
Tractable Queries for Lightweight Description Logics

Meghyn Bienvenu
Laboratoire de Recherche en Informatique

CNRS & Université Paris Sud, France

Magdalena Ortiz
Mantas Šimkus

Guohui Xiao
Institute of Information Systems

Vienna University of Technology, Austria

Abstract
It is a classic result in database theory that conjunc-
tive query (CQ) answering, which is NP-complete
in general, is feasible in polynomial time when re-
stricted to acyclic queries. Subsequent results iden-
tified more general structural properties of CQs
(like bounded treewidth) which ensure tractable
query evaluation. In this paper, we lift these
tractability results to knowledge bases formulated
in the lightweight description logics DL-Lite and
ELH. The proof exploits known properties of
query matches in these logics and involves a query-
dependent modification of the data. To obtain a
more practical approach, we propose a concrete
polynomial-time algorithm for answering acyclic
CQs based on rewriting queries into datalog pro-
grams. A preliminary evaluation suggests the inter-
est of our approach for handling large acyclic CQs.

1 Introduction
Conjunctive queries (CQs) form a natural and important class
of relational databases queries. In the description logic (DL)
research community, there has been increasing interest in
the problem of retrieving the answers to a CQ while taking
into account the knowledge specified by a DL ontology [Cal-
vanese et al., 2007; Lutz et al., 2009]. The use of an ontology
typically leads to an increase in the complexity of CQ an-
swering1 compared to the relational database setting. Indeed,
for the so-called expressive DLs, CQ answering is co-NP hard
in data complexity (that is, when the ontology and query are
considered fixed, and the complexity is measured in the size
of the data only), in contrast to the AC0 upper bound for stan-
dard databases. In combined complexity (that is, when the
complexity is measured in terms of the combined sizes of
the query, ontology, and data), rather than NP-complete, the
problem is at least ExpTime-hard, and often requires double-
exponential time (cf. the survey [Ortiz and Simkus, 2012]).
Since such high complexity is prohibitive for data-rich ap-
plications, most work in the area focuses on ontologies for-
mulated in lightweight DLs of the DL-Lite [Calvanese et al.,

1When talking about the complexity of CQ answering, we mean
the complexity of the query output tuple problem, that is, to decide
whether a given tuple is in the answer of a CQ.

2007] and EL [Baader et al., 2005] families, which enjoy
better computational properties. Indeed, CQ answering for
DL-Lite knowledge bases has the same data and combined
complexity as for plain databases, whereas for EL, CQ an-
swering is P-complete in data complexity, but remains NP-
complete in combined complexity.

A classic result in database theory states that CQ answering
becomes feasible in polynomial time when restricted to the
class of acyclic CQs [Yannakakis, 1981]. Later investigations
lead to the identification of more general structural properties,
such as bounded treewidth, query width, or hypertree width
[Chekuri and Rajaraman, 1997; Gottlob et al., 1999], which
guarantee tractable CQ answering. Since the NP-hardness
in combined complexity of CQ answering in DLs is a direct
consequence of the analogous result for relational databases,
it seems natural to ask whether these tractability results also
transfer to the DL setting. This would be very desirable since
it is likely that most of the queries that will actually occur
in applications are acyclic. While there are no collections
of real-world CQs that can be used to support this claim in
the DL setting, one can find some compelling evidence by
looking at the closely related setting of SPARQL queries over
RDF data, where it has been reported that acyclic queries (in
fact, acyclic conjunctive graph patterns) comprise more than
99% of the queries in a log of around three million queries
posed to the DBpedia endpoint [Picalausa and Vansummeren,
2011]. Unfortunately, lifting positive results from databases
to the DL setting is often not possible, even when one con-
siders lightweight DLs. For instance, for the logic DL-LiteR,
which underlies the QL profile of the OWL 2 standard [OWL
Working Group, 2009], CQ answering was recently shown to
be NP-hard already for acyclic queries [Kikot et al., 2011].

In this paper, we show that for plain DL-Lite (without role
hierarchies) and for EL, the picture is brighter. Specifically,
all polynomial-time upper bounds for classes of CQs known
from relational databases carry over to DL-Lite. In the case
of the EL family, we get polynomiality even for ELH, thus
showing that role hierarchies alone are not the culprit for the
loss of tractability. Although this general tractability result
relies on known properties of the logics, to our knowledge, it
has not been pointed out before. The proof involves a poly-
nomial reduction from the problem of answering a given CQ
over a knowledge base K to answering the same CQ over
a database that results from a polynomial expansion of the

dataset in K. The algorithm arising from this reduction has
a disadvantage: it involves a query-dependent expansion of
the data, which may be undesirable in many settings. Hence,
we also propose an alternative polynomial-time algorithm for
acyclic CQs, based on a rewriting into datalog. We have im-
plemented a simple prototype of the approach, and it shows
promising results for answering large acyclic CQs.

2 Preliminaries
Description Logics We briefly recall the syntax and seman-
tics of DL-LiteR [Calvanese et al., 2007], ELH [Baader et
al., 2005], and their sublogics DL-Lite and EL. Let NC,
NR, and NI be countably infinite sets of concept names, role
names, and individuals, respectively, and let NR = NR∪{r− |
r ∈ NR} be the set of (complex) roles. For R ∈ NR, R− de-
notes r− if R = r ∈ NR, and r if R = r−.

An ABox is a finite set of assertions of the forms A(b) and
r(b, c) with A ∈ NC, r ∈ NR, and b, c ∈ NI. A TBox is
a finite set of axioms, whose form depends on the particu-
lar DL. In DL-Lite, TBox axioms are concept inclusions of
the form C1 v C2, with C1 = B1 and C2 = (¬)B2 for
B1, B2 of the form A ∈ NC or ∃R with R ∈ NR. DL-
LiteR TBoxes may also contain role inclusions of the form
R1 v (¬)R2 with R1, R2 ∈ NR. In EL, TBoxes con-
sist of concept inclusions C1 v C2, but in this case C1, C2

may be complex concepts constructed according to the syn-
tax C := > | A | C u C | ∃r.C. ELH TBoxes additionally
allow role inclusions of the form r1 v r2, similarly to DL-
LiteR, but with r1, r2 ∈ NR. A DL knowledge base (KB)
K = (T ,A) consists of a TBox T and ABox A.

The semantics of DL KBs is defined in terms of (DL)
interpretations I = (∆I , ·I), where the domain ∆I is a
non-empty set, and the interpretation function ·I maps each
a ∈ NI to an object aI ∈ ∆I , each A ∈ NC to a set
AI ⊆ ∆I , and each r ∈ NR to a binary relation rI ⊆
∆I × ∆I . The function ·I is extended to complex con-
cepts and roles in the usual way, see [Calvanese et al., 2007;
Baader et al., 2005] for details. We say that I satisfies an ax-
iom P1 v P2 if P I1 ⊆ P I2), and it satisfies an assertion A(a)
(resp. r(a, b)) if aI ∈ AI (resp. (aI , bI) ∈ rI). Finally, I is
a model of a KB K = (T ,A) if it satisfies every axiom in T
and assertion in A. K is consistent if it admits some model.
We use Ind(A) for the individuals occurring in A. We let
IA be the interpretation with ∆I = Ind(A) and such that (i)
c ∈ AI iff A(c) ∈ A, and (ii) (c, d) ∈ rI iff r(c, d) ∈ A.
Queries We recall non-recursive datalog queries and the
more restricted conjunctive queries, cf. [Levy and Rousset,
1998]. Let NV and ND be countably infinite sets of variables
and datalog relations, respectively. Each σ ∈ ND has an as-
sociated non-negative integer arity. Atoms are expressions of
the form p(~x), where ~x ∈ (NV)n, and (i) p ∈ NC and n = 1,
(ii) p ∈ NR and n = 2, or (iii) p ∈ ND and n is the arity of p.
Atoms of the form (i) and (ii) are called DL-atoms.

A rule ρ is an expression of the form h(~x)← α1, . . . , αm,
where h(~x), α1, . . . , αm are atoms, h is a datalog relation,
and every variable of ~x occurs in body(ρ) = {α1, . . . , αm}.
Abusing notation, we write α ∈ ρ instead of α ∈ body(ρ).
The variables in head(ρ) are called the answer variables of ρ.

Given a set of rules P , we let Dep(P) = (V,E) be the di-
rected graph such that: (a) V is the set of all datalog relations
occurring in P , and (b) (p1, p2) ∈ E whenever there is a rule
ρ ∈ P where p1 is the relation in head(ρ), and p2 occurs in
body(ρ). A non-recursive datalog query is a pair Q = (P, q)
where P is a set of rules such that Dep(P) has no cycle, and
q is a datalog relation; its arity is the arity of q.

Given a rule ρ and a DL interpretation I, an assignment
is a function π that maps every variable of ρ to an object in
∆I . For a concept atom A(x) ∈ ρ, we write I |=π A(x)
if π(x) ∈ AI , and for a role atom r(x1, x2) ∈ ρ, we write
I |=π r(x1, x2) if (π(x1), π(x2)) ∈ rI . We call π a match
for ρ in I if I |=π α for all DL-atoms α ∈ ρ.

A tuple ~t is an answer to a query Q = (P, h) in an inter-
pretation I if there exists a rule ρ = h(~x) ← β in P and
a match π for ρ in I such that (i) ~t = π(~x) and (ii) for
each non-DL-atom p(~y) ∈ ρ, π(~y) is an answer to (P, p)
in I. We use ans(Q, I) to denote the set of answers to Q
in I. The set cert(Q,K) of certain answers to an n-ary
query Q over a KB K is defined as {~a ∈ (NI)

n | ~aI ∈
ans(Q, I) for any model I of K}.

A conjunctive query (CQ) is a non-recursive datalog query
of the form ({ρ}, q), such that body(ρ) contains only DL-
atoms. Since the particular relation q is irrelevant, we will
use single rules (or rule bodies) to denote CQs.

In this paper, we focus on the decision problem known as
the query output tuple (QOT) problem, which takes as input
a query Q, a KB (T ,A), and a tuple of individuals ~a, and
consists in deciding whether ~a ∈ cert(Q, (T ,A)). Whenever
we talk about the complexity of query answering, we mean the
computational complexity of the QOT problem. We focus on
combined complexity, which is measured in terms of the size
of the whole input (~a, Q, T , A).

Canonical Models Every consistent DL-Lite or ELH KB
(T ,A) possesses a canonical model IT ,A. For DL-LiteR,
the domain ∆T ,A of IT ,A consists of all words aR1 . . . Rn
(n ≥ 0) such that a ∈ Ind(A), Ri ∈ NR, and:
− if n ≥ 1, then T ,A |= ∃R1(a);
− for 1 ≤ i < n, T |= ∃R−i v ∃Ri+1 and R−i 6= Ri+1.

We say that w′ ∈ ∆T ,A is a child of w ∈ ∆T ,A if w′ = wR
for some R. The interpretation function is defined as follows:

aIT ,A = a for all a ∈ Ind(A)

AIT ,A = {a ∈ Ind(A) | T ,A |= A(a)}
∪ {aR1 . . . Rn | n ≥ 1 and T |= ∃R−n v A}

rIT ,A = {(a, b) | r(a, b) ∈ A}∪
{(w1, w2) | w2 = w1S and T |= S v r}∪
{(w2, w1) | w2 = w1S and T |= S v r−}

The construction of IT ,A for ELH KBs is similar, please re-
fer to the appendix for details. Note that for both DL-LiteR
and ELH KBs, IT ,A is composed of a core, which is ob-
tained by restricting IT ,A to the objects in Ind(A), and an
anonymous part consisting of (possibly infinite) trees rooted
at objects in the core. It is well-known that IT ,A can be ho-
momorphically mapped into any model of T andA, yielding:

Fact 1. Let K be a consistent DL-Lite or ELH KB, and let
IK be its canonical model. Then cert(Q,K) = ans(Q, IK)
for every non-recursive datalog query Q.

3 General Tractability Result
In this section, we observe that for both DL-Lite and ELH,
the answers to a CQ ρ over a consistent KB K = (T ,A) co-
incide with the answers to ρ over an interpretation IT ,A,ρ that
can be constructed in polynomial time from K and ρ. Since
IT ,A,ρ can be viewed as a relational database, we obtain that
any class of CQs that is tractable for plain databases is also
tractable for KBs formulated in these DLs.

To establish this result, we rely on the following well-
known property of query matches in DL-Lite and ELH
(cf. [Kikot et al., 2012; Lutz et al., 2009]):
Lemma 2. Consider a consistent DL-Lite or ELH KB
(T ,A), a CQ ρ, and an object w in the anonymous part of
IT ,A. Then all query matches π for ρ that coincide on the
set of variables {x | π(x) = w} coincide also on the sets of
variables that are matched to the children of w.
It follows from Lemma 2 that if there is a query atom R(x, y)
such that π(y) is a child of π(x) in the anonymous part, then
it is uniquely determined which other query variables have
to be matched inside the tree rooted at π(x), and how these
variables are ordered into a tree. We can exploit this property
to construct the desired IT ,A,ρ in two steps as follows:
(1) First, we generate from ρ a polynomial number of tree-

shaped queries, which correspond to the different ways
that a subquery of ρ can be mapped inside a tree in the
anonymous part of IT ,A. Each query is generated by se-
lecting an atom R(x, y) ∈ ρ and considering what hap-
pens if x and y were to be mapped respectively to a node
w and one of its children in the anonymous part. By
repeatedly applying Lemma 2, we can determine which
other variables must be matched inside the tree rooted at
w, and how the resulting subquery collapses into a tree.

(2) Only the fragments of the anonymous part of the canoni-
cal model into which one of these tree-shaped queries can
be homomorphically embedded can participate in query
matches. Hence, by appropriately augmenting the core
with instantiations of these tree-shaped queries, we obtain
an interpretation IT ,A,ρ that is sufficient for retrieving all
query answers. Specifically, we attach to each individual
a a copy of each tree-shaped query for which there is a
match rooted at a. To handle the case of (parts of) queries
whose matches may be detached from the core, we also
instantiate a disconnected copy of each tree-shaped query
which can be mapped inside the anonymous part of IT ,A.

Construction for DL-Lite The following notion of tree wit-
ness for DL-Lite was defined in [Kontchakov et al., 2010].
Let ρ be a CQ and let R(x, y) be such that either R(x, y) ∈ ρ
or R−(y, x) ∈ ρ. A tree witness for R(x, y) in ρ is a partial
map f from the variables in ρ to words over the alphabet NR

such that its domain is minimal (w.r.t. set-theoretic inclusion)
and the following conditions hold:
− f(y) = R;
− if f(z) = wS, S′(z, z′) ∈ ρ or S′−(z′, z) ∈ ρ, and S′ 6=
S−, then f(z′) = wSS′; and

− if f(z) = wS and S(z′, z) ∈ ρ or S−(z, z′) ∈ ρ, then
f(z′) = w.

We remark that each tree witness f naturally corresponds to
a tree-shaped CQ obtained by restricting the original CQ ρ to
the variables in the domain of f and unifying variables z, z′
with f(z) = f(z′). By definition, there is at most one tree
witness for each R(x, y), which we denote by fR(x,y). We
say that a tree witness fR(x,y) is valid w.r.t. T if for every
word R1 . . . Rn in the range of fR(x,y), and every 1 ≤ i < n,
we have Ri−1 6= Ri and T |= ∃R−i−1 v ∃Ri. Existence and
validity of tree witnesses can be tested in polynomial time.

If a match π for ρ in IT ,A maps x and y to objects w
and wR respectively, then there is a tree witness fR(x,y) for
R(x, y) in ρ which is valid w.r.t. T and such that π(z) =
wfR(x,y)(z) for each variable z in the domain of fR(x,y).
Moreover, we may assume that if π(x) is minimal (that is,
there is no π(x′) which is a prefix of π(x)), then π(x) is
within distance |T | of the ABox. Hence, the matches for ρ in
IT ,A coincide with the matches of ρ in the structure IT ,A,ρ
obtained by adding to the core:

(a) the objects aw such that w occurs in the range of a valid
tree witness fR(x,y) and T ,A |= ∃R(a).

(b) the objects xSw where x is a variable in ρ and S,w
satisfy: (i) there is an individual a ∈ Ind(A) and a chain
of (possibly inverse) roles R1, . . . , Rn of length at most
|T | such that Rn = S, T ,A |= ∃R1(a), and for each
1 < i ≤ n, R−i−1 6= Ri and T |= ∃R−i−1v∃Ri, and (ii)
there exists a variable y and valid tree witness fR(x,y)

with S− 6= R and T |= ∃S−v∃Rwhose range contains
w. Note that x is not an object of the domain of IT ,A,ρ.

To extend the interpretations of concept and role names to
these new objects, we let wR ∈ AIT ,A,ρ whenever T |=
∃R−vA, and (w,wR) ∈ RIT ,A,ρ for new objects w,wR.

We remark that the existence of a role chain and individual
having the properties stated in (b)(i) can be decided in polyno-
mial time by initializing a set Reach with all roles S such that
T ,A |= ∃S(a) for some a ∈ Ind(A), and then adding U to
Reach whenever there is V ∈ Reach such that T |= V − v U .
Since there are only polynomially many objects of the forms
aw and xSw as above, and instance checking and TBox rea-
soning are tractable for DL-Lite KBs [Calvanese et al., 2007],
it follows that IT ,A,ρ can be constructed in polynomial time.
Construction for ELH In what follows, it will prove conve-
nient to use conjunction as a role constructor: if r1, r2 ∈ NR

are role names, then their conjunction r1 u r2 is a role whose
interpretation is (r1ur2)I = r1

I∩r2I . We denote by ELHu
the extension of ELH with role conjunction.

We introduce a notion of tree witness for ELH, inspired by
the fork elimination procedure from [Lutz, 2008]. Let ρ be a
CQ and α = r(x, y) ∈ ρ. We begin by defining a set Dα and
equivalence relation∼α over Dα by initializing Dα to {x, y}
and ∼α to the trivial equivalence relation, and then applying
the following rules until convergence:
− if s(z, z′) ∈ ρ, z ∈ Dα, and z 6∼α x, then add z′ to Dα

− if s(u, u′) ∈ ρ, t(z, z′) ∈ ρ, u, u′, z′ ∈ Dα, and u′ ∼α z′,
then add z to Dα and put u ∼α z

Note that Dα and ∼α are uniquely defined and can be com-
puted in polynomial time in the size of ρ. We let ρα be the

query obtained by restricting ρ to the variables inDα, then re-
placing each variable z by its equivalence class [z] under ∼α.
We define a directed graph Gα whose nodes are the equiva-
lence classes in ∼α and whose edges are the atoms in ρα. If
Gα contains no (directed) cycles, then we define the tree wit-
ness for α = r(x, y) in ρ as the map f : Dα → (2NR × 2NC)∗

with:
− f(z) = ε if z ∼α x
− f(z) = M1N1 . . .MkNk if [u0], . . . , [uk] is the unique

path in Gα with u0 ∼α x and uk ∼α z, and for every
1 ≤ i ≤ k, we have Mi = {s | s([ui−1], [ui]) ∈ Gα) and
Ni = {A | A([ui]) ∈ Gα}

To every tree witness f , we can naturally associate an
ELHu concept concf (ε) as follows: if f(z) = w is a
leaf, we let concf (w) = >, and if f(z) = w has chil-
dren w1, . . . , wn with wi = wMiNi, then concf (w) =dn
i=1 ∃(

d
r∈Mi

r).(
d
A∈Ni A u concf (wi)). It follows from

[Rudolph et al., 2008] that it can be checked in polynomial
time whether T ,A |= concf (ε)(a). Using a reachability con-
struction similar to the one for DL-Lite, we can also test in
polynomial time whether concf (ε) is non-empty in IT ,A.

We are now ready to define the interpretation IT ,A,ρ. Its
domain is the set of words consisting of each individual inA,
each aαw such that w 6= ε is in the range of a tree witness f
for α in ρ such that (T ,A) |= concf (ε)(a), each Bαw such
that w 6= ε is in the range of a tree witness f for α in ρ and
concf (ε)IT ,A contains an object of the form w′B, and each
B for which some Bαw is present. Concept and role names
are interpreted as follows:

AIT ,A,ρ ={a ∈ Ind(A) | T ,A |= A(a)} ∪
{B | T |= B v A} ∪

{wMN | T |=
l

B∈N
B v A}

rIT ,A,ρ ={(a, b) | T ,A |= r(a, b)}∪
{(σ, σαMN) | T |= s v r for some s ∈M}∪
{(w,wMN) | T |= s v r for some s ∈M}

and each individual a is interpreted as itself (aIT ,A,ρ = a).
The following theorem resumes the key properties of the

interpretations IT ,A,ρ just described.
Theorem 3. Let ρ be a CQ, let (T ,A) be a consistent
DL-Lite or ELH knowledge base, and let IT ,A,ρ be the inter-
pretation defined previously. The following statements hold:
1. IT ,A,ρ can be built in polynomial time in ρ, T and A.
2. For every tuple ~a of individuals, ~a ∈ ans(ρ, IT ,A) iff ~a ∈

ans(ρ, IT ,A,ρ).
In light of Theorem 3 and Fact 1, to determine whether

~a ∈ cert(ρ, (T ,A)), it is sufficient to test the consistency of
(T ,A) and then, if (T ,A) is consistent, to decide whether
~a ∈ ans(ρ, IT ,A,ρ). If we view IT ,A,ρ as a plain relational
database, the latter check is just a special case of the QOT
problem. Hence, we obtain the desired result:
Corollary 4. Let Q be a class of CQs for which the query
output tuple problem over relational databases is decidable
in polynomial time. Then the query output tuple problem for
Q is also tractable for KBs formulated in DL-Lite and ELH.

The construction of IT ,A,ρ above is easily extended to DL-
LiteR using the notions of canonical models and tree wit-
nesses from [Kikot et al., 2012]. However, the construction is
no longer polynomial since there can be exponentially many
tree witnesses for a single atom R(x, y) in ρ [Kikot et al.,
2011], and so we do not obtain an analogue of Theorem 3.
Indeed, it follows from results by Kikot et al. 2011 that the
QOT problem for tree-shaped CQs is NP-complete for DL-
LiteR KBs. Therefore, to obtain tractability results to DL-
LiteR, one must impose some syntactic restriction on T and
ρ that ensures a polynomial number of tree witnesses, e.g. the
absence of twisty roles proposed in [Kikot et al., 2012].

4 Answering Acyclic Queries
The expansion technique presented in Section 3 allows us
to convert any polynomial-time algorithm for evaluating
a tractable class of CQs over relational databases into a
polynomial-time algorithm for evaluating the same class of
queries over DL-Lite and ELH KBs. However, the result-
ing algorithm would involve building the structure IT ,A,ρ for
each input query ρ, which is clearly undesirable. We now
present our main contribution: a polynomial-time procedure
for evaluating acyclic CQs which is based upon rewriting
CQs into non-recursive datalog programs. We present the ap-
proach for DL-Lite KBs, but discuss at the end of the section
how the approach can be adapted to DL-LiteR and ELH.

We begin with some preliminaries. As usual, the query
graph G(ρ) of a CQ ρ is defined as the undirected graph
whose nodes are the variables of ρ, and that has an edge
between x and x′ if ρ contains a (body) atom r(x, x′) or
r(x′, x). A CQ ρ is acyclic if G(ρ) is acyclic, and rooted if
every connected component of G(ρ) has at least one answer
variable. We consider a slight generalization of acyclicity: we
say that a CQ ρ is acyclic modulo answer variables (a-acyclic
for short) if the graph G−(ρ) obtained by deleting from G(ρ)
each edge (x, x′), where x, x′ are answer variables is acyclic.

Our rewriting procedure works on queries which are both
rooted and a-acyclic (we discuss later the non-rooted case).
To every rooted a-acyclic CQ ρ, we associate the set of con-
nected components {T1, . . . , Tn} of G−(ρ). Because ρ is
rooted, every Ti is a connected acyclic graph containing at
least one vertex which is an answer variable. We select an
arbitrary answer variable xi for each Ti and designate it as
the root of Ti, allowing us to view Ti as a tree. Then, given
a pair of variables x, y of ρ, we call y a child of x if y is a
child of x in the (unique) tree Ti that contains x, and define
descendant as the transitive closure of child. For a variable x
of ρ, we denote by ~xρ (resp. ~x+ρ) the tuple consisting of all
answer variables which are descendants of x (resp. which are
among x and its descendants).
Rewriting procedure for rooted queries Consider a rooted
a-acyclic CQ ρ = q(~x) ← α and a DL-Lite TBox T , and
let X be the set of answer variables which are roots in ρ (see
previously). We rewrite the query ρ into the non-recursive
datalog program rewT (ρ) = (P, q) defined as follows. In ad-
dition to q, the program uses the following datalog relations:
(i) (|~xρ|+1)-ary relations qx, q′x for every variable x of ρ, and
(ii) unary relations qA and q∃R for everyA ∈ NC andR ∈ NR

occurring in ρ. We now describe the rules in P . There is a
single top-level rule defining q:

q(~x)←
∧
x∈X

qx(x, ~xρ) ∧
∧

xi,xj∈~x, r(xi,xj)∈ρ

r(xi, xj) (1)

For every variable x in ρ, with Y = {y1, . . . , yn} the set of
children of x in ρ, we have the following rule

qx(x, ~xρ)←
∧

A(x)∈ρ

qA(x)∧
∧

r(x,x)∈ρ

r(x, x)∧
∧
y∈Y

q′y(x, ~y+ρ) (2)

and for every y ∈ Y , we also have

q′y(x, ~y+ρ)←
∧

r(x,y)∈ρ

r(x, y)∧
∧

s(y,x)∈ρ

s(y, x)∧ qy(y, ~yρ) (3)

and for all y ∈ Y satisfying the following conditions:
(i) there is an atom R(x, y) ∈ ρ or R−(y, x) ∈ ρ and the

tree witness fR(x,y) exists and is valid
(ii) for every u in domain of fR(x,y) with fR(x,y)(u) = wS

and A(u) ∈ ρ, we have T |= ∃S− v A
(iii) the set Z = {z | fR(x,y)(z) = ε ∧ z 6= x} contains all

answer variables in the domain of fR(x,y)

we additionally have the rule

q′y(x, ~u)← q∃R(x) ∧
∧
z∈Z

qz(x, ~zρ) (4)

where ~u is obtained from ~yρ by replacing each z ∈ Z by x.
Finally, for every B ∈ NC ∪ {∃R | R ∈ NR} with qB a
datalog relation in P , we have the rules

qB(x)←A(x) for all A∈NC such that T |=AvB
qB(x)← s(x, y) for all s∈NR such that T |=∃svB (5)

qB(x)← s(y, x) for all s∈NR such that T |=∃s−vB

Intuitively, the relation qx corresponds to the query ρ|x
whose answer variables are {x} ∪ ~xρ and whose body is ob-
tained by restricting the body of ρ to the atoms whose argu-
ments among x and its descendants; whereas the relation q′y
corresponds to the query ρ|xy (with y a child of x) obtained
by adding to ρ|y the role atoms linking x and y. Rule (1) stip-
ulates that a tuple is in the answer to ρ if it makes true all of
the role atoms linking two answer variables and each of the
queries ρ|x associated with a root variable x of ρ. Then rule
(2) states that to make ρ|x hold at an individual, we must sat-
isfy the concept atoms for x and the query ρ|xy for each child
y of x. Rules (3) and (4) provide two ways of satisfying ρ|xy.
The first way, captured by rule (3), is to map y to an ABox in-
dividual, in which case the role atoms between x and y must
occur in the ABox, and the query ρ|y must hold at this indi-
vidual. The second possibility, treated by rule (4), is that y is
mapped to an element of the anonymous part of IT ,A which
is a child of x. For this to occur, several conditions must be
verified. First, if y is an R-successor of x, then the tree wit-
ness fR(x,y) must exist and be valid w.r.t. T . Second, we
must ensure that all concept atoms concerning variables that
are mapped inside the anonymous part by fR(x,y) are satisfied
(this is checked in item (ii)). Finally, since answer variables

cannot be mapped inside the anonymous part, we need con-
dition (iii), which checks that every answer variable z in the
domain of fR(x,y) is such that fR(x,y)(z) = ε. If all of these
conditions are met, then rule (4) states that the query ρ|xy
can be satisfied by making ∃R hold at x (thereby guarantee-
ing the existence of the required paths in the anonymous part
of IT ,A) and by satisfying the remainder of the query ρ|xy
(i.e. the query obtained by removing the atoms mapped inside
the anonymous part). The latter corresponds precisely to the
union of the queries ρ|z where z is a descendant of x with
fR(x,y)(z) = ε . Finally, the rules in (5) provide the standard
rewriting of concepts A and ∃R w.r.t. T .

We establish the correctness of our rewriting procedure.

Theorem 5. Let ρ be a rooted a-acyclic CQ andK = (T ,A)
a DL-Lite KB. Then cert(ρ,K) = ans(rewT (ρ), IA).

Proof idea. The key step in the proof is showing that for ev-
ery variable x in ρ, cert(ρ|x,K) = ans((P, qx), IA). This
can be proven by induction on the number of variables in ρ|x,
utilizing Fact 1 and properties of tree witnesses.

The next theorem shows that our rewriting procedure pro-
vides a polynomial-time algorithm for evaluating rooted a-
acyclic conjunctive queries.

Theorem 6. Given a rooted a-acyclic CQ ρ and a DL-Lite KB
(T ,A), the program rewT (ρ) can be computed in polynomial
time in the size of ρ and T , and ~a ∈ ans(rewT (ρ), IA) can
be tested in polynomial time in the size of rewT (ρ) and A.

Proof. For the first point, we observe that the number of rela-
tions in rewT (ρ) is linear in the number of atoms in ρ and that
each relation is defined using linearly many rules in the size
of ρ and T . We also note that testing the conditions for rules
of type (4) can be done in polynomial time in the size of ρ and
T (cf. Section 3). The second statement is true because once
the answer variables in rewT (ρ) have been instantiated with
the individuals in ~a, we have a non-recursive datalog program
(with constants) where every rule contains at most two vari-
ables. It is known that datalog programs of this form can be
evaluated in polynomial time (cf. [Dantsin et al., 2001]).

Handling non-rooted queries. We now return to the case of
non-rooted a-acyclic CQs, and show that such queries can be
answered via a reduction to the rooted query case. Given an
a-acyclic CQ ρ over a KB K = (T ,A), the set cert(ρ,K) can
be computed using the following steps:

1. If ρ is rooted, then return cert(ρ,K).

2. Choose a maximally connected component β of ρ, such
that β contains no answer variable.

3. If β has a match fully in the anonymous part of IT ,A,
then drop β from ρ and go to step 1.

4. If there is a variable x in β such that the rooted query
g(x) ← β has a non-empty answer over K, then drop β
from ρ and go to step 1. Otherwise, return ∅.

It is not hard to show that β satisfies the condition in step 3
just in the case that there exists a variable x and a role S ∈
NR which is reachable in the canonical model (cf. item (b)(i)

of the construction of IT ,A,ρ) such that there is a valid tree
witness f for S(z, x) in βS,x = β ∪ {S(z, x)} (z fresh) with:

(i) if f(y) = ε, then y = z, and

(ii) T |= ∃R− vA whenever f(y) = wR and A(y) ∈ β.

It follows that step 3 can be carried out in polynomial time,
and thus we obtain a polynomial-time procedure for solving
the QOT problem for arbitrary a-acyclic CQs.

Adapting the rewriting for DL-LiteR and ELH We now
discuss how to modify the rewriting to handle DL-LiteR and
ELH KBs. First, since both DLs support role inclusions, we
must replace atoms r(x, y) by atoms qr(x, y), and add the
corresponding rules qr(x, y) ← S(x, y) with T |= S v r.
Then the algorithm can be directly employed for DL-LiteR,
but using the notion of tree witness in [Kikot et al., 2012].
Similarly as in Section 3, the algorithm may not be polyno-
mial since there can be exponentially many tree witnesses.

For ELH, apart from handling role inclusions as above,
rule (4) must be modified to use the ELH version of tree
witnesses. In particular, instead of an atom q∃R(x), we use
qCf (x), where Cf is the concept induced by the tree wit-
ness f for r(x, y). Note that there are only linearly many
tree witnesses, hence only linearly many new relations qCf .
Assuming that the ELH TBox is in normal form (cf. [Baader
et al., 2005]), we only need to consider atomic concepts A
which entail C, yielding a linear number of rules of the form
qCf (x) ← qA(x). Finally, we must modify the rules in (5)
defining the relations qA to capture entailment in ELH, which
may require the use of recursive datalog rules (see e.g. [Eiter
et al., 2012]). Importantly, these rules have at most two vari-
ables each, and so they do not impact the polynomial upper
bound argument. Thus, by using this modified rewriting, and
handling non-rooted CQs in a similar way to DL-Lite, we ob-
tain a polynomial-time algorithm for deciding the QOT prob-
lem for a-acyclic CQs over ELH KBs.

5 Preliminary Evaluation
We developed a prototype rewriting system that takes as in-
put a rooted acyclic CQ ρ and a DL-LiteR TBox T , and out-
puts an SQL statement expressing the resulting non-recursive
datalog program rewT (ρ) (using common table expressions).
We evaluated the result over ABoxes stored in a relational
database, using the PostgreSQL database system, and Owl-
gres [Stocker and Smith, 2008] for loading the data.

To test our prototype, we used the LUBM∃20 ontology de-
scribed in [Lutz et al., 2012], which adds concept inclusions
with additional concept names, and with existential concepts
on the right hand side, to the original LUBM ontology [Guo
et al., 2005]. We considered three acyclic queries from the
benchmark in [Lutz et al., 2012] (q2, q4, and q5 from the 6
provided queries), which are rather small (at most 4 atoms),
and created three additional large acyclic queries, with 13 to
34 atoms, and 7 to 17 variables (q7, q8, and q9). We note
that the new queries are also significantly larger than the ones
of the REQUIEM test suite (≤ 7 atoms). The importance of
handling such larger queries in practice has been previously
argued in [Rosati and Almatelli, 2010].

#Uni q2 q4 q5 q7 q8 q9
20 2.5 3.0 4.2 1.5 1.0 0.0
50 9.0 7.3 4.6 2.0 3.3 0.0
100 20.5 15.0 9.4 4.2 7.2 0.0
150 25.6 21.8 14.1 6.6 11.6 15.2
200 33.5 >600 27.0 15.2 26.9 31.2

Table 1: Scalability of our system (runtime in seconds)

We compared our rewriting procedure with REQUIEM
[Pérez-Urbina et al., 2009] and IQAROS [Venetis et al., 2012]
which, like most of the existing query rewriting systems for
the DL-Lite family, generate unions of CQs rather that non-
recursive datalog programs. For the three large queries, both
REQUIEM and IQAROS did not terminate (within ten min-
utes). Even for the small q4 and q5, the generated rewrit-
ings were too large to be posed directly to an off-the-shelf
RDBMs: REQUIEM generated tens of thousands of queries
for both, and IQAROS almost 15 thousand for q4, and almost
one thousand for q5. In contrast, for our approach, the rewrit-
ing times were negligible for all queries (under half a second).
The rewritings produced by our approach have less than 30
rules for all queries, disregarding the rules (5) of the algo-
rithm (since the latter are independent of the query, we com-
puted them separately and stored them using a database view
per concept/role name).

We also tested the feasibility of evaluating our rewritings
over large ABoxes. For this, we used the modified LUBM
data generator [Lutz et al., 2012] (with 5% incompleteness).
Each university has approximately 17k individuals, 28K con-
cept assertions, and 47K role assertions. We carried out our
experiments on ABoxes with 20 – 200 universities, resulting
in very large ABoxes (up to ca. 1.5 GB on disk). The results
reported in Table 1 show that the algorithm scales well.

Finally, we note that a performance comparison with
PRESTO [Rosati and Almatelli, 2010], which also outputs
non-recursive datalog programs, was not possible because
this system is not publicly available. However, we can ob-
serve that its underlying algorithm may produce exponential-
size rewritings for acyclic CQs, as witnessed by the family
of queries q(x) ← r(x, y) ∧

∧
0≤i≤n p(y, zi) ∧ p(ui, zi) ∧

Bi(ui) coupled with e.g. the empty TBox2. Intuitively, the
PRESTO algorithm generates a separate rule for every possi-
ble way to select a collection of variables from {u1, . . . , un}
and identify them with y. This exponential blow-up suggests
that our positive results are not merely an artifact of the data-
log representation, but derive also from acyclicity.

6 Future Work
We plan to generalize our rewriting technique to larger
tractable classes of CQs, like bounded treewidth CQs. An-
other direction is to identify suitable restrictions for more
expressive DLs that allow for tractable answering of acyclic

2In fact, the exponential blowup occurs even without the atoms
Bi(ui), but some quite obvious modifications to the algorithm
would resolve the issue. With these atoms present, it appears non-
trivial changes to the algorithm would be required.

queries. Our proof-of-concept implementation raises hopes
that efficient evaluation of large acyclic queries is feasible,
but many challenges must still be addressed. For example,
we observe that breaking down the queries into small rules
as is done by our rewriting may lead to a loss of structure
that could be used by database management systems for opti-
mized evaluation. There are many other aspects, not directly
related to the rewriting technique, that must also be taken into
account to achieve practicable query answering, such as ex-
ploring more efficient forms of representing data in ABoxes,
using different kinds of indexes, and considering different
translations of our programs into SQL. Using semantic in-
dexes [Rodriguez-Muro and Calvanese, 2012] for handling
the rules of type (5) appears particularly promising.

Acknowledgements The authors were supported by a Uni-
versité Paris-Sud Attractivité starting grant and ANR project
PAGODA ANR-12-JS02-007-01 (Bienvenu), FWF project
T515-N23 (Ortiz), FWF project P25518-N23 and WWTF
project ICT12-015 (Šimkus), Vienna PhD School of infor-
matics and EU project Optique FP7-318338 (Xiao).

References
[Baader et al., 2005] Franz Baader, Sebastian Brandt, and

Carsten Lutz. Pushing the EL envelope. In Proc. of IJ-
CAI, pages 364–369, 2005.

[Calvanese et al., 2007] Diego Calvanese, Giuseppe De Gi-
acomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable reasoning and efficient query an-
swering in description logics: The DL-Lite family. J. Au-
tomated Reasoning, 39(3):385–429, 2007.

[Chekuri and Rajaraman, 1997] Chandra Chekuri and
Anand Rajaraman. Conjunctive query containment
revisited. In Proc. of ICDT, pages 56–70. Springer, 1997.

[Dantsin et al., 2001] Evgeny Dantsin, Thomas Eiter, Georg
Gottlob, and Andrei Voronkov. Complexity and expressive
power of logic programming. ACM Computing Survey,
33(3):374–425, September 2001.

[Eiter et al., 2012] Thomas Eiter, Magdalena Ortiz, Man-
tas Simkus, Trung-Kien Tran, and Guohui Xiao. Query
rewriting for Horn-SHIQ plus rules. In Proc. of AAAI.
AAAI Press, 2012.

[Gottlob et al., 1999] Georg Gottlob, Nicola Leone, and
Francesco Scarcello. Hypertree decompositions and
tractable queries. In Proc. of PODS, pages 21–32. ACM
Press, 1999.

[Guo et al., 2005] Yuanbo Guo, Zhengxiang Pan, and Jeff
Heflin. LUBM: A benchmark for OWL knowledge base
systems. J. Web Semantics, 3(2-3):158–182, 2005.

[Kikot et al., 2011] Stanislav Kikot, Roman Kontchakov,
and Michael Zakharyaschev. On (in)tractability of OBDA
with OWL 2 QL. In Proc. of DL. CEUR-WS.org, 2011.

[Kikot et al., 2012] Stanislav Kikot, Roman Kontchakov,
and Michael Zakharyaschev. Conjunctive query answer-
ing with OWL 2 QL. In Proc. of KR. AAAI Press, 2012.

[Kontchakov et al., 2010] Roman Kontchakov, Carsten Lutz,
David Toman, Frank Wolter, and Michael Zakharyaschev.
The combined approach to query answering in DL-Lite. In
Proc. of KR. AAAI Press, 2010.

[Levy and Rousset, 1998] Alon Y. Levy and Marie-Christine
Rousset. Combining Horn rules and description logics in
CARIN. Artificial Intelligence, 104(1-2):165–209, 1998.

[Lutz et al., 2009] Carsten Lutz, David Toman, and Frank
Wolter. Conjunctive query answering in the description
logic EL using a relational database system. In Proc. of
IJCAI, pages 2070–2075, 2009.

[Lutz et al., 2012] Carsten Lutz, Inanc Seylan, David
Toman, and Frank Wolter. The combined approach to
OBDA: Taming role hierarchies using filters (with ap-
pendix). In Proc. of SSWS+HPCSW, 2012.

[Lutz, 2008] Carsten Lutz. The complexity of conjunctive
query answering in expressive description logics. In Proc.
of IJCAR, pages 179–193. Springer, 2008.

[Ortiz and Simkus, 2012] Magdalena Ortiz and Mantas
Simkus. Reasoning and query answering in description
logics. In Reasoning Web, pages 1–53. Springer, 2012.

[OWL Working Group, 2009] W3C OWL Working Group.
OWL 2 Web Ontology Language: Document Overview.
W3C Recommendation, 2009. Available at http://
www.w3.org/TR/owl2-overview/.

[Pérez-Urbina et al., 2009] Héctor Pérez-Urbina, Boris
Motik, and Ian Horrocks. A comparison of query
rewriting techniques for DL-Lite. In Proc. of DL.
CEUR-WS.org, 2009.

[Picalausa and Vansummeren, 2011] François Picalausa and
Stijn Vansummeren. What are real SPARQL queries like?
In Proc. of SWIM. ACM, 2011.

[Rodriguez-Muro and Calvanese, 2012] Mariano
Rodriguez-Muro and Diego Calvanese. High perfor-
mance query answering over DL-Lite ontologies. In Proc.
of KR, pages 308–318. AAAI Press, 2012.

[Rosati and Almatelli, 2010] Riccardo Rosati and Alessan-
dro Almatelli. Improving query answering over DL-Lite
ontologies. In Proc. of KR. AAAI Press, 2010.

[Rudolph et al., 2008] Sebastian Rudolph, Markus Krötzsch,
and Pascal Hitzler. Cheap boolean role constructors for de-
scription logics. In Proc. of JELIA, pages 362–374, 2008.

[Stocker and Smith, 2008] Markus Stocker and Michael
Smith. Owlgres: A scalable OWL reasoner. In Proc. of
OWLED. CEUR-WS.org, 2008.

[Venetis et al., 2012] Tassos Venetis, Giorgos Stoilos, and
Giorgos B. Stamou. Incremental query rewriting for OWL
2 QL. In Proc. of DL. CEUR-WS.org, 2012.

[Yannakakis, 1981] Mihalis Yannakakis. Algorithms for
acyclic database schemes. In Proc. of VLDB, pages 82–
94. IEEE Computer Society, 1981.

A Proof of Theorem 3
The arguments underlying the first statement of Theorem 3
(polynomial-time construction of IT ,A,ρ) were already given
in the text, so we concentrate here on proving the second
statement of Theorem 3. The proof is split into two parts,
with Propositions 7 handling DL-Lite KBs and Proposition
12 treating ELH KBs.

We start by giving the proof for DL-Lite.
Proposition 7. Let ρ be a CQ, let (T ,A) be a consistent
DL-Lite knowledge base, and let IT ,A,ρ be the interpretation
defined in Section 3. Then for every tuple ~a of individuals,
~a ∈ ans(ρ, IT ,A) iff ~a ∈ ans(ρ, IT ,A,ρ).

Proof. Let ~x be the tuple of answer variables of ρ. First sup-
pose that ~a ∈ ans(ρ, IT ,A). By Fact 1, there exists a match
π for ρ in IT ,A such that π(~x) = ~a. Let ρ1, . . . , ρn be the
maximally connected components of ρ. For each ρi, there are
two possibilities:
• ρi contains a variable v such that π(v) ∈ Ind(A)

• all variables in ρi are mapped by π to the anonymous part.
First consider the case in which ρi contains v such that π(v) ∈
Ind(A). We claim that in this case, the assignment π is a
match for ρi in IT ,A,ρ. Because the interpretation of concept
and role names is identical in IT ,A and IT ,A,ρ for elements
common to both domains, it is suffices to show that every
object π(u) (with u a variable in ρi) belongs to the domain of
IT ,A,ρ. This is trivially the case when π(u) ∈ Ind(A), since
the core of IT ,A is part of IT ,A,ρ. Next consider the case in
which π(u) = aR1 . . . R`. The presence of aR1 . . . R` in the
domain of IT ,A implies that T ,A |= ∃R1(a). Because ρi is
connected and π(v) ∈ Ind(A), there must exist a sequence of
variables u0, . . . , u` with u` = u such that:
• π(u0) = a and π(u1) = aR1

• for every 1 ≤ j ≤ `, there is a role atom in ρi which
contains both uj1 and uj
• for every 1 ≤ j ≤ `, π(uj) 6= a

From the first two items and the definition of IT ,A, we can
infer that either R1(u0, u1) or R−1 (u1, u0) appears in ρi. It
follows from the properties of tree witnesses that the tree wit-
ness fR1(u0,u1) exists and is valid. By the second and third
items, the word R1 . . . R` belongs to the range of fR1(u0,u1).
Thus, by point (i) of the construction of IT ,A,ρ, the object
π(u) = aR1 . . . R` is in the domain of IT ,A,ρ.

Now consider the case in which every variable u in ρi is
mapped to the anonymous part. Since ρi is connected, and the
anonymous part has a forest structure, we can find a variable
v such that π(v) is a prefix of π(u) for every u in ρi. Let
a ∈ Ind(A), S ∈ NR, and w ∈ NR

∗
be such that π(v) =

awS. Define an assignment µ to the variables of ρi by setting
µ(u) = vSw where w is the unique word such that π(u) =
π(v)w. Our aim is to show that µ is a match for ρi in IT ,A,ρ.
Specifically, we need to show (1) that all objects in the image
of µ belong to the domain of IT ,A,ρ, and (2) all atoms in
ρi are made true by µ. For (1), observe that the definition of
IT ,A ensures that if bw1Rw2Rw3 is an element in the domain
of IT ,A, then bw1Rw3 also belongs to the domain of IT ,A.

Thus, by repeatedly deleting subwords from π(v) = wS, we
obtain a word aR1 . . . Rn in the domain of IT ,A such that
Rn = S and n ≤ |NR| < |T |. The presence of aR1 . . . Rn in
IT ,A implies that T ,A |= ∃R1(a) and for each 1 < i ≤ n,
R−i−1 6= Ri and T |= ∃R−i−1 v ∃Ri. We have thus shown
that condition (b)(i) from the definition of IT ,A,ρ holds for
words of the form vSw, and it remains to establish (b)(ii).
Let α1, . . . , α` be all the role atoms involving the variable v.
If the αj takes the form R(v, v′) or R−(v′, v), then we must
have π(v′) = π(v)R, so the tree witness fj = fR(v,v′) exists
and is valid. Moreover, since ρi is connected, every variable
u must belong to the domain of one of the tree witnesses fj .
Now suppose that µ(u) = vSw and u belongs to the domain
of fj . Then we have π(u) = π(v)w, and so fj(u) = w and
condition (b)(ii) holds for vSw. To show (2), first remark
that if A(u) ∈ ρi, then we must have π(u) ∈ AIT ,A , and so
π(u) must end with a symbol R such that T |= ∃R− v A.
By construction, µ(u) also ends with R, and so the definition
of IT ,A,ρ yields µ(u) ∈ AIT ,A . Now consider a role atom
t(u, u′) ∈ ρi. From the definition of IT ,A and the fact that
π is a match, we know that either π(u′) = π(u)t or π(u) =
π(u′)t−. It follows that either µ(u′) = µ(u)t or µ(u) =
µ(u′)t−. In both cases, we obtain (µ(u), µ(u′)) ∈ tIT ,A,ρ.
This completes our proof of (2) and establishes that µ is a
match for ρi in IT ,A,ρ.

We have thus shown that every query ρi corresponding
to a maximally connected component of ρ has a match in
IT ,A,ρ, and moreover, any answer variables are sent to the
corresponding individual from ~a. As the queries ρi are
on disjoint variables, we can combine the matches for the
different ρi to obtain a match for ρ in IT ,A,ρ which sends ~x
to ~a. From this, we can conclude that ~a ∈ ans(ρ, IT ,A,ρ).

For the other direction, let h : ∆IT ,A,ρ → ∆IT ,A be the
mapping defined as follows:
• if o = aw with a ∈ Ind, then h(o) = o

• if o = xSw with x 6∈ Ind, then h(o) = aR1 . . . Rnw
where a and R1 . . . Rn are chosen so as to satisfy condi-
tion (b)(i)

It is straightforward to verify that h is a homomorphism from
IT ,A,ρ to IT ,A. As certain answers to conjunctive queries
are preserved under homomorphisms,~a ∈ ans(ρ, IT ,A,ρ) im-
plies ~a ∈ ans(ρ, IT ,A).

Before proceeding to the proof of Proposition 12, we must
recall some notions and terminology concerning ELH KBs.
In what follows, it will prove convenient to work with ELH
TBoxes which are in normal form, which means that all con-
cept inclusions are of one of the following forms:

A v B A1 uA2 v B A v ∃r.B ∃r.B v A
withA,A1, A2, B ∈ NC∪{>}. This can be done without loss
of generality since it is well-known (cf. [Baader et al., 2005])
that for every ELH TBox T , one can construct in polynomial
time an ELH TBox T ′ in normal form (possibly using new
concept names) which is a model conservative extension of
T , i.e. is such that T ′ |= T and every model of T can be
expanded to a model of T ′. We assume henceforth that all
ELH TBoxes are in normal form.

We recall the definition of canonical models in ELH (see
e.g. [Lutz et al., 2009]). Given an ELH KB (T ,A), the
domain ∆IT ,A of the canonical model IT ,A consists those
objects of the form ar1A1 . . . rnAn (n ≥ 0), such that a ∈
Ind(A), eachAi is a concept name, and each ri is a role name,
and the following conditions hold:
• if n ≥ 1, then T ,A |= ∃r1.A1(a);
• for 1 ≤ i < n, T |= Ai v ∃ri+1.Ai+1.

If w ∈ ∆IT ,A \ Ind(A), then we denote by tail(w) the final
concept name in w, and define IT ,A by taking:

aIT ,A = a for all a ∈ Ind(A)

AIT ,A = {a ∈ Ind(A) | T ,A |= A(a)}
∪ {w ∈ ∆IT ,A \ Ind(A) | T |= tail(w) v A}

rIT ,A = {(a, b) | s(a, b) ∈ A for some s with T |= s v r}∪
{(w1, w2) | w2 = w1sA and T |= s v r}

The following technical lemmas establish some properties
of tree witnesses in ELH and will play an important role in
proof of Proposition 12.
Lemma 8. Let (T ,A) be a consistent ELH knowledge base,
let α = r(x, y) be an atom in a CQ ρ, and let Dα and ∼α
be as defined in Section 3. If π is a match for ρ in IT ,A with
π(y) 6∈ Ind(A), then:
1. for every u ∈ Dα, π(x) is a prefix of π(u)

2. for every u ∈ Dα with π(u) = π(x), u ∼α x
3. for every pair u, u′ ∈ Dα with u ∼α u′, π(u) = π(u′)

4. if u′ ∈ Dα and u′ 6∼α x, then there is some atom
s(v, v′) ∈ ρ such that v, v′ ∈ Dα and u′ ∼α v′

Proof. Suppose that π is a match for ρ in IT ,A such that
π(y) 6∈ Ind(A). Fix a particular sequence of rule ap-
plications which generates the set Dα, and let D0 =
{x, y}, D1, . . . , D` = Dα and ∼0,∼1, . . . ,∼`=∼α be the
corresponding sequences of sets of variables and equivalence
relations (i.e. at stage i, we have the set Di and equiva-
lence relation ∼i). More precisely, ∼i denotes the smallest
equivalence relation over Di which contains (u, u′) when-
ever u ∼ u′ has been asserted at stage j ≤ i. We prove by
induction that for all 1 ≤ i ≤ `:
(i) if u ∈ Di, then π(u) has prefix π(x)

(ii) if u ∈ Di and π(u) = π(x), then u ∼i x
(iii) if u ∼i u′, then π(u) = π(u′)

(iv) if u′ ∈ Di and u′ 6∼i x, then there is some atom
s(v, v′) ∈ ρ such that v, v′ ∈ Di and u′ ∼i v′

The base case (i = 0) is straightforward: it follows from
the structure of IT ,A that π(x) is a prefix of π(y), (ii) triv-
ially holds since π(x) 6= π(y), (iii) trivially holds since ∼0

contains only the singleton equivalence classes {x} and {y},
and (iv) holds by taking the atom r(x, y). Now suppose that
properties (i)-(iv) hold for all 1 ≤ i < k, and let us show
they continue to hold for i = k. First suppose that Dk was
obtained from Dk−1 by an application of the first rule. Then
there must exist an atom s(v, u) ∈ ρ such that v ∈ Dk−1,

v 6∼k−1 x, and u 6∈ Dk−1. By the induction hypothesis and
the fact that v 6∼k−1 x, π(v) must have π(x) as a proper pre-
fix. It follows from the definition of IT ,A and the fact that
π(v) is in the anonymous part that π(u) = π(v)rA for some
r with T |= r v s, so π(u) also has π(x) as a proper pre-
fix. This shows that Dk verifies properties (i) and (ii). For
property (iii), we simply remark that the equivalence relation
is not modified by the first rule, and so (iii) follows directly
from the induction hypothesis. Property (iv) is witnessed by
the atom s(v, u).

The other possibility is that the second rule was applied.
Then there must exist atoms s(u, u′), t(z, z′) ∈ ρ such that
u′, z, z′ ∈ Dk−1, u′ ∼k−1 z′, and u 6∈ Dk−1. The sec-
ond rule will add u to Dk and the pair (u, z) to the equiv-
alence relation. By the induction hypothesis, we know that
π(u′) = π(z′) and that π(u′), π(z), π(z′) all have prefix
π(x). Because of the tree structure of the anonymous part
of IT ,A, the object π(u) is the parent of π(u′), and likewise,
π(z) is the parent of π(z′). Since π(u′) = π(z′) and each
object has exactly one parent, we can infer that π(u) = π(z),
so properties (i) and (iii) hold for Dk. For (ii), note that if
π(u) = π(x), then π(z) = π(x), so by the induction hy-
pothesis, z ∼k−1 x. Since we also have u ∼k z, we obtain
u ∼k x, as desired. Finally, for (iv), the induction hypothe-
sis yields an atom s′(v, v′) ∈ ρ such that v, v′ ∈ Dk−1 and
z ∼k−1 v′. It follows that u ∼k v′, so property (iv) holds
also for i = k + 1.

Lemma 9. Let (T ,A) be a consistent ELH knowledge base,
and let π be a match for a CQ ρ in IT ,A. If r(x, y) ∈ ρ and
π(y) 6∈ Ind(A), then:

• the tree witness f for r(x, y) exists

• for every z in domain of f , either π(z) ∈ Ind(A) and
T ,A |= concf (f(z))(π(z)), or π(z) 6∈ Ind(A) and T |=
tail(π(z)) v concf (f(z)).

Proof. Suppose that α = r(x, y) ∈ ρ and π(y) 6∈ Ind(A).
Let Dα, ∼α, ρα, and Gα be as defined in Section 3. The tree
witness for r(x, y) exists just in the case that Gα is acyclic,
so suppose for a contradiction that Gα contains a cycle. Then
there exists a sequence [z1], . . . , [zn] of equivalence classes
under ∼α such that:

• for every 1 ≤ i < n, there exist ui ∈ [zi] and u′i ∈ [zi+1]
such that ρ contains an atom ri(ui, u

′
i)

• there exist un ∈ [zn] and u′n ∈ [z1] such that ρ contains
an atom rn(un, u

′
n)

By point 3 of Lemma 8, u ∼α u′ implies π(u) = π(u′).
It follows that π(u′i) = π(ui+1) for 1 ≤ i < n,
and π(u′n) = π(u1), and so IT ,A contains the cycle
r1(π(u1), π(u2)), r2(π(u1), π(u2)), . . . , rn(π(un), π(u1)).
This contradicts the fact that by point 1 of Lemma 8, the
π(ui) all belong to subtree of IT ,A rooted at π(x), which is
cycle-free.

Now that we have shown that the tree witness f for r(x, y)
exists, we prove the second point by induction on the co-
depth of elements in the range of f . For the base case, as-
sume that f(z) is a leaf. Then concf (f(z)) = >, and the
statement trivially holds. For the induction step, suppose that

f(z) has children f(z1), . . . , f(zn) with f(zi) = f(z)MiNi,
and we have already established the statement for each of the
f(zi). Consider some 1 ≤ i ≤ n. From the definition of f ,
we know that Mi = {s | s(u, u′) ∈ ρ, u ∈ [z], u′ ∈ [zi]}.
By point 3 of Lemma 8 and the fact that π is a match for ρ in
IT ,A, we know that for every s ∈Mi, (π(z), π(zi)) ∈ sIT ,A .
As Ni = {A | A(u) ∈ ρ, u ∈ [zi]}, we also know that
π(zi) ∈ AIT ,A for every A ∈ Ni. It follows from the
construction of IT ,A that π(zi) = π(z)tB for t ∈ NR and
B ∈ NC satisfying:

• T |= tail(π(z)) v ∃t.B (or T ,A |= ∃t.B(π(z)) if π(z) ∈
Ind(A))

• T |= t v s for every s ∈Mi

• T |= B v A for every A ∈ Ni
By the induction hypothesis, we also have that T |=
tail(π(zi)) v concf (f(zi)), hence T |= B v concf (f(zi)).
We have thus shown that

T |= tail(π(z)) v ∃(
l

r∈Mi

r).(
l

A∈Ni

A u concf (f(zi)))

if π(z) 6∈ Ind(A), and

T ,A |= ∃(
l

r∈Mi

r).(
l

A∈Ni

A u concf (f(zi)))(π(z))

in the case that π(z) ∈ Ind(A). Since this holds for
all 1 ≤ i ≤ n, by the definition of concf (f(z)),
we obtain either T |= tail(π(z)) v concf (f(z)) or
T ,A |= concf (f(z))(π(z)), depending on whether π(z) ∈
Ind(A).

Lemma 10. Let (T ,A) be a consistent ELH knowledge
base, let π be a match for a connected CQ ρ in IT ,A,
and let x, y be such that π(x) is the proper prefix of
π(y). Then one can find tree witnesses f1, . . . , fk of
r1(z1, y1), . . . , rk(zk, yk) ∈ ρ such that:

• π(zi) = π(x) for every 1 ≤ i ≤ k
• if π(u) has π(x) as a proper prefix, then u belongs to the

domain of exactly one fi

Proof. Suppose that (T ,A), ρ, π, and x satisfy the hypothe-
ses of the lemma. Initialize i to 1 and Ω to the set of atoms
r(z, y) ∈ ρ such that π(z) = π(x) and π(y) = π(z)r (by
our assumptions, there must be at least one such atom). We
perform the following procedure:

Step 1: Choose an element ri(zi, yi) from Ω, and let fi be
the tree witness for ri(zi, yi) in ρ.

Step 2: Remove from Ω all atoms s(z, y) such that y is in
the domain of fi.

Step 3: If Ω 6= ∅, then increment i and return to Step 1.

It follows from Lemma 9 and the definition of Ω together
that the tree witnesses in Step 1 exist, so the above proce-
dure is well-defined. Since the atom in Step 1 is removed
from Ω in Step 2, we eventually reach Ω = ∅, so the
procedure always terminates. Our aim is to show that the
procedure yields a sequence of tree witnesses f1, . . . , fk of

r1(z1, y1), . . . , rk(zk, yk) in ρ which satisfy the conditions
of the lemma. The first condition trivially follows from the
definition of Ω. For the second condition, suppose for a con-
tradiction that π(u) has π(x) as a proper prefix, yet u does
not belong to the domain of any tree witness fi. By connect-
edness of ρ, we can find a sequence of variables v0, v1, . . . , v`
with v` = u such that:

• π(v0) = π(x)

• for every 1 ≤ i < `, π(vi) has π(x) as a proper prefix

• ρ contains an atom α = s0(v0, v1)

• for every 1 ≤ i < `, ρ contains an atom of the form
si(vi, vi+1) or si(vi+1, vi)

The atom α = s0(v0, v1) belongs to Ω at the start of the
procedure, and so it must be removed from Ω during some
iteration. The first possibility is that α is the selected atom at
iteration j, and fj is the tree witness for α. It follows from
the last three items and the definition of Dα that Dα contains
the variable v` = u, and so u belongs to the domain of fj .
The other possibility is that α is removed at iteration j, but
another atom α′ was selected at that iteration. In this case,
fj is the tree witness for α′, and the removal of α at stage j
implies that v0 and v1 belong to the domain of fj . Again, by
using the definition of Dα, we find that v` = u belongs to the
domain of fj .

Next suppose for a contradiction that π(u) has π(x) as a
proper prefix and belongs both to the domains of fj1 and
fj2 (j1 < j2). We recall that fj1 and fj2 are tree witnesses
of αj1 = rj1(zj1 , yj1) and αj2 = rj2(zj2 , yj2) respectively.
Since π(x) is a proper prefix of π(u), we have π(x) 6= π(u).
By point 3 of Lemma 8, we must have u 6∼αj1 zj1 and
u 6∼αj2 zj2 . By the definition of tree witnesses, the presence
of u in the domain of fj2 implies that there exist sequences of
variables v1, . . . , v` such that:

• v1 = yj2 and v` = u

• for every 1 ≤ i ≤ `m, vi is in the domain Dαj2
of fj2 and

vi 6∼αj2 zj2
• for every 1 ≤ i < `m, ρ contains an atom of the form
si(vi, vi+1) or si(vi+1, vi)

Since the atom αj2 = rj2(zj2 , yj2) was still present in Ω
at iteration j2 > j1, we know that v1 = yj2 6∈ Dα1

.
Let p be such that vp 6∈ Dα1 and vp′ ∈ Dα1 for every
p < p′ ≤ `. By the third item above, either ρ contains
an atom sp(vp, vp+1) or an atom sp(vp+1, vp). First sup-
pose that ρ contains sp(vp, vp+1). If vp+1 ∼αj1 zj1 , then
by point 3 of Lemma 8, π(vp+1) = π(zj1) = π(x). By
point 2 of Lemma 8 and the fact that vp+1 ∈ Dα2 , we must
have vp+1 ∼αj2 zj2 , contradicting the second item above.
If vp+1 6∼αj1 zj1 , then we can apply point 4 of Lemma 8
to get an atom s′(w,w′) ∈ ρ such that w,w′ ∈ Dα1 and
w′ ∼αj1 vp+1. It follows that the second rule is applicable
so vp must appear in the domain of fj1 , a contradiction. It
must thus be the case that ρ contains an atom sp(vp+1, vp).
As vp+1 ∈ Dα1

but vp 6∈ Dα1
, the first rule for Dα1

must not
be applicable to the atom sp(vp+1, vp), which implies that
vp+1 ∼αj1 zj1 . Using the same argument as above, we can

show that vp+1 ∼αj2 zj2 , a contradiction. We can thus con-
clude that no π(u) which contains π(x) as a proper prefix can
belong to more than one fi.

Lemma 11. Let (T ,A) be a consistent ELH knowledge
base, ρ be a CQ, f be the tree witness for α = r(x, y) in ρ,
and C be the set of concept names A such that A([x]) ∈ ρα.
Then for every o ∈ ∆IT ,A :

o ∈

(
l

A∈C
A u concf (ε)

)IT ,A
iff o ∈ ans(ρα, IT ,A)

where we take [x] as the unique answer variable in ρα.

Proof. Straightforward using induction and the definition of
the concept concf (ε) and query ρα.

We now proceed to the proof of Proposition 12.

Proposition 12. Let ρ be a CQ, let (T ,A) be a consistent
ELH knowledge base, and let IT ,A,ρ be the interpretation
defined in Section 3. Then for every tuple ~a of individuals,
~a ∈ ans(ρ, IT ,A) iff ~a ∈ ans(ρ, IT ,A,ρ).

Proof. For the first direction, suppose that ~a ∈ ans(ρ, IT ,A).
By Fact 1, there exists a match π for ρ in IT ,A such that
π(~x) = ~a, with ~x the answer variables of ρ. Let ρ′ be a maxi-
mally connected component of ρ. There are two possibilities:

• ρ′ contains a variable v such that π(v) ∈ Ind(A)

• all variables in ρ′ are mapped by π to the anonymous part.

We consider first the case in which there is a variable v in ρ′
with π(v) ∈ Ind(A). Let b be an individual such that there
exists a variable u in ρ′ and a non-empty wordw with π(u) =
bw. Let ρb be the restriction of ρ′ to variables u such that π(u)
has prefix b. As ρ′ is connected, ρb must also be connected.
By Lemma 10, we can find tree witnesses f1, . . . , fk of α1 =
r1(z1, y1), . . . , αk = rk(zk, yk) ∈ ρ′ such that:

• π(zi) = b for every 1 ≤ i ≤ k
• if π(u) has b as a proper prefix, then u belongs to the do-

main of exactly one fi
From Lemma 9 and the facts that fi(zi) = ε and π(zi) = b,
we have that T ,A |= concfi(ε)(b) for every 1 ≤ i ≤ k. It
follows that for every 1 ≤ i ≤ k, and every w in the range
of fi, the object bαiw belongs to IT ,A,ρ. Define a mapping
µb by setting µ(u) = b if π(u) = b, and otherwise setting
µb(u) = bαifi(u), where i is such that the domain of fi con-
tains u. By the second item above, every variable u in ρb with
π(u) 6= b must belong to the domain of exactly one fi, so µb
is well-defined.

We show next that µb is a match for ρb in IT ,A,ρ. Let
A(u) be a concept atom in ρb. If µb(u) = b, then π(u) = b.
Since π is a match for ρ in IT ,A, we must have b ∈ AIT ,A ,
hence T ,A |= A(b) by Fact 1. From the definition of IT ,A,ρ,
we get µb(u) = b ∈ AIT ,A,ρ. Suppose instead that µb(u)
takes the form bαiwMN . Then it follows from the definition
of µb that fi(u) = wMN . By the definition of tree wit-
nesses, we must have A ∈ N , hence bαiwMN ∈ AIT ,A,ρ.
Next consider a role atom r(u, u′) ∈ ρb, and let fi be the

(unique) tree witness containing both u and u′. Then fi(u′)
must take the form fi(u)MN for some M,N with r ∈ M .
If fi(u) = ε, then u ∼αi zi, so by point 3 of Lemma 8,
we have π(u) = π(zi) = b. It follows that µb(u) = b and
µb(u

′) = bαiMN . If fi(u) 6= ε, then µb(u) = bαifi(u) and
µb(u

′) = bαifi(u
′) = bαifi(u)MN . In either case, the def-

inition of IT ,A,ρ yields (µb(u), µb(u
′)) ∈ rIT ,A,ρ. We have

thus shown that µb is a match for ρb in IT ,A,ρ.
Define a mapping µ from the variables of ρ′ to ∆IT ,A,ρ

by letting µ(u) = π(u) if π(u) ∈ Ind(A), and otherwise
setting µ(u) = µb(u) where b is the unique individual such
that π(u) = bw. It is not hard to show that µ is a match for
ρ′ in IT ,A,ρ. Moreover, µ coincides with π on the answer
variables of ρ which appear in ρ′.

Let us next consider the other possibility, which is that all
variables in ρ′ are mapped by π to the anonymous part of
IT ,A. It follows from the structure of IT ,A and the con-
nectedness of ρ′ that we can find some variable x such that
π(x) is a prefix of π(u), for every variable u in ρ′. By
Lemma 10, we can find tree witnesses f1, . . . , fk of α1 =
r1(z1, y1), . . . , αk = rk(zk, yk) ∈ ρ′ such that:
• π(zi) = π(x) for every 1 ≤ i ≤ k
• if π(u) has π(x) as a proper prefix, then u belongs to the

domain of exactly one fi
Let B be the concept name tail(π(x)). Using Lemma 9 and
the fact that fi(zi) = ε, we have T |= B v concfi(ε) for
every 1 ≤ i ≤ k. It follows that for every 1 ≤ i ≤ k,
and every w in the range of fi, the object Bαiw belongs to
IT ,A,ρ. Define a mapping µ by setting µ(u) = B if π(u) =
π(x) and otherwise setting µ(u) = Bαifi(u), with i such
that u is in the domain of fi. Using arguments very similar to
those above, we can show that µ is well-defined and defines a
match for ρ′ in IT ,A,ρ.

We have thus shown that every maximally connected
component ρ′ of ρ has a match in IT ,A,ρ such that any
answer variables are sent to the corresponding individuals
from ~a. By combining these matches, we obtain a match for
ρ in IT ,A,ρ which sends ~x to ~a, yielding ~a ∈ ans(ρ, IT ,A,ρ).

For the other direction, it is sufficient to exhibit a homo-
morphism from IT ,A,ρ to IT ,A. We prove the existence of
such an homomorphism by induction on the length of ob-
jects in the domain of IT ,A,ρ. Specifically, we define the
length of an object σ ∈ Ind(A) ∪ NC as 0 and the length
of σαM1N1 . . .MnNn as n. We use ∆

IT ,A,ρ
i to denote the

set of objects in ∆IT ,A,ρ of length at most i, and let m be
the maximum length of any object in ∆IT ,A,ρ. Our inductive
argument will show that for all 0 ≤ i ≤ m, there is a ho-
momorphism h from the restriction of IT ,A,ρ to objects in
∆
IT ,A,ρ
i to IT ,A which satisfies the following conditions:

• if o = aαw ∈ ∆
IT ,A,ρ
i and f is the tree witness for α in

ρ, then h(o) ∈ concf (w)IT ,A

• if o = Bαw ∈ ∆
IT ,A,ρ
i and f is the tree witness for α in

ρ, then h(o) ∈ concf (w)IT ,A

For the first base case, we let h0(a) = a for all a ∈ Ind(A),
and for every B ∈ ∆IT ,A,ρ, we let h0(B) be any object d in

∆IT ,A with tail(d) = B (such an object must exist, otherwise
B would not belong to ∆IT ,A,ρ). It is easily verified that h0
is a homomorphism from the restriction of IT ,A,ρ to ∆

IT ,A,ρ
0

to IT ,A and that it trivially satisfies the two conditions. For
the second base case, we start by setting h1(o) = h0(o) for
all objects with length 0. Then consider an object of length
1 of the form aαMN . The presence of aαMN in IT ,A,ρ
tells us that the tree witness f for α in ρ contains MN and
T ,A |= concf (ε)(a). Using the definition of concf (ε), we
obtain

T ,A |=

(
∃

l

r∈M
r.(

l

A∈N
A u concf (MN))

)
(a)

Consequently, there must exist some d ∈ ∆IT ,A such that
(a, d) ∈ rIT ,A for every r ∈ M , d ∈ AIT ,A for every
A ∈ N , and d ∈ concf (MN)IT ,A . We let h1(aαMN) = d.
Next consider an object of length 1 of the form BαMN .
By the definition of IT ,A,ρ, the presence of BαMN im-
plies that the tree witness f for α has MN in its range, and
that concf (ε)IT ,A contains some element with tail concept
B. In particular, this means that T |= B v concf (ε), so
h0(B) ∈ concf (ε)IT ,A . Using the definition of concf (ε),
we get

h0(B) ∈

(
∃

l

r∈M
r.(

l

A∈N
A u concf (MN))

)IT ,A
Consequently, there must exist some d′ ∈ ∆IT ,A such that
(h0(B), d′) ∈ rIT ,A for every r ∈ M , d′ ∈ AIT ,A for every
A ∈ N , and d′ ∈ concf (MN)IT ,A . We let h1(BαMN) =
d′. It is easily verified that h1 is a homomorphism and that it
satisfies the above two conditions.

For the induction step, we suppose that the statement holds
for 1 ≤ i = k < m, that is, there exists a homomorphism
hk from the restriction of IT ,A,ρ to ∆

IT ,A,ρ
k to IT ,A which

satisfies the required conditions. We let hk+1(o) = hk(o)

for all objects o ∈ ∆
IT ,A,ρ
k . For an object o = σαwMN ∈

∆
IT ,A,ρ
k+1 \ ∈ ∆

IT ,A,ρ
k , we let f be the tree witness for α in

ρ. By our induction hypothesis, hk(σαw) ∈ concf (w)IT ,A ,
hence

hk(σαw) ∈

(
∃

l

r∈M
r.(

l

A∈N
A u concf (wMN))

)IT ,A
It follows that there exists some d ∈ ∆IT ,A such that
(hk(σαw), d) ∈ rIT ,A for every r ∈ M , d ∈ AIT ,A

for every A ∈ N , and d ∈ concf (wMN)IT ,A . We set
hk+1(σwMN) = d. It is easy to see that the mapping
hk+1 thus defined is a homomorphism from the restriction
of IT ,A,ρ to ∆

IT ,A,ρ
k to IT ,A. Moreover, the two conditions

hold since we have defined hk+1 so that hk+1(σαwMN) ∈
concf (wMN)IT ,A .

B Proof of Theorem 5
Throughout this section, we assume that ρ is a rooted a-
acyclic CQ and K = (T ,A) is a DL-Lite KB. We recall that

ρ|x is the query whose answer variables are {x} ∪ ~xρ and
whose body is obtained by restricting the body of ρ to the
atoms whose arguments among x and its descendants. If y is
a child of x, then the query ρ|xy is defined by adding to ρ|y
all role atoms in ρ which contain both x and y, and taking
{x} ∪ ~y+ρ as answer variables.

Also recall that the datalog program rewT (ρ) consists of
the set of rules P and the goal relation q.

Lemma 13. For every concept name A appearing in ρ,
cert(A(x),K) = ans((P, qA), IA). Likewise, for concepts
∃R such thatR (or its inverse) occurs in ρ, cert(∃R(x),K) =
ans((P, q∃R), IA).

Proof. Straightforward: the rules defining qA (resp. q∃R) cor-
respond to the standard rewriting of A(x)(resp. ∃R(x)) with
respect to T , cf. [Calvanese et al., 2007].

Lemma 14. For every variable x in ρ,

cert(ρ|x,K) = ans((P, qx), IA)

and for every pair of variables x, y with y a child of x,

cert(ρ|xy,K) = ans((P, q′y), IA).

Proof. Let {T1, . . . , Tn} be the set of trees associated with
the query ρ, as described in Section 4. We recall that each
variable in ρ belongs to exactly one Ti. We can thus define
the co-depth of a variable x as the co-depth of x in the unique
tree Ti containing x.

The proof proceeds by induction on the co-depth of vari-
ables. Specifically, we show:

• Base case: The first statement holds whenever x has co-
depth 0.

• First induction step: if the second statement holds when-
ever y has co-depth at most k, then the first statement
holds for all x with co-depth at most k + 1.

• Second induction step: if the first statement holds when-
ever x has co-depth at most k, then the second statement
holds whenever y has co-depth at most k.

It is not hard to see that the base case and two induction steps
together imply the lemma.

We begin by establishing the base case. Take a variable x
of co-depth 0. Since x has no descendants,

ρ|x =
∧

A(x)∈ρ

A(x) ∧
∧

r(x,x)∈ρ

r(x, x)

and the only rule in P with head qx is:

qx(x)←
∧

A(x)∈ρ

qA(x) ∧
∧

r(x,x)∈ρ

r(x, x)

It then suffices to apply Lemma 13 to obtain
cert(ρ|x,K) = ans((P, qx), IA).

For the first induction step, suppose that the second state-
ment holds whenever y has co-depth at most k. Let x be a

variable with co-depth k + 1, and let Y = {y1, . . . , yn} be
the children of x. By definition,

ρ|x =
∧

A(x)∈ρ

A(x) ∧
∧

r(x,x)∈ρ

r(x, x) ∧
∧
y∈Y

ρ|xy

and the (unique) rule in P defining the predicate qx is as fol-
lows:

qx(x, ~xρ)←
∧

A(x)∈ρ

qA(x) ∧
∧

r(x,x)∈ρ

r(x, x) ∧
∧
y∈Y

q′y(x, ~y+ρ)

Applying the induction hypothesis to the variables in Y , we
can infer that for every variable y ∈ Y ,

cert(ρ|xy,K) = ans((P, q′y), IA).

Putting this together with Lemma 13, we can conclude
cert(ρ|x,K) = ans((P, qx), IA).

For the second induction step, suppose that the first state-
ment holds for variables having co-depth at most k. Let x, y
be a pair of variables in ρ such that y is a child of x and has
co-depth k. The ruleset P will contain the rule

ζ1 : q′y(x, ~y+ρ)←
∧

r(x,y)∈ρ

r(x, y)
∧

s(y,x)∈ρ

s(y, x) ∧ qy(y, ~yρ)

and may additionally contain a rule

ζ2 : q′y(x, ~u)← q∃R(x) ∧
∧
z∈Z

qz(x, ~zρ)

if the following conditions are satisfied:

(i) there is an atom R(x, y) ∈ ρ or R−(y, x) ∈ ρ and the
tree witness fR(x,y) exists and is valid

(ii) for every u in domain of fR(x,y) with fR(x,y)(u) = wS

and A(u) ∈ ρ, we have T |= ∃S− v A
(iii) the set Z = {z | fR(x,y)(z) = ε ∧ z 6= x} contains all

answer variables in the domain of fR(x,y)

and ~u is obtained from ~yρ by replacing each z ∈ Z by x.
For the first direction, suppose that (a,~c) ∈ cert(ρ|xy,K).

By Fact 1, ~t ∈ ans(ρ|xy, IT ,A), and so there is a match π for
ρ|xy in IT ,A such that ~t = (π(x), π(~y+ρ)) Using the fact that

ρ|xy =
∧

r(x,y)∈ρ

r(x, y)
∧

s(y,x)∈ρ

s(y, x) ∧ ρ|y

we obtain

(π(x), π(y)) ∈ ans(
∧

r(x,y)∈ρ

r(x, y)
∧

s(y,x)∈ρ

s(y, x), IT ,A)

and
(π(y), π(~yρ)) ∈ ans(ρ|y, IT ,A).

Since x is an answer variable, we know that π(x) is an ABox
individual. However, π(y) may either be an individual or an
element of the anonymous part of IT ,A. We consider first
the case in which π(y) is an ABox individual. Since IT ,A

and IA contain precisely the same role assertions involving
individuals, we have

(π(x), π(y)) ∈ ans(
∧

r(x,y)∈ρ

r(x, y)
∧

s(y,x)∈ρ

s(y, x), IA)

It follows that the restriction of π to the variables in {x, y} ∪
~yρ constitutes a match for the rule ζ1. Next remark that since
(π(y), π(~yρ)) is a tuple of individuals, we can apply Fact 1
to get (π(y), π(~yρ)) ∈ cert(ρ|y,K). The variable y has co-
depth k, so the induction hypothesis applies and yields

(π(y), π(~yρ)) ∈ ans((P, qy), IA)

We have thus shown that the rule ζ1 and the restriction of
π to {x, y} ∪ ~yρ satisfy all the required conditions, and so
(π(x), π(~yρ)) = ~t ∈ ans((P, q′y), IA).

Next we consider the case in which π(y) is an element in
the anonymous part of IT ,A. It follows from the construc-
tion of IT ,A and the fact that (π(x), π(y)) ∈ RIT ,A that
π(y) = π(x)R for some role R such that either R(x, y) ∈ ρ
or R−(y, x) ∈ ρ. In particular, this means that the tree
witness fR(x,y) exists and is valid, and moreover, π(z) =
π(x)fR(x,y)(z) for each variable z in the domain of fR(x,y).
If z is such that fR(x,y)(z) = wS, then for every atom
A(z) ∈ ρ, we have π(z) ∈ AIT ,A , hence T |= ∃S− v A.
Finally, we remark that all answer variables must be mapped
to ABox individuals, so any answer variable z in the do-
main of fR(x,y) must be such that fR(x,y)(z) = ε. Thus,
conditions (i)-(iii) are satisfied, and so the rule q′y(x, ~u) ←
q∃R(x) ∧

∧
z∈Z qz(x, ~zρ) belongs to P . We then note that

the presence of π(x)R in the domain of IT ,A implies that
π(x) ∈ ∃RIT ,A , and hence that π(x) ∈ cert(∃R(x),K). By
Lemma 13,

π(x) ∈ ans((P, q∃R), IA).

We next remark that for each variable z ∈ Z, we must have
(π(z), π(~zρ)) ∈ ans(ρ|z, IT ,A). Using Fact 1 and the fact
that π(z) = π(x), we obtain (π(x), π(~zρ)) ∈ cert(ρ|z). Then
since z has co-depth at most k, we can apply the induction hy-
pothesis to get cert(ρ|z,K) = ans((P, qz), IA), from which
we can infer that

(π(x), π(~zρ)) ∈ ans((P, qz), IA)

and hence that

(π(x), π(~u)) ∈ ans((P, q′y), IA).

It then suffices to note that π(~u) = π(~y+ρ), and hence
(π(x), π(~u)) = ~t.

To complete the proof, we must show the other inclu-
sion: ans((P, q′y), IA) ⊆ cert(ρ|xy,K). Take some ~t ∈
ans((P, q′y), IA). The first possibility is that there is a match
π for the rule ζ1 in IA such that (π(x), π(~y+ρ)) = ~t and
(π(y), π(~yρ)) ∈ ans((P, qy), IA). As π is a match for ζ1
in IA, we must have

(π(x), π(y)) ∈ ans(
∧

r(x,y)∈ρ

r(x, y)
∧

s(y,x)∈ρ

s(y, x), IA).

Since IT ,A contains all role assertions from IA, we also have

(π(x), π(y)) ∈ ans(
∧

r(x,y)∈ρ

r(x, y)
∧

s(y,x)∈ρ

s(y, x), IT ,A).

We next remark that y has co-depth at most k, so we
can apply the induction hypothesis and Fact 1 to obtain
(π(y), π(~yρ)) ∈ ans(ρ|y, IT ,A). It follows that π defines a
match for ρ|xy in IT ,A. Another application of Fact 1 yields
~t = (π(y), π(~yρ)) ∈ cert(ρ|xy,K).

The second possibility is that the rule ζ2 belongs to P ,
and there is an assignment π to the variables in ζ2 such that
π(x) ∈ ans((P, q∃R), IA) and for each z ∈ Z, we have
(π(x), π(~zρ)) ∈ ans((P, qz), IA). Note that the presence of
ζ2 implies that conditions (i)-(iii) hold, and in particular, the
tree witness fR(x, y) exists and is valid. Using Lemma 13,
we obtain

π(x) ∈ cert(∃R(x),K).

Then since each z ∈ Z has co-depth at most k, we can apply
the induction hypothesis to obtain

(π(x), π(~zρ)) ∈ cert(ρ|z,K).

It follows from Fact 1 and the definition of certain answers
that for each z ∈ Z, we can find a match πz for ρ|z in IT ,A
such that π(u) = πz(u) for all variables u ∈ {x}∪~zρ. Define
a new assignment π′ as follows:
• π′(u) = π(x)fR(x,y)(u) if u is in the domain of fR(x,y)

• π′(u) = πz(u) if u is a descendant of z in ρ
To see that π′ is well-defined, note that a variable u can be
the descendant of at most one z, and if u is the descendant
of z, then it cannot belong to the domain of fR(x,y). Also
note that every variable which appears in ρ|xy is covered by
one of the two items, and if π′(u) = π(x)fR(x,y)(u), then
the validity of the tree witness fR(x,y) ensures that the object
π(x)fR(x,y)(u) belongs to the domain of IT ,A. It remains
to show that π′ is a match for ρ|xy in IT ,A. Since π′ = πz
for all variables in ρ|z, we know that π′ satisfies all atoms
in ∪z∈Zρ|z. It thus remains to show that the atoms in ρ|xy
which are not in ∪z∈Zρ|z are also satisfied. If A(u) ∈ ρ|xy \
∪z∈Zρ|z, then we must have fR(x,y)(u) = wS. Condition
(ii) yields T |= ∃S− v A, and the definition of IT ,A gives
us π′(u) = π(x)wS ∈ AIT ,A . If instead we have a role atom
s(u, u′) ∈ ρ|xy \ ∪z∈Zρ|z, then u and u′ both belong to
the domain of fR(x,y). Moreover, from the definition of tree
witnesses, we know that either (a) fR(x,y)(u

′) = fR(x,y)(u)s

or fR(x,y)(u) = fR(x,y)(u
′)s−. In both cases, it follows from

the definition of IT ,A that (π′(u), π′(u′)) ∈ sIT ,A . We have
thus shown that all atoms in ρ|xy are satisfied by π′, which
means π′ is a match for ρ|xy in IT ,A. As (π′(y), π′(~yρ)) =

(π(y), π(~yρ)) and ~t = (π(y), π(~yρ)), we obtain the desired
~t ∈ cert(ρ|xy,K).

Theorem 5. cert(ρ,K) = ans(rewT (ρ), IA).

Proof. We recall that rewT (ρ) = (P, q) and the only rule in
P with head relation q is:

θ : q(~x)←
∧
x∈X

qx(x, ~xρ) ∧
∧

xi,xj∈~x, r(xi,xj)∈ρ

r(xi, xj)

For the first direction, suppose that ~t ∈ cert(ρ,K). By
Fact 1, ~t ∈ ans(ρ, IT ,A), and so we can find a match π for
ρ in IT ,A such that π(~x) = ~t. Note that π is a match also
for the rule θ since all DL-atoms in θ are atoms in ρ. Fur-
ther note that for every x ∈ X , the subquery ρ|x is satisfied
under π, so (π(x), π(~xρ)) ∈ ans(ρ|x, IT ,A). Using Fact 1
and Lemma 14, we obtain (π(x), π(~xρ)) ∈ ans((P, qx), IA).
We have thus exhibited a match π for θ satisfying the re-
quired conditions, so we may conclude that ~t = π(~x) ∈
ans(rewT (ρ), IA).

For the second direction, suppose ~t ∈ ans(rewT (ρ), IA).
Then it must be the case that there is a match π for rule θ in
IA such that π(~x) = ~t and for every x ∈ X , (π(x), π(~xρ)) ∈
ans((P, qx), IA). By Lemma 14, this means that for every
variable x ∈ X , we have (π(x), π(~xρ)) ∈ cert(ρ|x,K). We
can thus find for each x ∈ X , a match µx for ρ|x in IT ,A such
that µx(x) = π(x) and µx(~xρ) = π(~xρ). Define an assign-
ment µ for the variables in ρ by setting µ(u) = µx(u), where
x is the root of the unique Ti containing u. By definition, µ
satisfies all atoms in each of the queries ρx. All other atoms in
ρmust take the form s(u, u′), with u and u′ answer variables.
Since π is a match for θ in IA, we must have (π(u), π(u′)) ∈
sIA , and hence (π(u), π(u′)) ∈ sIT ,A . As π and µ coincide
on answer variables, we also have (µ(u), π(u′)) ∈ sIA , so
s(u, u′) is satisfied by assignment µ. We have thus found a
match µ for ρ in IT ,A such that µ(~x) = π(~x) = ~t. Applying
Fact 1, we obtain ~t ∈ cert(ρ,K).

