our approach is that we propose to use two types of interpretations for defining our proposal QC semantics:
weak interpretations and strong interpretations. Different from standard interpretations in DLs where each concept (or role)
is mapped to a set of instances, the two types of interpretations will map every concept to a pair of sets of instances,
where the former characterizes those instances certain to belong to the concept, and the latter characterizes those instances
certain not to belong to the concept. Weak interpretations are essentially an extension of the well-known four-valued
interpretations.

Before we introduce these two types of interpretations, we first define base interpretations.

Definition 1. A base interpretation I is a pair (�I , ·I) where the domain �I is a set of individuals, �D a concrete domain
of datatypes and the assignment function ·I assigns each individuals to an element of �I and assigns

�I = 〈
�I ,∅〉;

⊥I = 〈∅,�I 〉;
AI = 〈+A,−A〉;
RI = 〈+R,−R〉;

(
R−)I = 〈+R−,−R−〉;

(
Rtc)I = 〈+Rtc,−Rtc 〉;

dI = 〈+d,−d〉;
T I = 〈+T ,−T 〉; (7)

where ±A, N ⊆ �I , ±R,±R−,±Rtc ⊆ �I × �I , ±T ⊆ �I × �D and ±dD ⊆ �D .
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Note that +X and −X are not necessarily disjoint in Definition 1 when X ∈ {C, R, T ,d}. Intuitively, +X is the set of
elements known to be in the extension of X while −X is the set of elements known to be not in the extent of X .

For instance, let I be a base interpretation, assume that ·I assigns Student to a pair 〈{Jack}, {Wade}〉. The interpretation
I tells that Jack is known to be a student and Wade is known not to be a student (Wade is possibly a staff).

Though the QC negation is different from the negation under base interpretations, they are identical under (classical)
two-valued interpretations.

A datatype possibly contains inconsistent information.
For instance, given three assertions Integer(2012), String(2012) and Integer � String � ⊥, the first assertion states that

2012 is in the value space of integer (e.g., the 2012th year), the second assertion states 2012 is in the value space of string
(e.g., the film titled “2012”) and the third axiom states that the value space of integer and the value space of string are
disjoint. As a result, they cause inconsistency.

A base interpretation of datatype Integer and String, which are pairs 〈+IntegerD,−IntegerD〉 and 〈+StringD,−StringD〉
where the instance 2012 ∈ +IntegerD ∩ −IntegerD and 2012 ∈ +StringD ∩ −StringD respectively, could tolerate such three
assertions in a KB. Thus our base interpretation of a datatype is necessary and reasonable.

The QC semantics is characterized by two new interpretations, namely, weak interpretations and strong interpretations,
which are built on base interpretations defined in Definition 1.

Definition 2. A weak interpretation I is a base interpretation (�I , ·I) such that the assignment function ·I satisfies the
conditions as follows:

(C � D)I = 〈+C ∩ +D,−C ∪ −D〉;
(C � D)I = 〈+C ∪ +D,−C ∩ −D〉;

(¬C)I = 〈−C,+C〉;
(C)I = 〈

�I \ +C,�I \ −C
〉;

(∃R.C)I = 〈{
x | ∃y, 〈x, y〉 ∈ +R and y ∈ +C

}
,
{

x | ∀y.〈x, y〉 ∈ +R implies y ∈ −C
}〉;

(∀R.C)I = 〈{
x | ∀y, 〈x, y〉 ∈ +R implies y ∈ +C

}
,
{

x | ∃y.〈x, y〉 ∈ +R and y ∈ −C
}〉;

{o}I = 〈{
oI

}
, N

〉
where N ⊆ �I;

(¬d)I = 〈−dD,+dD〉
where dI = 〈+dD,−dD〉;

(d)I = 〈
�D \ +dD,�D \ −dD〉

where dI = 〈+dD,−dD〉;
(� nR)I = 〈{

x
∣∣ �

({
y.〈x, y〉 ∈ +R

})
� n

}
,
{

x
∣∣ �

({
y.〈x, y〉 ∈ +R

})
< n

}〉;
(� nR)I = 〈{

x
∣∣ �

({
y.〈x, y〉 ∈ +R

})
� n

}
,
{

x | �({y.〈x, y〉 ∈ +R
})

> n
}〉;

(∃T .d)I = 〈{
x ∈ �I | ∃y.〈x, y〉 ∈ +T and y ∈ +dD}

,
{

x ∈ �I ∣∣ ∀y.〈x, y〉 ∈ +T implies y ∈ −dD}〉;
(∀T .d)I = 〈{

x ∈ �I ∣∣ ∀y.〈x, y〉 ∈ +T implies y ∈ +dD}
,
{

x ∈ �I ∣∣ ∃y.〈x, y〉 ∈ +T and y ∈ −dD}〉
.

Indeed, weak interpretations extend four-valued interpretations in the QC negation of concepts.
Intuitively speaking, based on weak interpretations, an individual a is known to be an instance of +(C � D) if and only if

(1) a is an instance of +C or a is an instance of +D; and,
(2) a is an instance of −C and a is an instance of −D .

Intuitively speaking, Student � Staff represents all members who are students or staffs. Assume that Jack is an instance
of Student but Jack is an instance of Staff ; and Wade is an instance of Staff but Wade is an instance of ¬Student. Thus
Jack,Wade ∈ +(Fly � Bird) and Jack,Wade /∈ −(Student � Staff ).

Moreover, a is known to be an instance of +(C � D) if and only if

(1) a is an instance of +C and a is an instance of +D; and,
(2) a is an instance of −C or a is an instance of −D .

For instance, Fly � Bird represents all birds who can fly. Assume that swallow is an instance of Fly and swallow is an
instance of Bird. Thus swallow ∈ +(Fly � Bird). Assume that tweety is an instance of ¬Fly or tweety is an instance of ¬Bird.
Thus tweety ∈ −(Fly � Bird).

Furthermore, inconsistent phenomenon also appears in nominals mainly because there exist different cognitions within
a same subject among persons. For instance, {a(b),a � .= b}. From definition of weak interpretation on a nominal {o}, different
subset N of the domain is corresponding to different base interpretation. If N ∩ {o} �= ∅ then there is an inconsistency in



X. Zhang et al. / International Journal of Approximate Reasoning 55 (2014) 557–584 565
those nominals. Those nominals with multiple individuals {o1, . . . ,om} are still used to denote to the disjunction of nominals
{o1} � · · · � {om} in our QCDL following from [24].

Note that the weak interpretations in qualified number restrictions (for short, Q) in forms of � n R.C and � n R.C are
also defined as follows:

(� nR.C)I = 〈{
x
∣∣ �

({
y.〈x, y〉 ∈ +R ∧ y /∈ −C

})
� n

}
,
{

x
∣∣ �

({
y.〈x, y〉 ∈ +R ∧ y ∈ +C

})
� n + 1

}〉; (8)

(� nR.C)I = 〈{
x
∣∣ �

({
y.〈x, y〉 ∈ +R ∧ y ∈ +C

})
� n

}
,
{

x
∣∣ �

({
y.〈x, y〉 ∈ +R ∧ y /∈ −C

})
� n − 1

}〉; (9)

where RI = 〈+R,−R〉 and CI = 〈+C,−C〉.
By using qualified number restrictions, we can technically extend our scenario in more expressive DLs such as

SHOIQ(D). In this paper, we still use SHOIN (D) to simplify our discussion and make readers understand our tech-
nique clear.

Without confusion, we also denote +C = �I \ +C and −C = �I \ −C , i.e., (C)I = 〈+C,−C〉, where CI = 〈+C,−C〉.
A satisfaction relation determined by weak interpretations, denoted by |�w , is defined as follows.

Definition 3. Let I be a weak interpretation. A weak satisfaction (|�w ) is defined as follows: let XI = 〈+X,−X〉 where
X ∈ {C, D,d, R, S},

(1) I |�w C(a) if aI ∈ +C ;
(2) I |�w C � D , if +C ⊆ +D;
(3) I |�w R(a,b), if 〈aI ,bI〉 ∈ +R;
(4) I |�w d1 � d2 if +d1 ⊆ +d2;
(5) I |�w R � S if +R ⊆ +S , for any role R, S ∈ RA or R, S ∈ RD ;
(6) I |�w Trans(R) if +R = (+R)tc , for any abstract R, S ∈ RA ;
(7) I |�w a

.= b if aI = bI ;
(8) I |�w a � .= b if aI �= bI .

Besides the weak satisfaction |�w extends the four-valued satisfaction |�4 in QC axioms, |�w is also different from |�4
in GCIs. There exist three kinds of four-valued satisfactions on GCIs, namely, material GCI (C �→ D), internal GCI (C � D) and
strong GCI (C → D), which are formally defined as follows: let I4 be a four-valued interpretation and C, D be two concepts
without QC negation,

(1) I4 |�4 C �→ D , if −C ⊆ +D;
(2) I4 |�4 C � D , if +C ⊆ +D;
(3) I4 |�4 C → D , if −D ⊆ −C .

Intuitively, (1) material GCI is cautious in the sense that contradictory information is not propagated. For instance,
Healthy �→ MarathonParticipant which is supposed to say that somebody (i.e. a person who has signed up for a run)
participates in a marathon if he checks out to be healthy; (2) internal inclusion propagates contradictory information for-
ward, but not backward as it does not allow for contraposition reasoning. It can thus be characterized as a brave way
of handling inconsistency. It should be used whenever it is important to infer the consequent even if the antecedent
may be contradictory. In a paraconsistent context, the axiom is thus best modeled by means of internal inclusion, i.e.
as OilLeakage � RobotMalfunction; (3) strong GCI respects the deduction theorem and contraposition reasoning. In a para-
consistent context, it is thus the inclusion to be used for universal truth, such as Square → FourEdged (see [23]).

The weak satisfaction on GCIs adopts the four-valued internal semantics for GCIs, since the motivation of QC logic is
enhancing the inference power. Moreover, the QC negation exactly satisfies the property of intuitive equivalence under
internal GCIs (discussed later).

Note that for any weak interpretation I , there exists no longer some connection between I |�s C(a) and I |�s ¬C(a).
The former states that a is known not to be an instance of C while the latter states that a is known to be an instance of ¬C .

For instance, let I be a weak interpretation and �I = {tweety, fred,bee} such that FlyI = 〈{bee, tweety}, {tweety}〉. Thus
I �|�w Fly(bee) and I �|�w ¬Fly(bee) while I �|�w ¬Fly(tweety) and I |�w ¬Fly(tweety).

Let K be a QC KB. A base interpretation I is called a weak model of K if for all axiom φ in K, I |�w φ. Modw(K) denotes
the collection of all weak models of K.

Given a QC KB K and a QC axiom φ, K w-entails φ, denoted K |�w φ, if for each base interpretation I , I |�w K implies
I |�w φ, i.e., Modw(K) ⊆ Modw({φ}).

Besides, |�w satisfies DI and transitivity while it does not satisfy EM and IE.

Proposition 1. Let C, D be two DL concepts. {C(a)} |�w (C � D)(a).

Proof. For any base interpretation I , I |�w C(a) if and only if aI ∈ +C where CI = 〈+C,−C〉. Thus aI ∈ (+C ∪ +D) where
DI = 〈+D,−D〉. Then I |�w (C � D)(a). Therefore, {C(a)} |�w (C � D)(a). �
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Though |�w satisfies MP, it does not satisfies MT and DS. To recover these logical properties, we first introduce strong
interpretation and then define our paraconsistent entailment relation in terms of both weak and strong satisfaction relations.

Definition 4. A strong interpretation I is a base interpretation (�I , ·I) such that the assignment function ·I satisfies the
conditions in Definition 2 except that the conjunction and the disjunction of concepts are interpreted as follows: let CI =
〈+C,−C〉 and DI = 〈+D,−D〉,

(C � D)I = 〈
(+C ∩ +D), (−C ∪ −D) ∩ (−C ∪ +D) ∩ (+C ∪ −D)

〉; (10)

(C � D)I = 〈
(+C ∪ +D) ∩ (−C ∪ +D) ∩ (+C ∪ −D), (−C ∩ −D)

〉
. (11)

Compared with the weak interpretation, the strong interpretation of disjunction of concepts tightens the condition that
an individual is known to belong to a concept.

Intuitively speaking, based on strong interpretations, an individual a is known to be an instance of +(C � D) if and only
if

(1) a is an instance of +C or a is an instance of +D;
(2) if a is also an instance of −C then a must be an instance of +D;
(3) if a is also an instance of −D then a must be an instance of +C .

The strong interpretation of conjunction of concepts is defined by relaxing the condition that an individual is known to
be not contained in the extension of a concept.

Intuitively speaking, based on strong interpretations, an individual a is known to be not contained in the extension of
+(C � D) if and only if

(1) a is an instance of −C or a is an instance of −D;
(2) if a is known to be an instance of +C then a must be an instance of −D;
(3) if a is an instance of +D then a must be an instance of −C .

For instance, let Ii be two base interpretations (i = 1,2) such that �I = {Jack,Wade,Mary}. Assume that StudentIi =
〈{Jack}, {Wade}〉 and (Student � Staff )Ii = 〈{Jack,Wade},∅〉 (i = 1,2). Moreover, StaffI1 = 〈∅, {Jack}〉 and StaffI2 = 〈{Wade},
{Jack}〉. Let’s consider the two interpretations.

(1) For interpretation I1, (Student�Staff )I1 = 〈{Jack,Wade},∅〉 while 〈(+Student∪+Staff )∩(−Student∪+Staff )∩(+Student∪
−Staff ),−Student ∩ −Staff 〉 = 〈{Jack},∅〉 since +Student = {Jack}, −Student = {Wade}, +Staff = ∅ and −Staff = {Jack}.
Thus Eq. 11 in Definition 4 does not hold.

(2) For interpretation I2, (Student�Staff )I1 = 〈{Jack,Wade},∅〉 while 〈(+Student∪+Staff )∩(−Student∪+Staff )∩(+Student∪
−Staff ),−Student ∩ −Staff 〉 = 〈{Jack,Wade},∅〉 since +Student = {Jack}, −Student = {Wade}, +Staff = {Wade} and
−Staff = {Jack}. Thus Eq. (10) in Definition 4 holds.

Then I2 is a strong interpretation of Student � Staff while I1 is not a strong interpretation but a weak interpretation
of Student � Staff . I2 states that Wade is a staff while I1 states that Wade is not a staff. Intuitively, I2 provides much
information than I1 about whether Wade is a staff.

Similarly, we can define the strong satisfaction relation, denoted by |�s , in terms of strong interpretations.

Definition 5. Let I be a strong interpretation. A strong satisfaction (|�s) is defined as the same of the weak satisfaction on
axioms except for concept/role inclusions as follows: let XI = 〈+X,−X〉 where X ∈ {C, D,d,d1,d2},

(1) I |�s C � D , if −C ⊆ +D , +C ⊆ +D and −D ⊆ −C ;
(2) I |�s d1 � d2 if −d1 ⊆ +d2, +d1 ⊆ +d2 and −d2 ⊆ −d1;
(3) I |�s R � S if −R ⊆ +S , +R ⊆ +S and −S ⊆ −R , for any role R, S ∈ RA or R, S ∈ RD .

From Definition 3 and Definition 5, the definition of |�s hardly differs from the definition of |�w except GCIs where both
nominals inclusions and datatype inclusions are technically taken as GCIs.

Role axioms R � S are also interpreted under the strong satisfaction analogous to GCIs. In general, the negation of role
in form of ¬R is not yet a syntactical constructor in SHOIN (D) [1]. In this sense, there exists no inconsistency caused
by both R(a,b) and ¬R(a,b). However, there exists still some inconsistency caused by roles. For instance, (� 3 hasChild � �
2 hasChild)(Tom) is a contradiction.

Given an object X (X ∈ {C,d, R, T }) and a strong interpretation I , X is called clash-free w.r.t. I if +X and −X are
complementary (i.e., +X = −X and −X = +X) where XI = 〈+X,−X〉.

As a result, the weak satisfaction is equivalent to the strong satisfaction in the clash-free case.
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Proposition 2. Let Xi be an object (Xi ∈ {Ci,di, Ri, Ti}) (i = 1,2). For any base interpretation I , if X1, X2 are clash-free w.r.t. I then
we have I |�w X1 � X2 if and only if I |�s X1 � X2 .

Proof.

I |�s X1 � X2 ⇔ −X1 ⊆ +X2, +X1 ⊆ +X2, −X2 ⊆ −X1;
⇔ +X1 ⊆ +X2, −X2 ⊆ −X1 since +X1 = −X1;
⇔ +X1 ⊆ +X2 since −X2 = +X2;
⇔ I |�w X1 � X2.

Here “⇔” denotes “if and only if” in this paper. �
The strong satisfaction on GCIs is defined by combining three kinds of four-valued satisfactions on GCIs. The satisfaction

not only preserves the property of intuitive equivalence (see Proposition 4) but also avoids to diffuse inconsistent knowledge.
For instance, let Ii be two base interpretations (i = 1,2) such that �I = {Jack,Wade,Mary}. Assume that PhDStudentIi =

〈{Jack,Mary}, {Mary, Wade}〉 (i = 1,2), StudentI1 = 〈{Jack,Mary}, {Mary,Wade}〉 and StudentI2 = 〈{Jack,Mary}, {Wade}〉. Then
I1 �|�s PhDStudent � Student while I2 |�s PhDStudent � Student. Thus I1 contains an inconsistency about whether Mary is a
PhD student while I2 does not contain any inconsistency about Mary is a student. Intuitively, I2 prevents some inconsis-
tency to be spread from some class to its superclass through �. In a short, the strong satisfaction on GCIs is reasonable.

Analogously, for any interpretation I , there exists no longer some connection between I |�s C(a) and I |�s ¬C(a).
For instance, let I be a strong interpretation and �I = {tweety, fred,bee} such that FlyI = 〈{bee, tweety}, {tweety}〉. Thus

I �|�s Fly(tweety) and I |�s ¬Fly(tweety) while I �|�s ¬Fly(fred) and I |�s Fly(fred).
Let K be a QC KB. A base interpretation I is called a strong model of K if for all axiom φ in K, I |�s φ. Mods(K) denotes

the collection of all strong models of K.
Given a QC KB K and a QC axiom φ, K s-entails φ, denoted K |�s φ, if for each base interpretation I , I |�s K implies

I |�s φ, i.e., Mods(K) ⊆ Mods({φ}).
Next, we discuss that the relationship between the weak satisfaction and the strong satisfaction is shown in the following

proposition.

Proposition 3. Let I be a base interpretation and φ be a QC axiom. If I |�s φ then I |�w φ .

Proof. If we technically treat nominals and datatypes as concepts, then a QC axiom φ can have five forms: R(a,b), Trans(R),
C � D , R � S and C(a).

(1) When φ is R(a,b), Trans(R), C � D or R � S it is easy to show that the theorem holds by Definition 3.
(2) When φ is C(a), there are three cases, namely, C is an atomic concept, a datatype and a complex concept. This theorem

clearly holds when C is an atomic concept. In the following, we mainly discuss the case that C is a complex concept by
induction over the number n of connectives and quantifiers in C .
(a) (Base step) When n = 1, C can be the following ten forms, namely, ¬A, A, d, d, D � E , D � E , ∀R.D , ∃R.D , ∀T .d and

∃T .d where A is an atomic concept, D, E are concepts, d is a datatype, T is a concrete role, R is an abstract role
and a,b are individuals.

(i) When φ has one of the following forms, namely, ¬A(a), A(a), d(a), d(a), ∀R.D(a), ∃R.D(a), ∀T .d and ∃T .d,
the strong interpretation of φ is equivalent to the weak interpretation of φ by Definition 1 and Definition 2.
Therefore, this theorem clearly holds.

(ii) Suppose φ = (C � D)(a). If I |�s (C � D)(a) then aI ∈ (+C ∩ +D) by Definition 2 where CI = 〈+C,−C〉 and
DI = 〈+D,−D〉. Therefore, I |�w (C � D)(a) by Definition 2.

(iii) Suppose φ = (C � D)(a). If I |�s (C � D)(a) then aI ∈ (+C ∪ +D) ∩ (−C ∪ +D) ∩ (+C ∪ −D) by Definition 2. So
aI ∈ (+C ∩ +D) where CI = 〈+C,−C〉 and DI = 〈+D,−D〉. Therefore, I |�w (C � D)(a) by Definition 2.

(b) (Inductive step) Assume that when the number of connectives and quantifiers in C is n, the theorem holds. We
reduce axioms with n + 1 connectives and quantifiers into axioms with n connectives or quantifiers by equivalently
eliminating one connective or quantifier. For instance, suppose φ = (C � (D � E))(a) where C, D, E are concepts
and a is an individual. If I |�s (C � (D � E))(a) then aI ∈ +C and aI ∈ +(D � E) where CI = 〈+C,−C〉 and (D �
E)I = 〈+(D � E),−(D � E)〉, that is, I |�s C(a) and I |�s (D � E)(a). Thus, I |�w C(a) and I |�w D � E(a). Then
I |�w (C � (D � E))(a).

Therefore, if I |�s C(a) then I |�w C(a). �
This proposition shows that a strong model is also a weak model. As a result, the reasoning power of the strong satis-

faction is no stronger than the weak satisfaction. In fact, the strong satisfaction is weaker than the weak satisfaction since
the strong satisfaction is obtained by restricting some conditions of the weak satisfaction.
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To see this, for instance, consider an ABox A = {C(a),¬C(a)}. Let I be a base interpretation such that aI ∈ +C and
aI ∈ −C where CI = 〈+C,−C〉. Then I |�w (C � D)(a) but I �|�s (C � D)(a).

In other words, the strong entailment does not satisfies the property of DI.
The following proposition states that the strong satisfaction |�s and the weak satisfaction |�w can preserve the property

of intuitive equivalence under negation of concepts ¬C and QC negation of concepts C respectively.

Proposition 4. Given a QC GCI C � D, for each base interpretation I , we have

(1) I |�w C � D if and only if I |�w (C � D)(a) for any a ∈ �;
(2) I |�s C � D if and only if I |�s (¬C � D)(a) for any a ∈ �.

Proof.

(1)

I |�w C � D ⇔ for any a, if aI ∈ +C then aI ∈ +D;
⇔ aI /∈ +C or aI ∈ +D;
⇔ I |�w C(a) or I |�w D(a);
⇔ I |�w (C � D)(a);

where CI = 〈+C,−C〉 and DI = 〈+D,−D〉.

(2)

I |�s (¬C � D)(a) for any a ∈ �;
⇔ for any a ∈ �,

(
aI ∈ +(¬C) or aI ∈ +D

)
and

(
aI ∈ +C implies aI ∈ +D

)
and

(
aI ∈ −D implies aI ∈ +(¬C)

);
⇔ −C ⊆ +D,+C ⊆ +D and − D ⊆ −C, where CI = 〈+C,−C〉 and CI = 〈+D,−D〉;
⇔ I |�s C � D. �

Proposition 4 ensures that the problems about reasoning with TBoxes can be reduced to the problems about reasoning
without TBoxes.

The above discussion (more comparison is shown in Table 2) shows that though the strong entailment |�s satisfies
some useful reasoning rules, it is too weak. It implies none of the strong entailment and the weak entailment is a suitable
paraconsistent semantics for QCDL.

For this reason, we introduce a novel consequence relation in terms of both the weak and the strong satisfaction rela-
tions. We define a QC entailment which is of the same form as classical entailment except that we use the strong satisfaction
for the assumptions and weak satisfaction for the inferences. It is well known that the less assumptions are contained in
the premise of an entailment, the more conclusions can be drawn. Based on this fact, the strong satisfaction is employed to
make less assumptions in the premise in order to make QC semantics stronger. On the other hand, the weak satisfaction is
employed to ensure the conclusion tolerating inconsistencies.

Definition 6. Let K be a QC KB and φ be a QC axiom. We call K quasi-classically entails (QC entails) φ, denoted K |�Q φ, if
for every base interpretation I , I |�s K implies I |�w φ. In this case, |�Q is called QC entailment.

Analogously, we can extendedly define K1 |�Q K2 if Mods(K1) ⊆ Modw(K2).
The reasoning problems w.r.t. the QC entailment is important, such as, instance checking (K |�Q C(a)) and subsumption

checking (K |�Q C � D).
A direct result is that the QC entailment satisfies the resolution among axioms of KBs.

Proposition 5. For any B, C, E, {(B � C)(a), (¬B � E)(a)} |�Q (C � E)(a).

Proof. Let A = {(B � C)(a), (¬B � E)(a)}. Assume that I is a base interpretation of {(B � C)(a), (¬B � E)(a)}, we have I |�s
(B �C)(a) and I |�s (¬B � E)(a). Thus, aI ∈ (+B ∪+C)∩(−B ∪+C)∩(+B ∪−C) and aI ∈ (−B ∪+E)∩(+B ∪+E)∩(−B ∪−E)

by Definition 2 and Definition 4. Then aI ∈ (+B ∪ +C) ∩ (−B ∪ +E). We consider two cases in the following. (1) If aI ∈ +B
then aI ∈ +E . (2) If aI /∈ +B then aI ∈ +C . Therefore, aI ∈ +C or aI ∈ +E . Thus, I |�w (C � E)(a) by Definition 2 and
Definition 4. So if I |�s (B � C)(a) and I |�s (¬B � E)(a) then I |�w (C � E)(a). Hence, A |�Q (C � E)(a). �
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However, the resolution does not work in conclusions of the QC entailment.
For instance, {B(a), ¬B(a)} |�Q (B � C)(a) and {B(a),¬B(a)} |�Q (¬B � D)(a) while {B(a),¬B(a)} �|�Q (C � D)(a). Oth-

erwise, it will inevitably cause explosive inference. That is, the resolution can be satisfied on axioms only occurring in
KBs.

In this sense, |�Q preserves a the property of relevance (see Section 2.2 [34]).
By Proposition 5 and the second item of Proposition 4, it is not difficult to verify that |�s satisfies MP, MT and DS with

maintaining relevance (more details are discussed in the next subsection).
Now, we define a new consistency called quasi-classical consistency (QC consistency, for short) in QCDLs. A QC KB K is QC

consistent if there exists a strong model of K, i.e., Mods(K) �= ∅. The strong model is similarly adopted to define QC models
for propositional logic KBs [25].

For instance, let A1 = {A(a),¬A(a)} and A2 = {A(a), A(a)} be two QC ABoxes. Thus A1 is QC consistent (although A1 is
inconsistent) while A2 is QC inconsistent. In a short, the QC consistency can be used to reserve inconsistency.

3.2. Paraconsistent reasoning using the QC entailment

In this subsection, we apply the QC entailment for paraconsistent reasoning with KBs and show that it can improve
four-valued paraconsistent reasoning by enhancing the power of inference.

Firstly, we investigate some properties of the QC entailment between KBs and axioms (without QC negation).
To make the QC entailment |�Q always paraconsistent, i.e., we need to ensure that Mods(K) �= ∅ for any non-empty

KB K.
However, there exist three cases where no strong model satisfies as follows:

(1) an axiom ⊥(a) for some individual name a: for any strong interpretation I in a domain �, ⊥I = 〈∅,�I〉, that is,
I �|�s ⊥(a) since aI /∈ ∅ for any a.

(2) {a .= b,a � .= b} for some individual names a,b: for any strong interpretation I , either aI �= bI or aI �= bI , that is, either
I |�s a

.= b or I |�s a � .= b.
(3) {� n S(a),� (n + 1) S(a)} for some role S and some individual names a: for any strong interpretation I , either

�({y.(x, y) ∈ +S}) � n + 1 or �({y.(x, y) ∈ +S}) � n where SI = 〈+S,−S〉, that is, either I |�s � n S(a) or I |�s

� (n + 1) S(a).

In addition, a KB which infers the three cases (that is, one of consistent subsets of it can infer them) have no strong
model.

For instance, a TBox T = {� � ⊥} with a non-empty domain � has no any base interpretation I such that I |�s T
because for any base interpretation I , �I = 〈�I ,∅〉 and ⊥I = 〈∅,�I〉 while �I �= ∅.

For instance, an ABox A= {a � .= b, {a}(b)} with a non-empty domain � has no any base interpretation I such that I |�s A
because for any base interpretation I , {a}I = 〈{aI}, N〉 where N ⊆ �I and aI �= bI while bI ∈ {aI}, that is, aI = bI .

This problem is caused by the inherent feature of four-valued DLs [23].
Moreover, we investigate that the contradiction of {� n S(a),� (n + 1) S(a)} cannot be tolerated under our proposal QC

semantics even under four-valued semantics since +(� n S) ∩ −(� n S) = ∅ where +(� n S) = {x | �({y.(x, y) ∈ +S}) � n}
and −(� n S) = {x | �({y.(x, y) ∈ +S}) > n} where SI = 〈+S,−S〉 for any base interpretation I . In other words, for any
instance a, either a ∈ +(� n S) or a ∈ −(� n S). The problem about tolerating inconsistency of number restrictions N under
four-valued semantics also discussed in [21] is still open problem so far.

For all N -free KBs, we adopt the a form of KBs so-called satisfiable form introduced by [23] by using the following two
substitution rules:

(1) substituting NA � ¬NA for � and NA � ¬NA for ⊥ where NA is a new concept name;
(2) substituting ¬{a}(b) and ¬{b}(a) for a � .= b.

Let SF(K) denote the satisfiable form of it.
Note that SF(K) is equivalent to K under classical semantics. Let � be a domain. For any classical interpretation Ic in

�, we have

(1) (NA � ¬NA)Ic = NAIc ∪(¬NA)Ic = NAIc ∪(�Ic \NAIc ) = �Ic = �Ic and (NA � ¬NA)Ic = NAIc ∩(¬NA)Ic = NAIc ∩(�Ic \
NAIc ) = ∅ = ⊥Ic .

(2) Ic |� ¬{b}(a) (Ic |� ¬{a}(b)) if and only if aIc �= bIc , that is, Ic |� a � .= b.

However, SF(K) is no longer equivalent to K under the QC semantics.
For that TBox T = {� � ⊥}, SF(T ) = {(NA �¬NA) � (NA �¬NA)}. Let � be a domain and J be a base interpretation such

that NAJ = 〈�J ,�J 〉. Thus J |�s (NA � ¬NA) � (NA � ¬NA) since +(NA � ¬NA) = �J and +(NA � ¬NA) = �J .
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For that ABox A= {a � .= b, {a}(b)}, SF(A) = {¬{a}(b),¬{b}(a), {a}(b)}. Let � be a domain and {a,b} ⊆ � and J be a base
interpretation such that {a}J = 〈{aJ }, {�J }〉 and {b}J = 〈{bJ }, {�J }〉 where aJ = bJ . Thus J |�s ¬{a}(b), J |�s ¬{b}(a)

and J |�s {a}(b).
As a result, all KBs in satisfiable form have always strong models.

Proposition 6. Let K be an N -free KB. Mods(SF(K)) �= ∅.

To prove Proposition 6, inspiring from the trivial four-valued model of propositional logic where all atoms are assigned
the truth of contradiction (i.e., “both true and false”) (see [2]), given an N -free K, we introduce a strong interpretation
called trivial strong interpretation I0 of K defined as follows: let � be a domain, σ an individual name in � and d0 a
concrete datatype in �D (we can also introduce d0, . . . ,dm for �0, . . . ,�m such that di ∈ �i (i = 1, . . . ,m). For simplify
discussion, we mainly consider single �D), for all A, R, {o},d, T ,

• AI0 = 〈{σI0 }, {σI0 }〉;
• RI0 = 〈{(σI0 , σI0 )}, {(σI0 , σI0 )}〉;
• {o}I0 = 〈{σI0 }, {σI0 }〉;
• dI0 = 〈d0,d0〉;
• TI0 = 〈{(σI0 ,d0)}, {(σI0 ,d0)}〉;
• bI0 = σI0 for all b ∈ �;
• dI0 = d0 for all d ∈ �D;
• σI0 ∈ d0;
• complex concepts are defined following Definition 4.

In the trivial strong interpretation, all concepts in satisfiable form are identical.

Lemma 2. Let K be an N -free KB. For any concept C occurring in SF(K), CI0 = 〈{σI0 }, {σI0 }〉.

Proof. We prove this lemma by induction on the structure of C by Definition 4.

• (Base step) C is in form of A or {o}. By the definition above, we have AI0 = 〈{σI0 }, {σI0 }〉 and {o}I0 = 〈{σI0 }, {σI0 }〉.
• (Inductive step) Assume that for any Ci (i = 1,2), CI0

i = 〈{σI0 }, {σI0 }〉.
(1) C is in form of ¬C1. Because (¬C1)

I = 〈−C1,+C1〉 where (¬C1) = 〈−C1,+C1〉, this lemma holds for ¬C1.
(2) C is in form of C1 � C2. Because CI0

i = 〈{σI0 }, {σI0 }〉 (i = 1,2), (C1 � C2)
I0 = 〈{σI0 }, {σI0 }〉 by Definition 4.

(3) C is in form of C1 � C2. Because CI0
i = 〈{σI0 }, {σI0 }〉 (i = 1,2), (C1 � C2)

I0 = 〈{σI0 }, {σI0 }〉 by Definition 4.

(4) C is in form of ∀ R.C1. Because CI0
1 = 〈{σI0 }, {σI0 }〉, (∀ R.C1)

I0 = 〈{σI0 }, {σI0 }〉 since (σI0 , σI0 ) ∈ +R where
RI0 = 〈+R,−R〉 by Definition 4.

(5) C is in form of ∃ R.C1. Because CI0
1 = 〈{σI0 }, {σI0 }〉. (∃ R.C1)

I0 = 〈{σI0 }, {σI0 }〉 since (σI0 , σI0 ) ∈ +R where
RI0 = 〈+R,−R〉 by Definition 4.

(6) C is in form of ∀ T .d. Because dI0 = 〈d0,d0〉 and (σI0 ,d0) ∈ +T where TI0 = 〈+T ,−T 〉, (∀ T .d)I0 = 〈{σI0 }, {σI0 }〉
by Definition 4.

(7) C is in form of ∃ T .d. Because dI0 = 〈d0,d0〉 and (σI0 ,d0) ∈ +T where TI0 = 〈+T ,−T 〉, (∃ T .d)I0 = 〈{σI0 }, {σI0 }〉
by Definition 4. �

Next, we show that the trivial strong interpretation I0 is a strong model of SF(K) for any K in SHOIN (D). In this
sense, we called trivial strong model.

Proof of Proposition 6. By Proposition 28 in [24] and the previous TBox T = {� � ⊥}, we only need to show the other
case: let A = {⊥(a)}, SF(A) = {(NA � ¬NA)(a)}. Let I be a base interpretation such that NAI = 〈{aI}, {aI}〉 where a ∈ �.
Thus I |�s (NA � ¬NA)(a).

Now, we mainly show that for any N -free KB K without � or ⊥, has I0 is a strong model of SF(K) by Definition 5.
That is, for all ϕ ∈K, I0 |�s ϕ .

(1) ϕ is in form of C(a). By Lemma 2, because CI0 = 〈{σI0 }, {σI0 }〉, aI0 ∈ {σI0 }. Therefore, I0 |�s C(a).
(2) ϕ is in form of d(a). Because aI0 = σI0 and dI0 = d0, aI0 ∈ dI0 since σI0 ∈ d0. Therefore, I0 |�s d(a).
(3) ϕ is in form of R(a,b). Because (aI0 ) = σI0 and bI0 = σI0 , +R = {(σI0 , σI0 )} where RI0 = 〈+R,−R〉, (aI0 ,bI0 ) ∈ +R .

Therefore, I0 |�s R(a,b).
(4) ϕ is in form of T (a,d). Because aI0 = σI0 , dI0 = d0 and +T = {(σI0 ,d0)} where TI0 = 〈+T ,−T 〉, (aI0 ,dI0 ) ∈ +T .

Therefore, I0 |�s T (a,d).
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(5) ϕ is in form of Trans(R). Because +R = {(σI0 , σI0 )} and +Rtc = {(σI0 , σI0 )} where RI0 = 〈+R,−R〉, +R ⊆ +Rtc .
Therefore, I0 |�s Trans(R).

(6) ϕ is in form of a
.= b. Because aI0 = σI0 and bI0 = σI0 , aI0 = bI0 . Therefore, I0 |�s a

.= b.
(7) ϕ is in form of C1 � C2. By Lemma 2, we have CI0

i = 〈{σI0 }, {σI0 }〉 (i = 1,2). That is, +Ci = {σI0 } and −Ci = {σI0 }
(i = 1,2). Then
(i) because �I \ {σI0 } = ∅ ⊆ {σI0 }, we have −C1 ⊆ +C2 since �I = {σI0 };

(ii) because {σI0 } ⊆ {σI0 }, we have +C1 ⊆ +C2 and −C2 ⊆ −C1.
Therefore, I0 |�s C1 � C2 by Definition 5.

(8) ϕ is in form of d1 � d2. By Lemma 2, we have dI0
i = 〈d0,d0〉 (i = 1,2). That is, +di = d0 and −di = d0 (i = 1,2). Then

(i) because �D \ d0 = ∅ ⊆ d0, we have −d1 ⊆ +d2 since �D = d0;
(ii) because d0 ⊆ d0, we have +d1 ⊆ +d2 and −d2 ⊆ −d1.
Therefore, I0 |�s d1 � d2 by Definition 5.

(9) ϕ is in form of R1 � R2. By Lemma 2, we have RI0
i = 〈{(σI0 , σI0 )}, {(σI0 , σI0 )}〉 (i = 1,2). That is, +Ri = {(σI0 , σI0 )}

and −Ri = {(σI0 , σI0 )} (i = 1,2). Then
(i) because �I × �I \ {(σI0 , σI0 )} = ∅ ⊆ {(σI0 , σI0 )}, we have −R1 ⊆ +R2 since �I × �I = {(σI0 , σI0 )};

(ii) because {(σI0 , σI0 )} ⊆ {(σI0 , σI0 )}, we have +R1 ⊆ +R2 and −R2 ⊆ −R1.
Therefore, I0 |�s R1 � R2 by Definition 5. Analogously, we can conclude that I0 |�s T1 � T2.

In a short, I0 |�s ϕ for all ϕ ∈ SF(K) for any N -free KB K in SHOIN (D). �
We also notice that the satisfiable form of some tautologies can be no always satisfied by all weak interpretations since

the weak satisfaction inherits the four-valued satisfaction.
For instance, let � = {a,b, c} and I be a weak interpretation such that NAI = 〈{aI}, {bI}〉. Thus I does not satisfy

(NA � ¬NA)(c) since (NA � ¬NA)I = 〈{aI ,bI},∅〉.
Besides, in some engineering point of view, tautologies do not provide any useful information to users [19,4]. In other

words, the QC entailment does not satisfy EM, that is, ∅ |�Q (C � ¬C)(a).
Based on discussion above, we mainly consider all N -free KBs in satisfiable form, where the QC entailment is always

paraconsistent.

Proposition 7. Let K be an N -free KB. There exists always an axiom ϕ such that SF(K) �|�Q ϕ .

Proof. Let Σ(K) be a set of all concept names, role names and datatypes in K. Without loss of generality, we assume that
ϕ is A(a) where A /∈ Σ(K). Let I0 be a strong model of SF(K) by Proposition 6. We define a new interpretation Inew as
follows: (1) XInew = 〈∅, {σI0 }〉 if X = Anew; and (2) XInew = XI otherwise. Then Inew is also a strong model of SF(K) while
Inew is not a weak model of A(a). Therefore, SF(K) �|�Q A(a). That is, SF(K) �|�Q ϕ . �

We notice that if the inconsistency is not caused by number restrictions (N ) then the paraconsistency of QCDLs holds
in KBs. Indeed, we found that most of practical ontologies do not bring the inconsistency of number restrictions (i.e., Pellet
[37] and TONES Ontology Repository [41]).

In general, the paraconsistency of QCDLs fails in general QC KBs.
For instance, {A(a), A(a)} |�Q φ for any axiom φ since there exists no strong model of {A(a), A(a)}.
The following proposition shows that |�Q satisfies MP, MT and DS because of holding the property of resolution of the

QC entailment.

Proposition 8. Let C, D be two DL concepts. The followings hold.

(1) MP: {C(a), C � D} |�Q D(a);
(2) MT: {¬D(a), C � D} |�Q C(a);
(3) DS: {¬C(a), (C � D)(a)} |�Q D(a).

Proof. By Proposition 4, for any base interpretation I , if I |�s C � D then I |�s (¬C � ¬D)(a). Thus items (1) and (2) can
be reduced into item (3) Then, by Proposition 5, I |�s D(a), that is, item (3) holds. �

We can obtain much more conclusions from inconsistent KBs via the QC entailment.
For instance, let A= {¬Student(Wade), Student � Staff (Wade)} be an ABox. Thus A |�Q Staff (Wade) by using the property

of DS.
In addition, similar to the four-valued entailment, the QC entailment also satisfies DI in the following proposition.

Proposition 9. Let C, D be two DL concepts. {C(a)} |�Q (C � D)(a).
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Table 2
Comparisons among four entailments.

Property Entailment

|�4 |�w |�s |�Q

�→ � →
MP no yes yes yes yes yes
MT no no yes no yes yes
DS no no no no yes yes
DI yes yes yes yes no yes
IE no no no yes� yes yes
resolution no no no no yes yes
transitivity yes yes yes yes yes no
EM no no no no no no

Proof. For any base interpretation I , I |�s C(a) if and only if aI ∈ +C where CI = 〈+C,−C〉. Thus aI ∈ +C ∪ +D where
DI = 〈+D,−D〉. Then I |�w (C � D)(a). Therefore, {C(a)} |�Q (C � D)(a). �

For general KBs, the transitivity does not satisfied by the QC entailment.
For instance, let A1 = {A(a),¬A(a)}, A2 = {A(a), (¬A � B)(a)} and A3 = {(B � C)(a)}. Thus A1 |�Q A2 and A2 |�Q A3

while A1 �|�Q A3 obviously.
A more detailed comparison can be shown in Table 2 where yes� means that this property w.r.t. QC negation is still

satisfied by the weak entailment (see the first item of Proposition 4).
In the end of this section, we show that some paraconsistent reasoning problems via the QC entailment can be reduced

into the QC consistency problem.
Firstly, two important kinds of QC entailment problems (instance checking and subsumption checking) can be reduced

into the QC consistency problem.

Proposition 10. Let T be a terminology, R a role hierarchy, A an ABox and C, D concepts. For any base interpretation I , we interpret
UI = 〈�I × �I ,∅〉. Then

(1) (T ,R,A) |�Q C(a) if and only if (T ,R,A∪ {C(a)}) is QC inconsistent w.r.t. RU ;
(2) (T ,R,∅) |�Q C � D if and only if (T ,R, {(C � D)(ι)}) is QC inconsistent w.r.t. RU for some new individual ι ∈ �.

Proof.

(1) (⇐) Suppose K �|�Q C(a), by Definition 6 there exists a base interpretation I such that I |�s K but I �|�w C(a), i.e.,
I �|�s C(a) by Proposition 3. Since I |�s K, I |�s K ∪ {C(a)}, that is, I is a QC strong model of K ∪ {C(a)} which
contradicts the premise that K ∪ {C(a)} is QC inconsistent by the definition of QC inconsistency.
(⇒) Suppose K ∪ {C(a)} is QC consistent. Thus, there exists a base interpretation J such that J |�s K ∪ {C(b)} by the
definition of QC inconsistency. Then J |�s K and J |�s C(b). That is, aJ /∈ +C where CJ = 〈+C,−C〉. Then J �|�w C(a),
i.e., J |�w C(a) by the definition of the complement of concepts. Therefore, K �|�Q C(a) which contradicts the premise
that K |�Q C(a).

(2) (⇐) Supposed that T �|�Q C � D , by Definition 6 there exists an interpretation I such that I |�s T but I �|�w C �
D , i.e., I �|�s C � D by Proposition 3. Thus, there exists an individual a such that if I |�s C(a) then I |�s D(a) by
Proposition 3. Then I |�s C � D(a). Since I |�s K, I |�s (T , {(C � D)(a)}), that is, I is a QC strong model of (T , {(C �
D)(a)}) which contradicts the premise that for any individual a, (T , {(C � D)(a)}) is QC inconsistent by the definition of
QC inconsistency.
(⇒) Suppose there exists an individual ι such that K∪{(C � D)(ι)} is QC consistent. Thus, there exists a base interpreta-
tion J such that J |�s T ∪ {(C � D)(ι)} by the definition of QC inconsistency. Then J |�s T , J |�s C(ι) and J |�s D(ι).
That is, bJ ∈ +C and ιJ /∈ +D where CJ = 〈+C,−C〉 and DJ = 〈+D,−D〉. Then J �|�w C � D , i.e., J |�w (C � D)(ι)
for any individual ι by Proposition 4. Therefore, T �|�Q C � D which contradicts the premise that T |�Q C � D .

Here “⇐” denotes the “only if” direction and “⇒” denotes the “if” direction respectively in this paper. �
Additionally, we define a new satisfiable, called quasi-classical satisfiable (QC satisfiable). A concept C is QC satisfiable w.r.t.

T and R if there exists some strong model I of T and R such that +C �= ∅ where CI = 〈+C,−C〉; and QC unsatisfiable,
otherwise. We analogously conclude that C is QC unsatisfiable w.r.t. T and R if and only if (T ,R, {C(ι)}) is QC inconsistent
w.r.t. T and R for some new individual ι ∈ �.

As a result, the QC satisfiability checking can be reduced to the QC consistency checking.
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Table 3
Weak transformation rules for SHOIN (D).

Syntax Weak transformation W(·)
� NA � ¬NA
⊥ NA � ¬NA
¬� NA � ¬NA
¬⊥ NA � ¬NA
X (X ∈ {A, R, S, T ,d}) X+
¬X (X ∈ {A, R, S, T ,d}) X−
{o} {o}
¬{o} Ao: a new concept name
C ¬W(C)

C W(C)

¬¬C W(C)

C � D W(C) �W(D)

¬(C � D) W(¬C) �W(¬D)

C � D W(C) �W(D)

¬(C � D) W(¬C) �W(¬D)

∃R.C ∃W(R).W(C)

∀R.C ∀W(R).W(C)

¬(∃R.C) ∀W(R).W(¬C)

¬(∀R.C) ∃W(R).W(¬C)

∃T .d ∃W(T ).W(d)

∀T .d ∀W(T ).W(d)

¬(∃T .d) ∀W(T ).W(¬d)

¬(∀T .d) ∃W(T ).W(¬d)

� n S � nW(S)

� n S � nW(S)

¬(� n S) � (n − 1)W(S)

¬(� n S) � (n + 1)W(S)

C(a) W(C)(a)

C � D W(C) � W(D)

R(a,b) W(R)(a,b)

R1 � R2 W(R1) � W(R2)

Trans(R) Trans(W(R))

a � .= b a � .= b
a

.= b a
.= b

4. Reducing QC-SHOIN (D) to SHOIN (D)

In the previous section, we introduced the QC semantics and some properties of this proposal semantics and dis-
cussed the QC entailment problems (as important tasks). In this section, we study some algorithm for reasoning with
QC-SHOIN (D).

As we all known, building an OWL reasoner is very complicated. We do not want start from scratch. The motivation of
candidate algorithm is reusing existing OWL reasoners. Inspiring from the technique of transformation in QC logic in which
the QC inference problem can be reduced into the classical inference problem [25], we will develop a syntactic transforma-
tion that reduces the QC entailment problems in QC-SHOIN (D) to the classical entailment problems in SHOIN (D). As
a result, we are able to build our reasoner named prose based on off-the-shelf OWL reasoners. Indeed, the similar technique
is adopted in four-valued DLs for reasoning [23].

Our proposal transformation for QC-SHOIN (D) contains two transformations: weak transformation and strong transfor-
mation. The weak transformation is defined in Table 3 where NA is a new concept name.

The basic idea of the weak transformation is transforming the negation of a concept name (a role name, a nominal and
a datatype) to a new concept name (a new role name, a new concept name and a new datatype) to violate the connection
between a concept name and its negation. Thus, the conflict caused by a concept and its negation can be tolerated in
reasoning.

The strong transformation S(·) which is identical with the weak transformation W(·) except for disjunctions and the
negation of conjunctions and GCIs defined as follows: when Xi ∈ {Ci, Ri} (i = 1,2),

S
(¬(C � D)

) = S(¬C � ¬D); (12)

S(C � D) = (
S(C) � S(D)

) � (¬S(¬C) � S(D)
) � (

S(C) � ¬S(¬D)
); (13)

S(X1 � X2) = {
S(X1) � S(X2),S(¬X2) � S(¬X1),¬S(¬X1) � X2

}
. (14)

In weak transformation and strong transformation, (1) each object X in QCDLs, X and ¬X can transformed into two
independent concept names X+ and X− respectively. It follows from the principle of QCDLs that X and ¬X are no longer
taken as two opposite objects in QCDLs (where X ∈ {A, R, T ,d, {o}}). (2) The QC negation of concepts C is transformed into
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¬C . It follows from that fact that A and A are taken as two opposite concept names in QCDLs. Therefore, all QC axioms can
be transformed into axioms.

Given a QC KB K, X (K) denotes the new KB whose axioms are transformed by using X where X is the placeholder of
W and S .

The following proposition shows that the weak transformation W(·) and the strong transformation S(·) can capture
exactly the weak satisfaction |�w and the strong satisfaction |�s respectively.

Proposition 11. For any base interpretation I , there exists a classical interpretation Ic such that for any QC KB K, we have
(1) I |�w K ⇔ Ic |�W(K);
(2) I |�s K ⇔ Ic |� S(K).

The first item of this proposition can be analogously proven in four-valued transformation (see the proof of Proposi-
tion 31 in [24]) by restricting inclusion to be interpreted as internal inclusion. Here we omit its details.

Next, we will inductively prove the second item of this proposition.

Proof of item (2) of Proposition 11. Given a base interpretation I , we define the corresponding classical interpretation Ic
(called an induced interpretation [24]) as follows:

• �Ic = �I ;
• aIc = aI ;
• �Ic = �I ;
• ⊥Ic = ∅;
• (A+)Ic = +A and (A−)Ic = −A if AI = 〈+A,−A〉;
• (R+)Ic = +R , if RI = 〈+R,−R〉;
• (T +)Ic = +T , if TI = 〈+T ,−T 〉;
• (d+)Ic = +d and (d−)Ic = −d if dI = 〈+d,−d〉;
• {o}Ic = {oI} and (Ao)

Ic = N , if {o}I = 〈{oI}, N〉;
• complex concepts are defined following the definition of classical interpretations in DLs shown in Table 1.

We only need to show the following claim.

Claim. For any ϕ in QC-SHOIN (D), I |�s ϕ ⇔ Ic |� S(ϕ).

Next, we prove this claim in considering eight kinds of axioms.

(1) ϕ is in form of R(a,b): I |�s R(a,b) ⇔ (aI ,bI) ∈ +R where RI = 〈+R,−R〉 ⇔ (aIc ,bIc ) ∈ (R+)Ic ⇔ Ic |� R+(a,b)

⇔ Ic |� S(R)(a,b).
(2) ϕ is in form of T (a,b): I |�s T (a,b) ⇔ (aI ,bI) ∈ +T where TI = 〈+T ,−T 〉 ⇔ (aIc ,bIc ) ∈ (T +)Ic ⇔ Ic |� T +(a,b)

⇔ Ic |� S(T )(a,b).

(3) ϕ is in form of Trans(R): I |�s Trans(R) ⇔ +R ⊆ (+R)tc where RI = 〈+R,−R〉 ⇔ (R+)
Ic ⊆ ((R+)

Ic )
tc ⇔ Ic |�

Trans(R+) ⇔ Ic |� Trans(S(R)).
(4) ϕ is in form of R1 � R2: I |�s R1 � R2 ⇔ −R1 ⊆ +R2,+R1 ⊆ +R2 and −R2 ⊆ −R1 where RI

i = 〈+Ri,−Ri〉 and

−Ri = +Ri (i = 1,2) ⇔ +R1 ⊆ +R2 ⇔ (R+
1 )

Ic ⊆ (R+
2 )

Ic ⇔ Ic |� R+
1 � R+

2 ⇔ Ic |� S(R1) � S(R2).
(5) ϕ is in form of a

.= b: I |�s a
.= b ⇔ aI = bI ⇔ aIc = bIc ⇔ Ic |� a

.= b ⇔ Ic |� S(a
.= b).

(6) ϕ is in form of a � .= b: I |�s a � .= b ⇔ aI �= bI ⇔ aIc �= bIc ⇔ Ic |� a � .= b ⇔ Ic |� S(a � .= b).
(7) ϕ is in form of C(a): we prove I |�s C(a) ⇔ Ic |� S(C(a)) by induction on the structure of C .

• (Base step) there exist three cases:
(i) C is a concept name A: I |�s A(a) ⇔ aI ∈ +A where AI = 〈+A,−A〉 ⇔ aIc ∈ (A+)Ic ⇔ Ic |� A+(a) ⇔ Ic |�

S(A)(a). Then I |�s A(a) ⇔ Ic |� S(A(a)).
(ii) C is a datatype d: I |�s d(a) ⇔ aI ∈ +d where dI = 〈+d,−d〉 ⇔ aIc ∈ (d+)Ic ⇔ Ic |� d+(a) ⇔ Ic |� S(d)(a,b).

Then I |�s d(a) ⇔ Ic |� S(d(a)).
(iii) C is a nominal {o}: I |�s {o}(a) ⇔ aI ∈ {oI}, that is, aI = oI , ⇔ aIc ∈ {oIc } ⇔ Ic |� {o}(a) ⇔ Ic |� S({o})(a).

Then I |�s {o}(a) ⇔ Ic |� S({o}(a)).
• (Inductive step) Assume that I |�s Ci(a) ⇔ Ic |� S(Ci(a)) where CI

i = 〈+Ci,−Ci〉 (i = 1,2). We discuss the following
cases:

(i) C is in form of C1:

I |�s (C1)(a) ⇔ aI ∈ +(C1);
⇔ aI ∈ � \ +C1 ⇔ aI /∈ +C1 ⇔ aI /∈ S(C1)

Ic ;
⇔ aI ∈ (¬S(C1)

)Ic ⇔ aI ∈ (
S(C1)

)Ic ⇔ Ic |� S(C1)(a).
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Then I |�s (C)(a) ⇔ Ic |� S((C)(a)).
(ii) C is in form of ¬C1:

I |�s (¬C)(a) ⇔ aI ∈ −C ⇔ aIc ∈ (
C−)Ic ; ⇔ Ic |� C−(a) ⇔ Ic |� S(¬C)(a).

Then I |�s (¬C)(a) ⇔ Ic |� S((¬C)(a)).
(iii) C is in form of C1 � C2:

I |�s C1 � C2(a) ⇔ aI ∈ +(C1 � C2);
⇔ aI ∈ +C1 ∩ +C2;
⇔ aIc ∈ S(C1)

Ic ∩ S(C2)
Ic ;

⇔ aIc ∈ S(C1 � C2)
Ic ;

⇔ Ic |� S(C1 � C2)(a).

Then I |�s (C1 � C2)(a) ⇔ Ic |� S((C1 � C2)(a)).
(iv) C is in form of C1 � C2:

I |�s (C1 � C2)(a) ⇔ aI ∈ +(
(C1 � C2)

I);
⇔ aI ∈ (+C1 ∪ +C2) ∩ (−C1 ∪ +C2) ∩ (+C1 ∪ −C2);
⇔ [

aI ∈ +C1 or aI ∈ +C2)
]

and
[
aI /∈ −C1 or aI ∈ +C2)

]
and

[
aI ∈ +C1 or a /∈ −C2)

];
⇔ [

aIc ∈ S(C1) or aIc ∈ S(C2))
]

and
[
aI /∈ S(¬C)Ic or aI ∈ S(C2)

Ic
]

and
[
aI ∈ S(C1)

Ic or a /∈ S(¬C2)
Ic )

];
⇔ [

Ic |� (
S(C1) � S(C2)

)
(a)

]
and

[
Ic |� (¬S(¬C1) � S(C2)

)
(a)

]

and
[
Ic |� (

S(C1) � ¬S(¬C2)
)
(a)

];
⇔ Ic |� (

S(C1) � S(C2)
) � (¬S(¬C1) � S(C2)

) � (
S(C1) � ¬S(¬C2)

)
(a);

⇔ Ic |� S(C1 � C2)(a).

Then I |�s (C1 � C2)(a) ⇔ Ic |� S((C1 � C2)(a)).
(v) C is in form of ∀R.C1.

I |�s (∀R.C1)(a) ⇔ for all b ∈ �I ,
(
aI ,b

) ∈ +R implies b ∈ +C1;
⇔ for all b ∈ �Ic ,

(
aIc ,b

) ∈ S(R)Ic implies b ∈ S(C1)
Ic ;

⇔ Ic |� ∀S(R).S(C1).

Then I |�s (∀R.C1)(a) ⇔ Ic |� S((∀R.C1)(a)).
Analogously, we can prove I |�s (∀T .d)(a) ⇔ Ic |� S((∀T .d)(a)).

(vi) C is in form of ∃R.C1:

I |�s (∃R.C1)(a) ⇔ there exists b ∈ �I ,
(
aI ,b

) ∈ +R and b ∈ +C1;
⇔ there exists b ∈ �Ic ,

(
aIc ,b

) ∈ S(R)Ic and b ∈ S(C1)
Ic ;

⇔ Ic |� ∃S(R).S(C1).

Then I |�s (∃R.C1)(a) ⇔ Ic |� S((∃R.C1)(a)).
Analogously, we can prove I |�s (∃T .d)(a) ⇔ Ic |� S((∃T .d)(a)).

(vii) C is in form of � n S:

I |�s (� n S)(a);
⇔ there exists at least n instances b ∈ �I ,

(
aI ,b

) ∈ +S;
⇔ there exists at least n instances b ∈ �Ic ,

(
aIc ,b

) ∈ S(S)Ic ;
⇔ Ic |�� nS(R).

Then I |�s (� n S)(a) ⇔ Ic |� S((� n S)(a)).
Analogously, we can prove I |�s (� n S)(a) ⇔ Ic |� S((� n S)(a)).
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(8) ϕ is in form of C1 � C2. By item (7) of this proof, we can conclude that for any concept C , for any strong interpretation
I , S(C)Ic = +C and S(¬C)Ic = −C where CI = 〈+C,−C〉. That is, for any concept Ci , we have S(Ci)

Ic = +Ci and
S(¬Ci)

Ic = −Ci where CI
i = 〈+Ci,−Ci〉.

I |�s C1 � C2 ⇔ −C1 ⊆ +C2,+C1 ⊆ +C2 and − C2 ⊆ −C1;
⇔ (

S(¬C1)
)Ic ⊆ (

S(C2)
)Ic

,
(
S(C1)

)Ic ⊆ (
S(C2)

)Ic and
(
S(¬C2)

)Ic ⊆ (
S(¬C1)

)Ic ;
⇔ (¬S(¬C1)

)Ic ⊆ (
S(C2)

)Ic
,
(
S(C1)

)Ic ⊆ (
S(C2)

)Ic and
(
S(¬C2)

)Ic ⊆ (
S(¬C1)

)Ic ;
⇔ Ic |� ¬S(¬C1) � S(C2),Ic |� S(C1) � S(C2) and Ic |� S(¬C2) � S(¬C1).

Then I |�s C1 � C2 ⇔ Ic |� S(C1 � C2).
Analogously, we can prove I |�s C1 � C2 ⇔ Ic |� S(C1 � C2) where Xi ∈ {Ri, Ti,di} (i = 1,2).

Therefore, this claim holds, that is, for any ϕ , I |�s ϕ ⇔ Ic |� S(ϕ). That is, for any K, I |�s K ⇔ Ic |� S(K). �
Though our transformation are defined in SHOIN (D), we can technically extend weak/strong transformation on quali-

fied number restrictions Q by adding the following rules:

X (� n R.C) = � nX (R).X (C); (15)

X (� n R.C) = � nX (R).X (C); (16)

where X is a placeholder of W or S .
Indeed, the weak transformation is the four-valued transformation with restricting in internal GCIs proposed by [23,24]

to reduce the four-valued DL entailment into the classical DL entailment. Technically, two other four-valued transformations
(with restricting in material GCIs and strong GCIs) are also represented by the weak transformation. Formally, the weak
transformation for material GCIs (denoted by Wm) and the weak transformation for strong GCIs (denoted by Ws) are the
same as the weak transformation W in all symbols except GCIs as follows: let Xi ∈ {Ci, Ri, Ti,di} (i = 1,2),

Wm(X1 �→ X2) = ¬Wm(¬X1) � Wm(X2); (17)

Ws(X1 → X2) = {
Ws(X1) � Ws(X2),¬Ws(X2) � ¬Ws(X1)

}
. (18)

As a result, Wm and Ws can represent the four-valued transformation with restricting in material GCIs and the four-
valued transformation with restricting in strong GCIs respectively.

Indeed, for any four-valued interpretation I4, if XI4
i = 〈+Xi,−Xi〉 (i = 1,2) then I4 |�4 X1 �→ X2 if and only if −X1 ⊆

+X2 and I4 |�4 X1 → X2 if and only if +X1 ⊆ +X2 and −X2 ⊆ −X1. For any classical interpretation Ic , we have

(1) (¬Wm(¬X1))
Ic = −X1 and (Wm(X2))

Ic = +X2. Then Ic |� ¬Wm(¬X1) �Wm(X2) since −X1 ⊆ +X2.
(2) (Wm(¬Xi))

Ic = −Xi and (Wm(Xi))
Ic = +Xi (i = 1,2). Then Ic |� Wm(X1) � Wm(X2) and Ic |� Wm(¬X2) � Wm(¬X1)

since +X1 ⊆ +X2 and −X2 ⊆ −X1.

Besides, compared with four-valued transformation, an important contribution of our transformation is the way of deal-
ing with �, which can be seen from the definition of the strong transformation below. Unlike previous transformations, a
GCI C � D (possibly, nominals inclusion or datatype inclusion) is translated into a set of axioms under the strong transfor-
mation.

Next, we discuss the complexity of two kinds of transformations from QC-SHOIN (D) to SHOIN (D).
It is trivial that weak transformation for concept disjunction/conjunction can be computed in linear time. If we transform

QC axioms naively then it might explode in exponential time. By using the following form, we can show that the strong
transformation for the concept disjunction C1 � · · · � Cn can be also computed in linear time.

Proposition 12. Let C1, . . . , Cn be DL concepts. Then

S(C1 � · · · � Cn) =
⊔n

i=1

(
S(Ci) � ¬S(¬Ci)

) ��n
i=1

(
S(Ci) � S(¬Ci)

)
. (19)

Proof. We inductively prove this proposition. Let C1, . . . , Cn be concepts.

• (Base step) n = 2, i.e., the simplest case of C1 � C2,
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I |�s C1 � C2;
⇔ (

I |�s C1 or I |�s C2
)
,
(
I �|�s ¬C1 or I |�s C2

)
, (I |�s C1 or I �|�s ¬C2);

⇔ (
Ic |� S(C1) or Ic |�s S(C2)

)
,
(
Ic �|� S(¬C1) or Ic |� S(C2)

)
,
(
Ic |� S(C1) or Ic �|� S(¬C2)

);
⇔ (

Ic |� S(C1) or Ic |�s S(C2)
)
,
(
Ic |� ¬S(¬C1) or Ic |� S(C2)

)
,
(
Ic |� S(C1) or Ic |� ¬S(¬C2)

);
⇔ Ic |� ((

S(C1) � ¬S(¬C1)
) � (

S(C2) � ¬S(¬C2)
)) � (

S(C1) � S(¬C1) � S(C2) � S(¬C2)
)
.

• (Inductive step) Assume that Eq. (19) holds for n concepts:

S(C1 � · · · � Cn) =
⊔n

i=1

(
S(Ci) � ¬S(¬Ci)

) ��n
i=1

(
S(Ci) � S(¬Ci)

)
. (20)

Next, we consider S(C1 � · · · � Cn � Cn+1). Let C = C1 � · · · � Cn and C1 � · · · � Cn � Cn+1 = C � Cn+1. We have S(C1 � · · · �
Cn) = S(C1) � · · · � S(Cn).

I |�s C � Cn+1 (by using the analogous proof in the base step);
⇔ Ic |� ((

S(C) � ¬S(¬C)
) � (

S(Cn+1) � ¬S(¬Cn+1)
)) � (

S(C) � S(¬C) � S(Cn+1) � S(¬Cn+1)
);

⇔ Ic |�
((⊔n

i=1

(
S(Ci) � ¬S(¬Ci)

) ��n
i=1

(
S(Ci) � S(¬Ci)

)) �
¬S(¬C1 � · · · � ¬Cn)

)
� (

S(Cn+1) � ¬S(¬Cn+1)
)
) �

((⊔n

i=1

(
S(Ci) � ¬S(¬Ci)

) ��n
i=1

(
S(Ci) � S(¬Ci)

)) �
S(¬C1 � · · · � ¬Cn)

)
� (

S(Cn+1) � S(¬Cn+1)
)
);

⇔ Ic |�
((⊔n

i=1

(
S(Ci) � ¬S(¬Ci)

) � (¬S(¬C1) � · · · � ¬S(¬Cn)
)) �

(�n
i=1

(
S(Ci) � S(¬Ci)

) � (¬S(¬C1) � · · · � ¬S(¬Cn)
)) � (

S(Cn+1) � ¬S(¬Cn+1)
)) �

((⊔n

i=1

(
S(Ci) � ¬S(¬Ci)

) � (
S(¬C1) � · · · � S(¬Cn)

)) �
((�n

i=1(S(Ci) � S(¬Ci))
)

� (
S(¬C1) � · · · � S(¬Cn)

)) � (
S(Cn+1) � S(¬Cn+1)

));
⇔ Ic |� (

(⊔n

i=1

(
S(Ci) � ¬S(¬Ci)

) � (
S(Cn+1) � ¬S(¬Cn+1)

)) �
(�n

i=1

(
S(Ci) � S(¬Ci)

)) � (
S(Cn+1) � S(¬Cn+1)

);

⇔ Ic |�
⊔n+1

i=1

(
S(Ci) � ¬S(¬Ci)

) ��n+1
i=1

(
S(Ci) � S(¬Ci)

)
.

Then, Eq. (19) holds for n + 1 concepts. Therefore, Eq. (19) holds for disjunction of arbitrary many concepts. �
By applying two transformations, the language of QC-SHOIN (D) is translated into the language of SHOIN (D) in a

polynomial time.
Next, we apply two transformations (strong transformation and weak transformation) to transform the QC consistency

problem and the QC entailment problem into the (classical) consistency problem and the entailment problem respectively.

Theorem 1. Let K be a QC KB and ϕ a QC axiom. Then

(1) K is QC consistent if and only if S(K) is consistent;
(2) K |�Q ϕ if and only if S(K) |�W(ϕ).

Proof. In [25], the QC entailment can be equivalently reduced into classical entailment in propositional logic. Next, we apply
this technique to prove this theorem.

By the proof of Proposition 11, every base interpretation I on language L can also viewed as a classical interpretation
Ic which is on language L+− such that Ic |� C(a) if and only if aI ∈ +C where CI = 〈+C,−C〉. [24] shows that I satisfies
axioms under four-valued semantics if and only if Ic satisfies axioms under classical semantics.

By Proposition 11, the first item of this proposition is trivial. Next, we prove the second item. I |�s K ⇔ Ic |� S(K) and
I |�w ϕ ⇔ Ic |�W(ϕ). So
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K |�Q ϕ;
⇔ for all I, if I |�s K then I |�w ϕ;
⇔ for all Ic, if Ic |� S(K) then Ic |� W(ϕ);
⇔ S(K) � W(ϕ). �

Two transformations can accurately preserve the QC semantics during translating QCDLs into DLs.
Because two kinds of QC entailment problems can be reduced into the QC consistency problem (see Proposition 10), the

QC entailment problem can be reduced into the consistency problem.

Corollary 1. Let T be a terminology, R a role hierarchy, A an ABox and C, D concepts. Then

(1) (T ,R,A}) |�Q C(a) is QC inconsistent w.r.t. RU if and only if (S(T ),S(R),S(A) ∪ {¬W(C)(a)}) is inconsistent w.r.t. RU ;
(2) (T ,R,∅) |�Q C � D is inconsistent w.r.t. RU if and only if (S(T ),S(R), {(W(C) � ¬W(D))(ι)}) is QC inconsistent w.r.t. RU

for some new individual ι ∈ �.

Proof. It follows from Proposition 11, Proposition 10 and Theorem 1. �
Corollary 1 provides the theoretical support of adopting the off-the-shelf DL OWL reasoners to determine whether K |�Q

ϕ (an implement system based on this theory is presented in Section 5).
A transformation-based algorithm for the QC entailment starts a KB K and a query ϕ and then applies the strong transfor-

mation S(·) on K and the weak transformation W(·) on ϕ and calls some off-the-shelf OWL reasoner to checking whether
S(K) |�W(ϕ).

For instance, let K = ({Bird � Fly,Penguin � Bird,Penguin � ¬Fly, Swallow � Bird}, {Penguin(tweety), Swallow(fred)}) be a
KB, called BirdKB.

(1) K will be transformed to

S(K) = ({
Bird+ � Fly+, Fly− � Bird−,¬Bird− � Fly+,

Penguin+ � Bird+,Bird− � Penguin−,¬Penguin− � Bird+,

Penguin+ � −Fly, Fly+ � Penguin−,¬Penguin− � Fly−,

Swallow+ � Bird+,Bird− � Swallow−,¬Swallow− � Bird+}
,

{
Penguin+(tweety), Swallow+(fred)

})
.

(2) The query ϕ = Fly(fred) will be transformed to W(ϕ) = Fly(fred)+ .
(3) Querying K |�Q Fly(fred) can be reduced to S(K) |� Fly+(fred). As a result, the answer to Fly(fred) is “yes” since S(K)∪

{¬Fly+(fred)} is inconsistent, that is, S(K) |� Fly+(fred) by Lemma 1. These knowledge (Swallow(fred) and Swallow � Bird
and Bird � Fly) representing fred does not contain conflict although those knowledge (Penguin(tweety), Penguin � Bird,
Bird � Fly and Penguin � ¬Fly) representing tweety contains some conflict. Intuitively, it is reasonable that fred can fly.

In the rest of this section, we discuss the computational complexity of checking problems in QC-SHOIN (D). Because
the strong and weak transformations can be obtained in linear time and the scope of the new KB S(K) will be polynomially
increased, the complexity of the QC entailment problem is not higher than that of the classical entailment problem in
SHOIN (D) which is NEXPTIME-Complete [1].

Theorem 2. Let K be a QC KB. The problem of determining whether K is QC consistent is NEXPTIME-Complete.

Proof.

(1) We show that the QC consistency problem of K is in NEXPTIME. To do so, we need to show that the QC consistency
problem can be reduced into the consistency problem.
(a) It follows from Theorem 1, K is QC consistent if and only if S(K) is consistent.
(b) In our transformation, connectives � and � (here � occurs together with ¬) will cause new concepts with more

� and � while the � connective will bring more new axioms. The � connective can be expressed by � and � in
Proposition 4. Proposition 12 shows that the scope of S(K) will in the polynomial increase compared to the scope
of K. Therefore, the QC consistency problem of K is in NEXPTIME since the consistency problem of an SHOIN (D)

KB is in NEXPTIME.
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(2) We will claim that the QC consistency problem of K is NEXPTIME-hard by reducing the consistency problem into the
QC consistency problem.
Formally, for any KB K in SHOIN (D), K is classical consistent if and only if λ(K) is QC consistent where λ(K) is
obtained by replacing all ¬X occurring in K with X where X ∈ {C,d, {o}}. Note that λ can be taken as a transformation
and we also introduce λ−1 denotes the inverse of λ. Obviously, λ(K) is a QC KB in QC-SHOIN (D) without ¬.
(1) if λ(K) is QC consistent then there exists some strong model Is of λ(K), i.e., Is |� λ(φ) for all λ(ϕ) ∈ λ(K).

Let I2
s is obtained from Is as follows:

• �I2
s = �Is ;

• �
I2

s
D = �

Is
D ;

• �I2
s = �I2

s ;
• ⊥I2

s = ∅;
• aI

2
s = aIs for any a;

• XI2
s = +XIs where XIs = 〈+X,−X〉 and X ∈ {A, R, T ,d};

• {o}I2
s = {oIs };

• complex concepts are defined following Table 1.
We need to prove that I2

s is a model of K, i.e., for all ϕ ∈K, I2
s |� ϕ .

When ϕ is a transitive axiom (Trans(R)), equality assertion (a
.= b), inequality assertion (a � .= b), or role assertion

R(a,b), T (a,d), this claim is true. When ϕ is a concept assertion C(a) and concept inclusion C1 � C2,
(a) If Is |�s (A1 � A2)(a), i.e., a ∈ +(A1 � A2)

Is , a ∈ +(¬A1 � A2)
Is and a ∈ +(A1 � ¬A2)

Is since +¬Ai
Is = (Ai)

I2
s

then a ∈ (A1 � A2)
I2

s , that is, I2
s |� (A1 � A2)(a). We can inductively show that if Is |�s (C1 � C2)(a) then I2

s |�s

(λ−1(C1) � λ−1(C2))(a) since +CIs = (¬C)I
2
s .

(b) If Is |�s A1 � A2, that is, �Is \ −AIs
1 ⊆ +AIs

2 , +AIs
1 ⊆ +AIs

2 and −AIs
2 ⊆ −AIs

2 since +¬Ai
Is = (Ai)

I2
s then

A
I2

s
1 ⊆ AI2

s , that is, I2
s |� A1 � A2. We can inductively show that if Is |� λ(C1) � λ−1(C2) since +Ci

Is = (¬Ci)
I2

s

(i = 1,2). Thus I2
s |�s C1 � C2.

Analogously, we can prove that ϕ is in forms of ¬C(a), ¬d(a), (C1 � C2)(a), η R.C(a), η T .d(a) (η ∈ {∀,∃}) and
d1 � d2. Therefore, I2

s is a strong model of λ(K) by definition, that is, λ(K) is QC consistent.
(2) If K is classical consistent then there exists some classical model Ic of K, i.e., Ic |� ϕ for all ϕ ∈K. Note that λ(ϕ)

mapping to ϕ is in λ(K).
Let IQ

c be a strong interpretation (called the induced BI of Ic) which is obtained from Ic as follows:

• �IQ
c = �Ic ;

• �
IQ

c
D = �

Ic
D ;

• aI
Q
c = aIc for any a;

• �IQ
c = 〈�Ic ,∅〉;

• ⊥IQ
c = 〈∅,�Ic 〉;

• AIQ
c = 〈AIc ,¬AIc 〉;

• RIQ
c = 〈RIc , (�Ic × �Ic ) \ RIc 〉;

• TIQ
c = 〈TIc , (�Ic × �

Ic
D ) \ TIc 〉;

• {o}IQ
c = 〈{oIc }, N〉 where N ⊆ �Ic ;

• dD = 〈dD,�
Ic
D \ dD〉;

• complex concepts are defined following Definition 4.
We need to prove that IQ

c is a strong model of λ(K), i.e., for all ϕ ∈K, IQ
c |�s λ(ϕ).

When ϕ is a transitive axiom (Trans(R)), equality assertion (a
.= b), inequality assertion (a � .= b), or role assertion

R(a,b), T (a,d), this claim is true. When ϕ is a concept assertion C(a) and concept inclusion C1 � C2,
(a) Ic |� (C1 � C2)(a), i.e., a ∈ (C1 � C2)

Ic then a ∈ +(λ(C1))
Ic or a ∈ +(λ(C2))

Ic then IQ
c |�s λ(C1 � C2)(a) since CIc

i

and ¬CIc
i are complementary by Definition 4, CIc

i = +(λ(Ci))
IQ

c and ¬CIc
i = −(λ(Ci))

IQ
c (i = 1,2).

(b) Ic |� C1 � C2, that is, CIc
1 ⊆ CIc

2 then �IQ
c \ −(λ(C1))

IQ
c ⊆ +(λ(C2))

IQ
c , +(λ(C1))

IQ
c ⊆ +(λ(C2))

IQ
c and

−(λ(C2))
IQ

c ⊆ −(λ(C1))
IQ

c since CIc
i and ¬CIc

i are complementary by Definition 4, CIc
i = +(λ(Ci))

IQ
c and

¬CIc
i = −(λ(Ci))

IQ
c (i = 1,2). Thus IQ

c |�s λ(C1 � C2).

Analogously, we can prove that ϕ is in forms of C(a), d(a), (C1 � C2)(a), ηR.C(a), ηT .d(a) (η ∈ {∀,∃}) and d1 � d2.
Therefore, IQ

c is a strong model of λ(K) by definition, that is, λ(K) is QC consistent.

We conclude that the QC entailment problem is NEXPTIME-Complete since the classical entailment is NEXPTIME-
Complete in SHOIN (D) [1]. �
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Fig. 1. prose architecture.

In addition, because the QC entailment problem can be reduced into the QC consistency problem by Proposition 10 and
item (2) of Theorem 1, the QC entailment problem is no higher than the classical entailment problem in DLs.

5. Experiments

5.1. Prototype system

Based on the transformation-based algorithm introduced in the previous section, we have implemented a prototype
system for QC-SHOIN (D), called prose (paraconsistent reasoning on semantic web. The architecture of prose is shown
in Fig. 1. prose is designed in the Decorator Pattern extending the inner classical OWL reasoner so that paraconsistent
reasoning on inconsistent KBs can be performed. The module Strong Transformer rewrites the input KB K to a new KB
S(K) while the module Weak Transformer changes the input query ϕ into a new query W(ϕ). Then the inner classical OWL
reasoner is called.

prose targets on OWL-API 3.2.4 [14], which is a Java interface and implementation for OWL. OWL-API is supported
by many OWL DL Reasoner such as Pellet [37], FaCT++ [42] and HermiT [36]. In the current version of prose, the inner
classical DL reasoner is Pellet, which is a widely used open source reasoner for OWL 2 DL. However, prose can be eas-
ily adapted to other DL reasoners. An online demo for prose is developed based on GWT and it is available at website:
http://prose-web.appspot.com/.

The design of prose is inspired by ParOWL [31,23] but with several advantages over ParOWL:

(1) prose is flexible: instead of using the strong transformation on the KB and the weak transformation on the query, thus
obtaining QC semantics, we can also apply the weak transformation W including Wm and Ws to the KB, obtaining the
weak or four-valued semantics for three kinds of GCIs, or apply strong transformation to the query, obtaining the strong
semantics;

(2) As we have explained before, prose is more powerful in terms of reasoning abilities, even for classical consistent KBs;
(3) From the API point of view, ParOWL only uses closed source KAON2 [27] as underlying reasoner while prose targets on

OWL-API which is open sourced and supported by many modern OWL Reasoners such as Pellet, Fact++ and HermiT.

5.2. Evaluation and results analysis

5.2.1. Evaluation
The experiments were performed on a Notebook with Intel T2400 1.83G CPU and 2G memory running on Windows 7.

The program were written in Java 1.6 with 512M memory allocated for JVM.
We used some benchmarks (including consistent and inconsistent KBs) from Pellet and TONES Ontology Repository [41].

Preliminary experiment results of some benchmark KBs can be found shown in Table 4 where we use �(NC ) to denote the
number of concepts, �(NR) to denote the number of roles and �(NI ) to denote the number of individual names occurring in
KBs. The column of Con is for the consistency, and the column of Tran is the time (in seconds) of the strong transformation.

For the first three consistent KBs, prose returns the same reasoning results as Pellet. However, the other KBs in the table
are classical inconsistent and thus Pellet is unable to perform any reasoning on them.

5.2.2. Results analysis
We will analyze the results of prose by comparing with those of ParOWL in a unified way. To do so, we slightly abuse

the truth values in Belnap’s bilattice [2] so that our results look more intuitive.
Let K be a KB. For any query C(a), there exist four possible results, namely “B” (both), “U” (unknown), “T” (true) and “F”

(false), of querying over K as follows:

• B denotes K |�Q C(a) and K |�Q ¬C(a);
• T denotes K |�Q C(a) and K �|�Q ¬C(a);

http://prose-web.appspot.com/
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Table 4
Evaluation on Benchmark KBs.

KB name DL �(NC ) �(NR ) �(NI ) Con Tran (s)

mindswappers ALCIF(D) 48 60 122 yes 0.468
financial ALCOF 60 16 17941 yes 3.282
pizza SHOIN 98 8 5 yes 2.184
particle ALCQ 73 5 0 yes 2.196
OBO_REL SHOIF 1110 13 999 yes 12.112
fly_anatomy EL++ 6222 2 0 yes 12.558
Bird ALC 5 0 2 no 0.015
buggyPolicy ALCHO 15 3 1 no 0.014
bad − food ALCO(D) 18 2 2 no 0.02
CHEM ALCHOF(D) 48 20 1 no 0.069

Fig. 2. Belnap’s bilattice.

Table 5
Queries and results of School KB.

Query ParOWL prose

�→ � →
PhDStudent(Wade) T T B B
Student(Wade) U T B B
Staff (Wade) U B B B
Professor(Wade) U U U F
PhDStudent(Jack) U U F F
Student(Jack) U U U T
Staff (Jack) F F F F
Professor(Jack) U U U F

• F denotes K �|�Q C(a) and K |�Q ¬C(a);
• U denotes K �|�Q C(a) and K �|�Q ¬C(a).

For any query C � D , we can also introduce four possible results as follows:

• B denotes K |�Q C � D and K |�Q C � ¬D;
• T denotes K |�Q C � D and K �|�Q C � ¬D;
• F denotes K �|�Q C � D and K |�Q C � ¬D;
• U denotes K �|�Q C � D and K �|�Q C � ¬D .

The result “B” of C(a) indicates the inconsistency caused by {C(a),¬C(a)} while the result “B” of C � D indicates the
incoherency caused by {C � D, C � ¬D} where for any concept name A, if A � C then A is unsatisfiable.

The four results can be represented in Belnap’s bilattice shown in Fig. 2 where “T” and “F” are two extreme values in
the �t (the truth ordering) and “B” and “U” are taken as two extreme values in the �k (knowledge ordering).

Now, we compare querying results of prose with ParOWL by the following two KBs.
1. School KB. Let K = (T ,A) be a KB where T = {PhDStudent � Student, PhDStudent � Staff , Student � ¬Staff , Member �

Student � Staff , Professor � Staff } and A = {Member(Wade), Member(Jack),PhDStudent(Wade),¬Staff (Jack)}. Intuitively, K
states that all PhD students are students, all PhD students are also staffs, students and staffs are disjoint, a member is
either a student or a staff, and all professor are staffs. Additionally for members, Wade is a PhD student and Jack is not a
staff.

The inconsistency of School KB is caused by both unsatisfiability of PhDStudent and Wade is an instance of PhDStudent.
The results of eight queries in prose and ParOWL for three kinds of GCIs are shown in Table 5.
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Table 6
Queries and results of Pizza KB.

Query ParOWL prose

�→ � →
IceCream � Pizza U U U B
∃hasTopping � Pizza U U U T
IceCream � ∃hasTopping U T T T
CheeseyVegetableTopping � American U T T F
CheeseyVegetableTopping � Pizza U T T F
American � Pizza U T T T
Soho � Pizza U T T T
AmericanHot � SpicyPizza U T T T

2. Pizza KB2 is incoherent but consistent. That is, Pizza KB contains two unsatisfiable concept names, namely, IceCream
and CheeseyVegetableTopping, which are caused by the modeling errors. The first incoherency of Pizza KB is to demonstrate
mistakes made with setting a role domain. hasTopping has a domain of Pizza. This means that the reasoner can infer that
all individuals using the hasTopping role must be of type Pizza. Because of this restriction, all members of IceCream must
use the hasTopping role, and therefore must also be members of Pizza. However, Pizza and IceCream are disjoint, so this
causes the unsatisfiability of Pizza. Analogously, CheeseyVegetableTopping is unsatisfiable since it is a subconcept of both
CheeseyTopping and VegetableTopping but these two concepts are disjoint.

In this experiment, we are interested in TBox reasoning. The results of prose and ParOWL for three kinds of GCIs are
shown in Table 6.

From Table 5 and Table 6, we have the following observations:

(1) prose infers more knowledge following from the knowledge order in Belnap’s Bilattice (Fig. 2).
• In School KB, the results of prose contain no “U” while those of ParOWL contain at least one “U”.
• In Pizza KB, the results of prose contain no “U” while those of ParOWL contain at least two “U”.

(2) prose draws more conclusions with classical truth value.
• In School KB, the results of prose contain five “T” or “F” while those of ParOWL contain at most three “T” or “F”.
• In Pizza KB, the results of prose contain seven “T” or “F” while those of ParOWL contain at most six “T” or “F”.

(3) prose handles inconsistency or incoherency in a more rational way.
• In School KB, the knowledge about Jack is consistent while the knowledge about Wade contains some inconsistencies.

Accordingly, we can obtain exact conclusions about both of them in prose and ParOWL with strong GCIs. Moreover,
we can infer that Jack is a student since we know Jack is not a staff and a member is either a student or a staff while
we cannot draw such a conclusion in ParOWL no matter which kinds of GCIs will be selected.

• In Pizza KB, for simplicity, we abbreviate CheeseyVegetableTopping as CVTopping. The unsatisfiability of concept
IceCream does not affect that IceCream � ∃hasTopping and ∃hasTopping � Pizza can be inferred by prose while
∃hasTopping � Pizza cannot be inferred by ParOWL. IceCream is taken as the empty concept and then we can infer
IceCream � Pizza and IceCream � ¬Pizza. prose infers CVTopping � ¬American and CVTopping � ¬Pizza while ParOWL
with internal GCIs and strong GCIs infers CVTopping � American and CVTopping � Pizza. Intuitively, CVTopping is just a
part of Pizza, but not a subconcept of Pizza. The results of prose are more rational than those of ParOWL since prose

prevents transmitting the modeling error.

5.2.3. Summary
When the ontology is inconsistent, classical reasoners fail to answer any reasonable results, but both prose and ParOWL

can still give some meaningful results under paraconsistent reasoning. As a successor of ParOWL, prose normally reports
more results with classical truth value (T and F) and less results of unknown (U). The results of prose are in general more
intuitive than those of ParOWL.

We also note that we did not show the running times of both systems in the table. The (strong and weak) transforma-
tions of prose and ParOWL are general very fast (linear time). However, it takes much more time for classical reasoners (e.g.,
Pellet) to answer over the transformed ontology, which is also confirmed in [24]. One possible reason is that the transfor-
mation introduce many negations and disjunctions, which makes the reasoning more difficult. Optimizing the performance
is an interesting topic for future work.

6. Related works

In this section, we mainly compare QCDL with existing paraconsistent DLs.
Compared with four-valued DL [23,24], by Table 2, we find that disjunctive syllogism (DS), intuitive equivalence (IE) and

resolution hold in QCDLs while they do not hold in four-valued DLs. Moreover, modus ponens (MP) and modus tollens

2 Available at http://www.co-ode.org/ontologies/pizza/pizza.owl.

http://www.co-ode.org/ontologies/pizza/pizza.owl


X. Zhang et al. / International Journal of Approximate Reasoning 55 (2014) 557–584 583
(MT) hold in QCDLs while they do not hold in four-valued DL with material inclusions and internal inclusions. Besides, the
transitivity holds in four-valued DL while it does not hold in QCDLs. In this sense, the principle of tolerating inconsistency
in reasoning with QCDL, where conclusions can be not allowed in next reasoning, is different from that of tolerating incon-
sistency in reasoning with four-valued DL, where a concept and the negation of that concept are no longer opposite to each
other in all cases. In four-valued DL, there are three kinds of concept inclusions and a kind of role inclusions. Our work is
integrating three kinds of inclusions (including concept inclusions and role inclusions) of four-valued DL into one kind of
inclusions to make users more convenient and intuitive. More detailed comparison can be found in Table 2.

Based on four-valued DL, two kinds of three-valued DLs, namely, paradoxical DL [45] and three-valued DL [29] are
presented recently. Compared with four-valued DL, they mainly handle inconsistent knowledge but do not handle incomplete
knowledge. A direct advantage of them is that they satisfy the excluded middle which fails in QCDL. However, because
they are based on four-valued DL, they inherit most of features of four-valued DL including some shortages (in our view).
For instance, the disjunctive syllogism, intuitive equivalence and resolution fail in both of them. Moreover, interpretations
defined in paradoxical DL and three-valued DL are still four-valued interpretations with some restrictions while the weak
interpretation in QCDL extends four-valued interpretation in QC negation of concepts. In addition, the strong interpretation
in QCDL, which enhances inference power, is difficultly to represented in both paradoxical DL and three-valued DL.

There exist some variants of four-valued DL such as PALC presented in [20]. PALC is obtained from a description
logic (called ALCn∼) with such a dual (or multiple)-interpretation semantics by adding a weak negation in order to tolerate
inconsistency where the weak negation is identical to the classical negation and the classical negation is identical to the
QC negation in QCDL. The weak negation is used to tolerate inconsistency and the classical negation is used to implement
paraconsistent reasoning. In PALC , the satisfaction of GCIs is defined by the internal inclusion. In this sense, PALC can
be taken as our weak semantics for DL.

Recently, [17] presents a quasi-classical semantics for DL where each quasi-classical model is a subset of Herbrand base,
which is obtained by grounding all concepts and roles in a Herbrand Universe (a set of constants). In this sense, we think
that the semantics could be taken as some kind of restricted version of our proposal semantics. Besides, similar to the
tableau in developed in [44], the tableau calculus introduced in [17] works axioms while the tableau calculus is difficult to
be technically extended in expressive DLs such as SHOIN (D).

Compared with paraconsistent approaches based on repairing [18,33,22,10] where a new consistent KB or models of KB
are restored from an inconsistent KB by removing some knowledge causing inconsistency, our approach does not reject any
knowledge but tolerate inconsistent knowledge in reasoning.

Similarly, those paraconsistent approaches based on argumentation presented by [12,43] introduce some partial orders
(argument principles) of all consistent subsets of an inconsistent KB to select some expected consistent subsets for reason-
ing. Our approach adopts a totally different principle from those approaches. In addition, QCDL, including paradoxical DL,
four-valued DL and PALC , is monotonic.

As an important member of the multi-valued DL family, fuzzy description logics [40,6,5,9] can reason with uncertain
knowledge in DL. Fuzzy DL admits truth values different from “true” and “false”, each of which is intuitively taken as a
certain degree. Usually, the set of possible truth values is the whole interval [0,1]. Though some properties such as MP, MT
and DS are valid in some fuzzy DL, the main difference between fuzzy logic and multi-valued logic is in the aims.

7. Conclusion

In this paper, we introduced a new description logic called quasi-classical description logic (QCDL) and investigated
the properties and some important reasoning tasks of QCDL. We proved that QCDL can be used to tolerate inconsistency
in reasoning with DL. We developed a transformation-based algorithm to transform QCDL to DL and reduce reasoning
problems in QCDL to those in DL. Based on this algorithm, we have built a paraconsistent OWL DL prototype reasoner
prose. The experiments showed that we have improved paraconsistent reasoning based on four-valued semantics.
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