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Executive Summary

This document presents the theoretical results established during Year 3 of the project
concerning combinations of logical rules, ontologies, and production rules.

The first two chapters of the deliverable take further the work described in Deliverable
D3.3 [40] concerning combinations of logical rules and ontologies. First, we continued
our work on Datalog rewritability by investigating reasoning with a more expressive on-
tology language, Horn-SHIQ, which allows for both axioms with existentials on the
right-hand side and inverse properties. A reasoning algorithm has been devised and a pro-
totype reasoner, KAOS, has been implemented. The first experimental results for KAOS
are promising. The work is reported in chapter 2.

Secondly, we improved the previous results concerning reasoning with Forest Logic Pro-
grams, by introducing a new worst-case optimal algorithm for reasoning with the frag-
ment. The algorithm uses new termination conditions, in particular, a new redundancy
rule and a caching rule. The worst case running time is exponential in the size of the input
program, one exponential level lower than before. As reasoning with FoLPs was known
to be an EXPTIME-hard problem, it follows that the problem is actually EXPTIME-
complete. The work is reported in chapter 3.

Next two chapters present developments on combinations of production rules and on-
tologies. Chapter 4 introduces a new semantics for combinations of production rules
systems and ontologies that includes looping production rules, and can handle inconsis-
tency. A model theoretic semantics is provided, for the case where the ontology part is
rule-based, by a sound embedding into Transaction Logic with partially defined actions
(abbr., T RPAD) [89]. Also, T RPAD is extended with default negation under a variant of the
well-founded semantics [96].

A general framework for combining production rule systems and ontologies, Generalized
Ontology-based Production Systems (GOPSs), is provided in Chapter 5 together with a
µ-calculus based verification query language. The production rule part of a GOPS is as
specified by the RIF-PRD dialect. The decidability of answering verification queries over
GOPSs is investigated and a particularization of GOPSs, Lite-GOPSs, is introduced in the
second part of the work. Lite-GOPSs employ the light-weight ontology language (DL−
LiteA), and the EQL-Lite(UCQ) ontology query language, as the ontology language, and
the query verification language, respectively.
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D3.4 Converged and Optimized Combinations of Rules and Ontologies

Some considerations regarding the integration of all three knowledge representation paradigms:
logical rules, production rules, and ontologies, are also provided in chapter 6.

December 20, 2011 ii
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Chapter 1

Introduction

In this deliverable we present some optimizations and refinements concerning combina-
tions of rules and ontologies, where the languages are rich enough to meet the expressivity
required by the case studies, as well as some generalizations of the combinations of pro-
duction rules and ontologies described in Deliverable D3.3[40]. Finally, we sketch some
ideas about how logical rules, production rules, and ontologies, could be combined alto-
gether.

Combining Logical Rules and Ontologies. As part of Task 3.2 Analysis of Issues in Case
Studies, two main requirements were identified for combinations of rules and ontologies:
the possibility to express inverse properties and to create facts pertaining to new individu-
als (not existent in the universe of discourse). The latter feature is also known as allowing
for ”existentials in the head” (in the case of rules) or ”existentials on the right-hand side
of the axioms” (in the case of ontologies).

Chapter 2 describes a rewriting based method for answering conjunctive queries over
Horn-SHIQ ontologies1. Horn-SHIQ is an expressive Datalog-rewritable subset of the
DL SHIQ which allows for existentials on the right-hand side of the axioms, as well as
for inverse properties, while retaining polynomial data complexity. A prototype reasoner
for the fragment has been implemented: the reasoner is called KAOS and it is, to our
knowledge, the first system offering conjunctive query answering services over ontologies
in Horn-SHIQ, that allows for unknown individuals in the queries. The chapter reports
also on some promising experiments performed with KAOS.

Chapter 3 describes an optimized/worst-case optimal reasoning algorithm for Forest Logic
Programs (FoLPs). FoLPs are a decidable fragment of Open Answer Set Programming
(OASP), an extension of ASP with open domains. The fragment can be used for sim-
ulating reasoning with expressive (SHOQ) ontologies, and as such it serves as the un-
derlying fragment of f-hybrid knowledge bases, a tightly-coupled combination of FoLPs
themselves and (SHOQ) ontologies. It allows for a type of unsafe rules, feature which

1This work has been performed in collaboration with the FWF project “Reasoning in Hybrid Knowledge
Bases (FWF P20840)”.
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CHAPTER 1. INTRODUCTION 2

combined with the open domain of interpretation, allows for simulation of existentials
in the head or rules. The new algorithm improves on previous algorithms by decreasing
the running time one exponential level: this has been made possible by devising a new
technique for reducing an infinite forest model to a model of finite bounded size. The
algorithm is worst-case optimal and thus, it offers a tight complexity characterization for
FoLPs. The knowledge compilation technique introduced during the second year of the
project [40] is reused by the new algorithm.

Combining Production Rules and Ontologies. Deliverable D3.3 [40] introduced an oper-
ational and model-theoretic semantics to the combination of production rule systems and
ontologies. The model-theoretic semantics was given by an embedding of production rule
systems into fix-point logic. Chapter 4 describes a formalization of production rule sys-
tems based on an embedding of such systems augmented with rule-based DL ontologies
in Transaction Logic with Partially Defined Actions (abbr., T RPAD) [89]. The combina-
tions considered in this deliverable are significantly more general than the combinations
studied last year or other existing formalizations of production rules, like RIF-PRD, in
that they support wider ontology integration and cover important extensions that exist in
commercial systems such as a FOR-loop. Unlike the previous semantics, the semantics
for the new combination can also handle inconsistency. Finally, an extension of T RPAD

with default negation under a variant of the well-founded semantics [96] for T RPAD is
provided. Note that this work can also be seen as a way of achieving convergence of ap-
proaches based on logical rules, production rules, and ontologies, as it is trivial to embed
logic programs in T RPAD.

Chapter 5 defines the class of generalized ontology-based production systems (GOPSs),
which formalizes a general and powerful combination of ontologies and production sys-
tems together with a verification query language. GOPSs capture and generalize many
existing formal notions of production systems. The verification query language is able
to express the most relevant formal properties of production systems previously consid-
ered in the literature. A general sufficient condition for the decidability of answering
verification queries over GOPSs is presented. The second part of the work describes a
particularization of GOPSs, Lite-GOPSs, which uses the light-weight ontology language
(DL − LiteA), and the EQL-Lite(UCQ) ontology query language, as the ontology lan-
guage, and the query verification language, resp.. Lite-GOPSs support also a tractable
semantics for updates over DL ontologies. Decidability and tractability of several verifi-
cation tasks over Lite-GOPSs has been investigated.

Convergence. Chapter 6 discusses some issues related to the convergence of approaches
based on logical rules, production rules, and ontologies: two logic programming based
formalisms are considered as possible integrative devices: ACTHEX, an extension of ASP
with external atoms, and action atoms, and FDNC, a decidable subset of ASP with func-
tion symbols. Pros and cons for using each approach are given and pointers to future work
needed for achieving full convergence.

Finally, Chapter 7 draws some conclusions.



Chapter 2

Reasoning with Horn-SHIQ

2.1 Introduction

Datalog-rewriting is an efficient method for reasoning over Description Logics (DLs). In
the previous deliverable D3.3 [40], we developed a novel datalog-rewriting framework,
called inline evaluation, for description logic programs (dl-programs), and implemented
it in the DReW reasoner.

The ontology language targeted by DReW is LDL+, which is essentially an extension
of OWL 2 RL with nominals, role conjunctions, and transitive closure. LDL+ enjoys a
polynomial complexity, under both settings of data and combined complexity. However,
in practice, sometimes LDL+ is not expressive enough to cover the real-life ontologies.
For example, in the well known biomedical ontology Galen [86], they heavily use axioms
in the form of (1) LeftEar ≡ Ear u (∃hasLeftRightSelector.leftSelection), which has ex-
istential quantifier in the right hand side, and (2) functional roles like hasDiameter. Both
of them can not be expressed in LDL+.

To capture more expressive DLs, in this work, we focus on Horn-SHIQ [81], which is
very expressive, but still has a nice property of PTime completeness in data complex-
ity. We developed a rewriting algorithm for answering conjunctive queries (CQs) over
Horn-SHIQ ontology, in collaboration with FWF project “Reasoning in Hybrid Knowl-
edge Bases (FWF P20840)”. The result is a novel ABox independent rewriting: given a
Horn-SHIQ DL KB K = (T ,A) and a CQ q, we can eliminate T from K by incorpo-
rating T into q. Thus we obtain a union of CQs (UCQs) Pq,T such that (T ,A) |= q(~t)
iff A |= Pq,T (~t). This is of course similar to the DL-Lite approach, but we have a more
expressive DL Horn-SHIQ.

We further show that this rewriting can be faithfully used for dl-programs. In the inline
evaluation framework, different components of dl-programs are rewritten into some dat-
alog rules in a modular way. The original inline evaluation also applies a polynomial
rewriting time restriction to the DL component. If we drop this restriction, then we can

3



CHAPTER 2. REASONING WITH HORN-SHIQ 4

inline evaluate dl-programs over Horn-SHIQ ontologies, by adopting the novel rewrit-
ing.

The rest of this chapter is structured as follows: In section 2.2, we recall the Description
Logic Horn-SHIQ and conjunctive query. Section 2.3 presents the query rewriting al-
gorithm for CQ over Horn-SHIQ ontologies. Section 2.4 presents the implementation
of the prototype system KAOS and some experiment results. In section 2.5 we show that
our results can be used for the inline evaluation of dl-programs over Horn-SHIQ. We
finally summarize in section 2.6.

2.2 Preliminaries

2.2.1 Description Logics Horn-SHIQ and Horn-ALCHIQ∩

As usual, we assume countably infinite sets NC and NR of concept names and role names
respectively; we also assume {>,⊥} ⊂ NC. A role is a role name r, an expression r−, or
an expression r1ur2, where r1, r2 are roles. If r ∈ NR, then inv(r) = r− and inv(r−) = r.
Concepts are inductively defined as follows: (a) each A ∈ NC is a concept, and (b) if
C, D are concepts and r is a role, then C u D, C t D, ¬C, ∀r.C, ∃r.C, >n r.C and
6n r.C, for n > 1, are concepts. An expression C vD, where C,D are concepts, is a
general concept inclusion axiom (GCI). An expression rv s, where r, s are roles, is a role
inclusion.

The semantics of KBs is given by interpretations I = 〈∆I , ·I〉 which map each A∈NC

to some AI ⊆ ∆I , and each r ∈ NR to some rI ⊆ ∆I×∆I , such that >I = ∆I and
⊥I = ∅. The interpretation of role conjunction (r1 u r2)I = rI1 ∩ rI2 . The map ·I is
extended to all concepts and remaining roles as usual. We say that I is a model of T , in
symbols I |= T , if it satisfies all axioms in the TBox.

Then Horn-ALCHIQ∩ is simply defined by restricting to the following axiom schema:

Definition 2.2.1. Horn-ALCHIQ∩ TBoxes contain only GCIs of the forms

A uBvC Av∀r.B Av>mr.B
∃r.AvB Av∃r.B Av61 r.B

where A,B,C are concept names, r is a role, S is a role conjunction and m > 1.

For a role conjunction S = r1 u . . . u rn, we denotes r−1 u . . . u r−n by S− for simplicity.
For any role inclusion S v r ∈ T , we also have S− v r− ∈ T .

The normal Horn-ALCHIQ is obtained from Horn-ALCHIQ∩ by disallowing role con-
junction (∩). If we additionally allow transitive roles in normal Horn-ALCHIQ, we get
the normal Horn-SHIQ.

In principle, Horn-SHIQ can be reduced to normal Horn-ALCHIQ while preserving
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satisfiability and answers of conjunctive queries [64]. To simplify presentation, we use
role conjunctions; therefore, we focus on the DL Horn-ALCHIQ∩.

Horn-SHIQ is a very expressive DL. Roughly speaking, Horn-SHIQ is a super set of
all the OWL 2 lightweight fragments1, depicted in Figure 2.1.

EL

QL

RL

Horn-SHIQ

OWL 2 DL

EL

QL

RL

Horn-SHIQ

OWL 2 DL

Figure 2.1: Horn-SHIQ and OWL 2 profiles

2.2.2 Conjunctive Query Answering in Description Logics

Conjunctive queries have been studied extensively in database theory. They are an impor-
tant class of queries, which corresponds to SQL/algebra Select-Project-Join queries.

Definition 2.2.2 ([80] Query atom, Conjunctive query). Let NV denote a countably infi-
nite set of variables, and letL be a DL, v and v′ either a variable fromNV or an individual
from NI , C a concept in L, and R a role in L.

A query atom in L is an expression of the form C(v) (a concept atom) or R(v, v′) (a role
atom).

A conjunctive query (CQ) in L is of the form ∃~v.conj(~x,~v), where conj(~x,~v) is a con-
junction of query atoms. ~x are called distinguished variables or answer variables. Other
variables are called non-distinguished variables. If ~x = x1, . . . , xn then we call this a
query with n answer variables.

A union of conjunctive queries is a list of conjunctive queries which have the same answer
variables.

Definition 2.2.3 (Union of conjunctive queries (UCQ)). UCQ is of the form∨
i=1,...,n

∃~vi.conj(~x, ~vi)

1In this figure, for simplicity, we did not consider enumerations (nominals) involving a single individual
(ObjectOneOf) in OWL 2 EL. Singleton nominals can be handled in Horn-SHOIQ [81], a slight extension
of Horn-SHIQ. Datatypes are not discussed either, as they can be similarly treated as singleton nominals.
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where each ∃~v.conj(~x,~v) is a conjunctive query.

Notation 2.2.4. We often use Datalog notation for conjunctive queries.

- DATALOG notation of the conjunctive query ∃~v.conj(~x,~v) as follows:

q(~x)← A1(~v1), . . . , An( ~vn).

where Ai(~vi) are query atoms; ~x and ~v are individuals or variables; q is not a descrip-
tion logic predicate and can has arbitrary name.

- DATALOG notation of union of conjunctive queries
∨
i=1,...,n ∃~vi.conj(~x, ~vi)

q(~x) ← A1( ~v11), . . . , Am( ~v1m).
...

q(~x) ← A1( ~vn1), . . . , Am( ~vnm).

Definition 2.2.5 (Boolean conjunctive queries). The conjunctive queries that do not have
answer variables are called boolean queries.

Example 2.2.6. We consider the following queries:

q ← Professor(x ), Student(y), hasFather(y , x ).
sameDepartment(x , y) ← Professor(x ),Professor(y),Department(z ),

worksFor(x, z), worksFor(y, z).

The first query is a boolean query because it does not have any answer variable. The
second one is not a boolean query; it has two answer variables x and y.

Notation 2.2.7. For a query q = ∃~v.conj(~x,~v), we denote:

- Atoms(q) as the set of atoms occurring in q;

- VI(q) as the set of individuals and variables occurring in q;

- NC(q), NR(q), NI(q) are set of concept names, role names, and individual names, re-
spectively in q.

To give the meaning to a query, each variable and individual in this query must be
mapped/bounded to elements of an interpretation domain.

Definition 2.2.8 (Binding, Query match). Let I an interpretation.

A binding for a query q(~x) in I is a total function π : VI(q)→ ∆I such that π(d) = dI

for each individual d ∈ VI(q).

We write I, π |= C(v) if π(v) ∈ CI; and I, π |= R(v, v′) if (π(v), π(v)) ∈ RI .



CHAPTER 2. REASONING WITH HORN-SHIQ 7

A match for q(~x) in I is a binding π such that I, π |= A(~vi) for all atoms A(~vi) in q(~x).

Intuitively, a match for a query in an interpretation I is a mapping from variables and
individuals of this query to elements in the interpretation domain that makes this query
true under I.

Definition 2.2.9 (Query answer). The answer variables can only be mapped to individuals
in the ABox.

- A tuple of domain elements 〈d1, . . . , dn〉 is called an answer for query q(x1, . . . , xn) in
an interpretation I if there is a match π for q in I such that: π(xi) = di) for every i.

- A tuple of individuals 〈a1, . . . , an〉 is called an answer for query q(x1, . . . , xn) over the
knowledge base K if it is an answer in all model I of K.

It is possible to have complex concepts in query atoms, but it does not make a query
more expressive. We can reduce these complex concepts into atoms of the form C(v) or
P (v, v′), where C is a concept name and r is a role name. We call the resulting query
extensionally reduced query. We consider the following example of query match and
query answer.

Example 2.2.10. Let I = 〈∆I , ·I〉 an interpretation as follows

∆I = {p1, p2, p3, p4, d1, d2}

ProfessorI = {p1, p2, p3, p4} DepartmentI = {d1, d2}

worksForI = {(p1, d1), (p2, d1), (p3, d2), (p4, d2)}

We consider a conjunctive query:

sameDepartment(x , y) ← Professor(x ),Professor(y),Department(z ),
worksFor(x, z), worksFor(y, z).

The binding π such that π(x) = p1, π(y) = p2, π(z) = d1 is a match for the above query
in I, and 〈p1, p2〉 is an answer in the model I.

Definition 2.2.11 (Query answering). Let K a knowledge base. Query answering is to
compute all answers for given query q in K.

Example 2.2.12. Let K = 〈T ,A〉 a knowledge base with:

- TBox T :
Professor v Employee
Professor v ∃worksFor.Department

WorkingGroup v Department
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- ABox A
Professor(p1) Professor(p2) Employee(e1)
Employee(e2) CSDepartment(d1) Department(d2)
worksFor(p1, d1) worksFor(p2, d1) worksFor(e1, d2)
worksFor(e2, d2)

- Query q

sameDepartment(x , y) ← Professor(x ),Professor(y),Department(z ),
worksFor(x, z), worksFor(y, z).

We consider two models:

- I = 〈∆I , ·I〉 maps aI to a ∈ ∆I and:

∆I = {p1, p2, d1, d2, e1, e2}

ProfessorI = {p1, p2, e1, e2} EmployeeI = {p1, p2, e1, e2}
WorkingGroupI = {d1} DepartmentI = {d1, d2}

worksForI = {(p1, d1), (p1, d1), (e1, d2), (e2, d2)}

- J = 〈∆J , ·J 〉 maps aJ to a ∈ ∆J and:

∆J = {p1, p2, d1, d2, e1, e2}

ProfessorJ = {p1, p2} EmployeeJ = {p1, p2, e1, e2}
WorkingGroupI = {d1} DepartmentI = {d1, d2}

worksForJ = {(p1, d1), (p1, d1), (e1, d2), (e2, d2)}
It is easy to check that (p1, p2) and (e1, e2) are answers for query q in I. However, only
(p1, p2) is a answer for q over K, because every model K must satisfy A, thus there
always exists a query match π : x 7→ p1; y 7→ p2; z 7→ d1. (e1, e2) is not a answer for q
over K, since there is another model J of K such that K,J 6|= q.

Definition 2.2.13 (Query entailment). Given a Boolean query q and a knowledge base
K, we say that K entails q, in symbols K |= q, if I |= q for every model I of K. The
query entailment problem is to decide , given a knowledge base K and a Boolean query
q, whether K |= q.

We consider again the knowledge base K in Example 2.2.12. The difference is that the
query q does not contain answer variables.

Example 2.2.14.

q ← Professor(x ),Professor(y),WorkingGroup(z ),
worksFor(x , z ),worksFor(y , z ).

This query asks whether there exists two professors working in the same working group.
We can claim that K |= q by the explanation as in Example 2.2.12.
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2.3 Conjunctive Query Answering in Horn-SHIQ

We present a rewriting-based method for answering conjunctive queries over Horn-SHIQ
ontology 2. In principle, Horn-SHIQ can be reduced to normal Horn-ALCHIQ while
preserving satisfiability and answers of conjunctive queries. To simplify presentation, we
use role conjunctions; therefore, we work on Horn-ALCHIQ∩. Our approach is sim-
ilar to the combined-approach in [61], but instead of completely building the compact
canonical model, we apply rules to simulate the extended ABox and derive all existential
restrictions needed for query rewriting. This approach contains two main steps:

(1) We apply a specially tailored resolution calculus on an input TBox T to obtain a
saturated set of axioms sat(T ). This not only provides consequences of T , but also
enables construction of canonical models. For any ABoxA, if K = (T ,A) is consis-
tent, we can build from A and sat(T ) an interpretation IK such that IK is a model of
K, and IK can be homomorphically embedded in any other model of K. The calculus
is a nontrivial modification of the calculus in [59] and constructions in [81] .

(2) Each (possibly infinite) model IK can be seen as a forest where roots are constants
and the remaining tree nodes are anonymous elements implied by existential axioms.
Assume IK ↓ is the restriction of IK to the interpretation of constants, i.e. the “graph-
part” of IK. Assume also an arbitrary conjunctive query q. We show that using sat(T )
we can rewrite q into a UCQ rewT (q) in such a way that the answer to q over IK equals
the answer to rewT (q) over IK ↓. We also show that IK ↓ can be generated by a plain
DATALOG program. Thus we reduce the problem of answering a query q over a KB
K = (T ,A) to evaluating a DATALOG query Pq,T over a database instance (i.e. an
ABox A).

2.3.1 Saturation

We recall that before doing reasoning in a Horn-SHIQ KB, we normalize it. Thus, from
now on we only consider KBs in the normal form of Horn-ALCHIQ∩.

Definition 2.3.1. The TBox of the normal form of a Horn-ALCHIQ∩ contains only ax-
ioms of the forms

A uB v C Av ∃r.B Av ∀r.B Av 61r.B S v r

whereA,B,C are concept names; r, s are role names; S is the conjunction of role names.

The semantics of role conjunction r1 u . . . u rn is defined as follows: (r1 u . . . u rn)I =
rI1 ∩ . . . ∩ rIn, with n > 0, for all roles r1 . . . rn, and every interpretation I.

2The query rewriting algorithm here is done in collaboration with FWF project “Reasoning in Hybrid
Knowledge Bases (FWF P20840)” and mostly done in the FWF project. The results have been published
in the master thesis of Trung-Kien Tran [95] with detailed proofs.
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M v ∃(S u S ′).N S v r
M v ∃(S u S ′ u r).N (v1)

M v ∃S.N uN ′ N v A
M v ∃S.N uN ′ u A (v2)

M v ∃S.N u ⊥
M v⊥ (⊥)

M v ∃S.N uN ′ N ′ v ∃S ′.N ′′
N uN ′ v ∃S ′.N ′′ (∃1)

M u Av ∃S u r.N Av ∀r.B
M u Av ∃S u r.N uB (∀1)

M v ∃(S u r−).N u A Av ∀r.B
M vB (∀2)

M v ∃S u r.N Av ∀r.B {M,A} ⊆ ΣA
M u Av ∃S u r.N uB (∀3)

M v ∃(S u r).N uB Av 61 r.B
M ′ v ∃(S ′ u r).N ′ uB
M uM ′ u Av ∃(S u S ′ u r).N uN ′ (61)

M v ∃(S u r−).N1 uN2 u A Av 61 r.B
N1 u Av ∃(S ′ u r).N ′ uB u C
M uB v C M uB v ∃(S u (S ′)−).N1 uN2 u A

(62)

Table 2.1: Saturation rules

The ABox axioms in normal Horn-ALCHIQ∩ are in the form of A(a), where A ∈ ΣA,
and ΣA is a set of concept names possibly occur in Abox A. For efficiency reason, we do
not use all the concepts in K.

We saturate T using rules triggered by axioms that appear in a Horn-ALCHIQ∩ TBox.
To simplify notation, we denote byM,N,M ′, N ′ (resp., S, S ′) the conjunctions of atomic
concepts (resp., roles) For a role conjunction S = r1 u . . .u rn, we denotes r−1 u . . .u r−n
by S− for simplicity. We write M ⊆ M ′ if the concept names of M also occur in M ′.
Similarly, we write S ⊆ S ′ if the roles of S also occur in S ′. We similarly define A ∈ M
and r ∈ S in the obvious way.

Definition 2.3.2 (Saturation). Let sat(T ) denote the TBox obtained from a TBox T by
exhaustively applying the inference rules in Table 2.1.

Lemma 2.3.3. The set of axioms sat(T ) obtained from the saturation on a Horn-ALCHIQ∩
TBox T are logical consequences of T .

We explain the saturation rules in the following two examples.

Example 2.3.4. TBox T = {A v ∃R.B u C;B v ∀S.D;C v ∃S.D′;D u D′ v ⊥; }.
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We assume that {B,C} 6∈ ΣA, so rule ∀3 is not applicable.

C v ∃S.D′
⇓ by rule (∃1)

B u C v ∃S.D′
⇓ by rule (∀1)

B u C v ∃S.D uD′
⇓ by rule (v2)

B u C v D uD′ u ⊥
⇓ by rule (⊥)

B u C v ⊥
⇓ by rule (v2)

A v ∃R.B u C u ⊥
⇓ by rule (⊥)

A v ⊥
Without (∃1) we never get A v ⊥, and B u C v ⊥, which should be derivable.

Example 2.3.5. Let K = 〈T ,A〉, where T = {C v ∃r.D; A v ∀r.B; D u B v ⊥},
A = {C(a), A(a)}.

C v ∃r.D
⇓ by rule ∀3

C u A v ∃r.D uB
⇓ by rule ∃2

C u A v ∃r.D uB u ⊥
⇓ by rule ⊥

C u A v ⊥

However this contradicts to assertions in ABox A, thus K is unsatisfiable. We should
remind that if K contains only T , then K is satisfiable. Hence the rule ∀3 does take into
account ABox. We can compare the result of this process with the result of Tableau-based
algorithm in Figure 2.2

Figure 2.2: Model building of K

a {C,A, ∃r.D} =⇒ a {C,A, ∃r.D}

b {D}

r

=⇒ a {C,A, ∃r.D}

b {D,B, (Clash)}

r

The main idea of saturation is to derive all relevant axioms necessary for query rewriting
part. Next, we will present the completion rules for ABox and show that using these rules
and axioms from saturation we can build a canonical model of K = 〈T ,A〉.
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2.3.2 Canonical Models

A canonical model for a consistent KB K = (T ,A) is the model that can be homomor-
phically embedded into any model of K. In other words, it is sufficient to answer queries
based on such model. A canonical model can be seen as two parts: a graph part and a tree
part. The graph part is constructed based on the following completion rules.

Definition 2.3.6 (Completion rules). Let r[x, y] = r(x, y) if r ∈ NR, and r[x, y] = s(y, x)
if r = s− of some s ∈ NR. Let cr(T ) be the DATALOG program consisting of the following
rules:

(a) B(y)← A(x), r[x, y] for all Av ∀r.B ∈ T ;

(b) B(x)← A1(x), . . . , An(x) for all A1 u . . . u An vB ∈ sat(T );

(c) ⊥(x)← A(x), r[x, y1], r[x, y2], B(y1), B(y2), y1 6= y2 for all Av 61 r.B ∈ T ;

(d) r[x, y]← r1[x, y], . . . , rn[x, y] for all r1 u . . . u rn v r ∈ T ;

(e) for all Av 61 r.B ∈ T and all axioms A1u . . .uAnv∃r1 u . . . u rm.B1 u . . . uBk

of sat(T ) such that r = ri and B = Bj for some i, j, add rules:

B1(y)∧. . .∧Bk(y)∧r1[x, y]∧. . .∧rk[x, y]← A(x), A1(x), . . . , An(x), r[x, y], B(y).

A model of A ∪ cr(T ) is “almost” a model of T : existential axioms may be violated.
To deal with this, we extend such a model with new domain elements, following the
existential axiomsAv∃r.N in sat(T ). The domain of canonical model contains elements
as words of the form w = a · (∃S1.N1) · · · · · (∃Sn.Nn), where a ∈ NI. We define the type
of an element w as follows:

Definition 2.3.7. For an interpretation I and individual w, we define the type of w w.r.t.
I as type(w) = {A | w ∈ AI}. For a word w = w′.∃S.N , we define type(w) = N .

Definition 2.3.8. Let K = (T ,A) a KB such that the program A ∪ cr(T ) is consistent
and assume IA is the least model of A∪ cr(T ). We define paths(K) as the smallest set of
words of the form a · (∃S1.N1) · · · · · (∃Sn.Nn) such that:

(P1) a ∈ paths(K) for all individuals a in A;

(P2) if a ∈ paths(K) and there is an axiom M v ∃S.N ∈ sat(T ) that satisfies

(a) M ⊆ type(a),

(b) there is no b ∈ NI such that (a, b) ∈
⋂
r∈S r

IA and b ∈
⋂
A∈N A

IA , and

(c) there is no M ′ v ∃S ′.N ′ ∈ sat(T ) such that a ∈
⋂
A∈M ′ A

IK , and ((S ⊆ S ′,
N ⊂ N ′) or (S ⊂ S ′, N ⊆ N ′)).
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then a · (∃S.N) ∈ paths(K);

(P3) if w = w′ · (∃S0.N0) ∈ paths(K) and an axiom M v ∃S.N ∈ sat(T ) satisfies

(a) M ⊆ type(w),

(b) (S)− 6⊆ S0 or N 6⊆ type(w′), and

(c) there is no M ′ v ∃S ′.N ′ ∈ sat(T ) such that N0 ⊆M ′, and ((S ⊆ S ′, N ⊂ N ′)
or (S ⊂ S ′, N ⊆ N ′)),

then w · (∃S0.N0) · (∃S.N) ∈ paths(K).

The intuition of generating paths(K) is to create new elements to witness existential ax-
ioms in a way that a new elements is created whenever it is really needed, and there is
no two different elements generated to witness the same existential axiom. Let’s consider
one example to demonstrate the process of building paths(K).

Example 2.3.9. Let K = 〈T ,A〉, where

- T contains
A v ∃r.B B v C
A1 v 6 1r1.B1 D v ∃r−1 .A1

A1 v ∃r1.(B1 u C1)

- A contains
A(d), A1(d1), B(d2), D(d2)

- Apply inference rule in 2.1:

By Av ∃r.B, B v C, and rule (v2) we get Av ∃r.(B u C),

By A1v 6 1r1.B1, Dv∃r−1 .A1, A1v∃r1.(B1 u C1), and rule62 we get DuB1vC,
and D uB1 v ∃r−1 .A1.

- Thus, we have sat(T ) = T ∪ {Av∃r.(B u C), D uB1vC, D uB1v∃r−1 .A1}, and
cr(T ) contains:

C(x)←B(x).

C(x)←B1(x), C1(x).

⊥(x)←A1(x), r1(x, y1), B1(y1), r1(x, y2), B2(y2), y1 6= y2.

C1(y)←A1(x), r(x, y), B1(y)

- We now compute paths(K):

(1) {d, d1, d2} ⊆ paths(K),
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(2) d ∈ paths(K) and A ∈ type(d), we have to consider two related axioms A v
∃r.B, Av ∃r.B u C. In this case, we do not generate two different new elements,
it is enough to generate only one element according to A v ∃r.B u C. So we get
d · (∃r.B u C) ∈ paths(K). There is no existential axioms needed to be considered
w.r.t. d · (∃r.B u C).

(3) A1 ∈ type(d1), we consider axiomA1v∃r1.(B1 u C1) and add d1 · (∃r1.(B1 u C1))
to paths(K). There is no existential axioms needed to be considered w.r.t. d1 · (∃r1.(B1 u C1)).

(4) {B1, D} ⊆ type(d2), we consider axiom D u B1 v ∃r−1 .A1 and add d2 · (∃r−1 .A1)
to paths(K).

(5) Since A1 ∈ type(d2 · (∃r−1 .A1)), we need to consider axiom A1 v ∃r1.(B1 u C1).
Normally we generate a new element, however in this case we do not. The reason
is that the condition in (P3) are violated. In other words, there already exists d2 ∈
paths(K) such that d2 is witness element for A1 v ∃r1.(B1 u C1).

(6) Finally we have

paths(K) = {d, d1, d2, d · (∃r.(B u C)), d1 · (∃r1.(B1 u C1)), d2 · (∃r−1 .A1)}

We now define the canonical model IK which has paths(K) as its domain. In principle,
IK can be viewed as chase [1] of A with respect to axioms in sat(T ).

Definition 2.3.10 (Canonical models). The canonical model IK is defined as follows:

(I1) ∆IK = paths(K);

(I2) aIK = a for all individuals a ∈ paths(K);

(I3) AIK = {e ∈ paths(K) | A ∈ type(e)}, for all atomic concepts A;

(I4) For all role names r, rIK is the set pairs (e1, e2) such that

i) e1, e2 ∈ NI and (e1, e2) ∈ rIA ,

ii) e2 = e1 · (∃S.N) and r ∈ S, or

iii) e1 = e2 · (∃S.N) and r− ∈ S.

We now show that if IK exists then it indeed is the model of K, and it can be embedded
homomorphically into arbitrary model of K. Thus in the next step, it is enough to do
query answering in IK. In addition, we show that a KB K = 〈T ,A〉 is consistent iff
A ∪ cr(T ) has a model. This property allows us to reduce consistency checking of a KB
to finding a model of a DATALOG program.

Lemma 2.3.11. If a KB K = (T ,A) is consistent, then A ∪ cr(T ) is consistent.

We next show that if a KB K is consistent, which implies IK is defined, then IK is the
canonical model of K.
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Theorem 2.3.12. If K = 〈T ,A〉 is an consistent KB, then

(1) IK is a model of K, and

(2) IK can be homomorphically embedded into any model of K.

Corollary 2.3.13. K = (T ,A) is consistent iff A ∪ cr(T ) is consistent.

The above corollary already shows a good result: in database terms, checking consistency
over Horn-ALCHIQ∩ is reduced to evaluating the (plain) DATALOG query cr(T ) over
the databaseA. In addition, the existence of a homomorphism from IK to any other model
of a consistent K also yields:

Corollary 2.3.14. If K = (T ,A) is consistent and q is a query, then ans(K, q) =
ans(IK, q).

2.3.3 Query Rewriting

Assume a consistent K = (T ,A) and a query q. By the above corollary, ans(K, q) =
ans(IK, q) and thus for answering q over K it suffices to concentrate on a single model
of K. However, IK may be infinite and thus cannot be explicitly constructed for the
query answering purpose. Our goal next is to rewrite q into a finite set of rules Q such
that ans(IK, q) = ans(IA, Q), where IA is the least model of the DATALOG program
A∪cr(T ). This yields an algorithm for answering any q overK. Importantly, the rewriting
is only dependent on the TBox, and thusQ can be used to answer q over anyK′ = (T ,A′).

Definition 2.3.15 (Query rewriting). Let q a conjunctive query and T a Horn-ALCHIQ∩
TBox. We write q →T q′ if q′ can be obtained from q by the following steps:

(S1) Select a non-distinguished variable x in q such that

- r(x, x) 6∈ q′ for all r, and

- r1(d1, x), r2(d2, x) 6∈ q for d1, d2 ∈ NI and d1 6= d2.

(S2) Let

(i) S = {r | ∃u : r(u, x) ∈ q} ∪ {r− | ∃u : r(x, u) ∈ q},
(ii) N = {A | A(x) ∈ q}, and

(iii) T = {y | ∃r : r(y, x) ∈ q ∨ r(x, y) ∈ q}. Note that x 6∈ T .

(S3) Select some M such that M v ∃S ′.N ′ ∈ sat(T ) with S ⊆ S ′ and N ⊆ N ′.

(S4) Remove all atoms of q where x occurs.
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(S5) If there is an individual d ∈ T , then rename all y ∈ T of q by d, otherwise rename
y ∈ T of q by x.

(S6) Add the atoms {A(x) | A ∈M} to q.

We write q →∗T q′ if q = q′ or there is n > 0 such that q0 →T q1, · · · , qn−1 →T qn with
q0 = q and qn = q′. That is, q →∗T q′ means that q′ can be obtained from q by making
finitely many rewrite iterations. For a query q, we let rewT (q) = {q′ | q →∗T q′} be the
set all rewritings of q w.r.t. T .

We now look at a specific example.

Example 2.3.16. Let K = 〈T ,A〉, where

- The TBox T contains

MasterStudent v ∃studyAt.University
University v ∃locatedAt.City

- The ABox A = {Student(d),MasterStudent(d)}

- The query Q:

q(x)← Student(x), studyAt(x, x1), University(x1), locatedAt(x1, x2), City(x2).

xStudent

x1University

studyAt

x2 City
locatedAt

- We compute sat(T ) and see that sat(T ) = T .

- We first choose non-deterministically a non-distinguished variable x1, and compute:

S = {studyAt, locatedAt−}
N = {University}
T = {x, x2}

Since there is no axiom in sat(T ) satisfies conditions in (S3), we stop.
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- We choose another non-distinguished variable x2, and compute:

S = {locatedAt}
N = {City}
T = {x1}

We find that axiom University v ∃locatedAt.City satisfies conditions in (S3), so we
get the rewritten query Q1:

q(x)← Student(x), studyAt(x, x2), University(x2).

xStudent

x2University

studyAt

- Regarding query Q1, we choose the only non-distinguished variable x2, and compute:

S = {studyAt}
N = {University}
T = {x}

There is an axiom Student v ∃studyAt.University satisfies condition in (S3), so we
get the rewritten query Q2:

q(x2)← Student(x2),MasterStudent(x2).

- Finally, we get REWT (Q) = {Q,Q1, Q2}, and a DATALOG program A ∪ cr(T ) ∪
REWT (Q)=

Student(d).
MasterStudent(d).

q(x) ← Student(x), studyAt(x, x1), University(x1), locatedAt(x1, x2), City(x2).
q(x) ← Student(x), studyAt(x, x2), University(x2).
q(x2) ← Student(x2),MasterStudent(x2).

This program has the least model IA = {MasterStudent(d), Student(d), q(d)}, thus
d is answer for the original query Q.

We can check this answer again by building model IK of K = 〈T ,A〉, and match query
Q to IK. The query match is depicted in Figure 2.3.

Proposition 2.3.17. Assume a consistent K = (T ,A) and a query q. Let IA be the least
model A ∪ cr(T ). Then ans(IK, q) = ans(IA, rewT (q)).
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xStudent

x1University

studyAt

x2

City

locatedAt

d Master , MasterStudent

d1 University

studyAt

d2

City

locatedAt

π

Figure 2.3: A map π for Q to the canonical model IK

By the above reduction, we can answer q over K = (T ,A) by posing rewT (q) over the
DATALOG program A ∪ cr(T ). However, computer sat(T ) could be exponentially hard.

Proposition 2.3.18. sat(T ) can be computed in exponential time in |T |.

Proposition 2.3.19. |rewT (q)| is exponential in |T |+ |q|.

2.4 KAOS Reasoner

In this part, we introduce the prototype system KAOS which provides query answering
services for Horn-SHIQ. To the best of our knowledge, this is the first reasoner which
supports conjunctive queries (without DL-safeness restriction) over expressive DLs. To
show the efficiency, we will test KAOS on several benchmarks.

2.4.1 System Architecture

The system consists of the main components depicted in Figure 2.4.

2.4.1.1 Ontology preprocessing

This component is responsible for ontology parsing, ontology normalization, profile check-
ing, and ontology encoding.

• Ontology parsing: In our implementation, we use the OWL API library [53] to
manage ontologies. This enables the system to manipulate ontologies in different
formats such as RDF/XML, OWL/XML, OWL Functional Syntax.

• Profile checking: After doing the Negation Normal Form (NNF) normalization,
we are able to check whether the ontology is in Horn-SHIQ profile based on the
grammar presented in Table 2.2. It was shown in [63] that an axiom C v D is in
Horn-SHIQ if the concept expression ¬C tD has the form C+

1 .
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Saturation
Ontology
Prepro-
cessing

O

Query
Prepro-
cessing

q Query
Rewriting

Datalog
Trans-
lation

Datalog
Engine

answers

(1)

(2)

(5)

(6)

(4)

(3)

(7)

(1) ABox assertions

(2) TBox axioms

(3) Conjunctive queries

(4) Existential axioms

(5) Rewritten queries

(6) Axioms

(7) Datalog rules

Figure 2.4: KAOS architecture

C+
1 ::= > | ⊥ | ¬C−1 | C

+
1 u C

+
1 | C

+
0 t C

+
1 | ∃R.C

+
1 | ∀S.C

+
1 | ∀R.C

+
0 |> nR.C

+
1 |6 1R.C−0 | A

C−1 ::= > | ⊥ | ¬C+
1 | C

−
0 u C

−
1 | C

−
1 t C

−
1 | ∃S.C

−
1 | ∃R.C

−
0 | ∀R.C

−
1 |> 2R.C−0 |6 nR.C

+
1 | A

C+
0 ::= > | ⊥ | ¬C−0 | C

+
0 u C

+
0 | C

+
0 t C

+
0 | ∀R.C

+
0

C−0 ::= > | ⊥ | ¬C+
0 | C

−
0 u C

−
0 | C

−
0 t C

−
0 | ∃R.C

−
0 | A

A,R and S denote the set of all atomic concepts, roles, and simple role, respectively.

Table 2.2: A grammar defining Horn-SHIQ axioms.

• Ontology normalization: TBox axioms are transformed into normal form close to
the one presented in [65]. To do so, we first exhaustively apply the rules P1 to
the knowledge base, and then exhaustively apply the rules P2. Rules P1 and P2
are described in Table 2.3. The last two translations in P2 are used to eliminate
qualified number restrictions and transitive roles.

• Ontology encoding: In the saturation and query rewriting part we often operate on
a huge number of sets of concept and role names. Therefore, we encode ontology
concept names, role names into binary numbers, and use bitsets to represent sets of
concept and role names. The current version of our system uses Trove3 library to
manipulate integer hash sets.

3 http://trove.starlight-systems.com/

http://trove.starlight-systems.com/


CHAPTER 2. REASONING WITH HORN-SHIQ 20

P1 :

Â v Ĉ 7→ {ÂvD,D v Ĉ}
Â uB v C 7→ {ÂvD,D uB v C}
B u Â v C 7→ {ÂvD,D uB v C}

A v B t C 7→ {AvD,D uNNF (¬B)v C} if B ∈ C+
0

7→ {AvD,D uNNF (¬C)vD} otherwise
∃R.Â v B 7→ {ÂvD, ∃R.D vB}

A v ∃R.Ĉ 7→ {Av ∃R.D,D v Ĉ}
A v ∀R.Ĉ 7→ {Av ∀R.D,D v Ĉ}
A v > nR.B̂ 7→ {Av > nR.D,D v B̂}
A v 6 1R.B̂ 7→ {Av 6 nR.D,D v B̂}

P2 :
A v B u C 7→ {AvB,Av C}

Â tB v C 7→ {Âv C,B v C}
B t Â v C 7→ {Âv C,B v C}

A v ¬B 7→ {AvD,D uB v⊥}
∃R.A v B 7→ {Av ∀R̄.B}; Where R̄ is inverse of R

A v ∀R.B 7→ {Av ∀RT .BT , BT v ∀RT .BT , BT vB};
for transitive subrole R1 of R;BT is a fresh concept name.

A v > nS.C 7→ {Av ∃S.Bi, Bi v C,Bi uBj v⊥}; 1 6 i 6 j 6 n

Table 2.3: Normal form translation for Horn-SHIQ. A,B,C are concept names. Â,Ĉ
are concept expressions. D is a fresh concept name. R is a role, and S is a simple role.

2.4.1.2 Query preprocessing

This component is simply responsible for parsing queries in SPARQL syntax. It takes a
conjunctive query in SPARQL syntax and returns the corresponding conjunctive query in
an internal data structure.

2.4.1.3 Saturation

The responsibility of this component is to exhaustively apply saturation rules presented
in section 2.3 . The input of this component is TBox axioms and the output consists of:
(1) existential axioms and (2) other type of axioms. Existential axioms are then used by
query rewriting component to rewrite the input query. The rest of axioms are translated
into Datalog rules.
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2.4.1.4 Query rewriting

This component rewrites the input query. The procedure for query rewriting is described
in Algorithm 2.1. Procedure rewrite(q) is called recursively to compute the set of rewrit-
ten queries rewT ,q. The set rewT ,q is initialized to contain only the original query q. For
each non-distinguished variable x in query q that does not contain a loop at x i.e. r(x, x),
we check if there is an applicable existential axioms in sat(T ) to rewrite q. If there is such
axiom, we rewrite the query q and add new rewritten queries to rewT ,q. The rewriting pro-
cedure is repeated with the new added queries. By recursively applying rewrite(q), we
assure that every query is checked to be rewritten. The algorithm terminates when all
non-distinguished variables in all queries are chosen and processed.

In many cases we have to operate on a huge number of axioms, thus we use inverted index
which is normally used in information retrieval systems. This index data structure allows
the system efficiently search through the set of existential axioms while rewrite queries.

Algorithm 2.1: ComputeREW
Data: program q; TBox T
Result: UCQ rewT ,q
T ′ ←− sat(T )
static rewT ,q ←− ∅
rewrite(q)
return rewT ,q

Procedure rewrite(q)
Data: rule q
rewT ,q ←− rewT ,q ∪ {q}
forall the non-distinguished variables x of q do

if there is no r with r(x, x) ∈ q then
S ←− {r | ∃u : r(u, x) ∈ q} ∪ {r− | ∃u : r(x, u) ∈ q}
N ←− {A | A(x) ∈ q}
forall the M v ∃S ′N ′ ∈ sat(T ) do

if S ⊆ S ′ and N ⊆ N ′ then
Let q′ be the rewriting of q w.r.t.x and M
if q′ 6∈ P ′ then

rewrite(q′)
end

end
end

end
end
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2.4.1.5 Datalog translation

This component translates rewritten queries and the rest of axioms into Datalog rules.
The translation for conjunctive queries is straightforward, and the translation for the rest
of axioms follows the rules presented in section 2.3.3 . This component also takes as
the input ABox assertions and translates them to Datalog facts. In this way, we have a
program constituted by Datalog translation of the rewritten queries, TBox axioms and
ABox assertions.

2.4.1.6 Datalog engine

The Datalog program obtained from the Datalog translation component is evaluated by a
Datalog engine such as DLV [69] and Clingo [44]. The answers for the input query are
the evaluation of corresponding query predicate in the Datalog program.

2.4.2 System Usage

KAOS is implemented in Java version 1.6 and can be run in Windows and Unix-based
operating systems as a stand-alone java jar file. KAOS supports ontologies in different
formats: RDF/XML, OWL/XML, OWL Functional Syntax, Turtle syntax, the Manchester
OWL syntax, and KRSS syntax. The supported input query is in SPARQL syntax. To run
KAOS we use command line in the following format:

java -jar kaos.jar -ontology <file1> -sparql <file2> -dlv <path>

<file1> the ontology file to be read
<file2> the sparql file to be query
<dlv_path> the path of dlv datalog engine
Option:
[-verbose <verbose_level ] specifies verbose category

the default level is 0

Example: java -jar kaos.jar -ontology university.owl
-sparql q1.sparql
-dlv /usr/bin/dlv

Example 2.4.1. Ontology file university.owl is an ontology O = (T ,A)

• TBox T :
Student v ∃attends.Course
Student v ∀attends.Course
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• ABox A:

Student(john), attends(john, computer network), Course(machine learning),
Student(paul), attends(peter, database systems), Course(complexity theory),
Student(peter), Course(computer network)

• SPARQL query file query.sparql contains the query to get all students who attend at
least one course:

PREFIX uri:<http://www.semanticweb.org/testontologies.owl#>
SELECT ?student
WHERE {
?student a uri:Student ;

uri:attends ?course .
?course a uri:Course . }

• We run KAOS by the following command:

java -jar kaos.jar -ontology university.owl
-sparql query.sparql
-dlv /usr/bin/dlv

• The generated Datalog program is:

q(X) ← Student(X), attends(X, Y ), Course(Y ).
q(X) ← Student(X).

Course(Y ) ← Student(X), attends(X, Y ).

Student(john). attends(john, computer network). Course(machine learning).
Student(paul). attends(peter, database systems). Course(complexity theory).
Student(peter). Course(computer network).

• The answer of the query:
john, paul, peter

2.4.3 Experiments

In our experiments, we carried out two type of tests:

1. Downscaling test: to see the performance of the system when it runs with ontologies
in less expressive languages than Horn-SHIQ.

2. Scalability test: to see the performance of the system when is runs with ontologies
in “true” Horn-SHIQ.
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The experiments were done on a Pentium Core2 Duo 2.00GHZ machine with 2GB RAM
running Ubuntu 10.04. The Java virtual machine is set with 500MB heap memory. The
running time is in milliseconds and we stop running if the running time is over five min-
utes. Our system supports queries in SPARQL syntax, but to simplify notion we present
queries in Datalog notation.

We briefly introduce the ontologies in our tests. Adolena [60] is an ontology about people
with disabilities and used to enhance web portals with ontology-based data access. Stock
is an ontology that presents the application domain of financial institutions. Vicody 4 is
an ontology about European history. Its TBox is relatively simple and consists of role
inclusions, concept inclusion, and domain and range specifications. LUBM [47] is a
benchmark for testing performance of ontology management and reasoning systems. It
describes the domain of organizational structure of universities. PATH5 is a synthetic
ontology created in the test suite of REQUIEM, a tool for query rewriting developed at
the University of Oxford. Its concepts represent the length from one to five of the paths
in a graph. PATH8 ontology is an extension of PATH5.

For readability, we put the tables into the appendix of this chapter.

2.4.3.1 Downscaling Test

In this test, we run KAOS on ontologies in less expressive languages than Horn-SHIQ
and compare with REQUIEM [83]. Two types of experiments are distinguished in the
comparison. The first one is to evaluate the query rewriting process, the second one is to
evaluate the Datalog programs obtained from the rewritten queries and ABox assertions.

Query Rewriting Evaluation

First, we make the comparison with REQUIEM on ontologies provided in the test suite of
REQUIEM. This test suite contains fives ontologies: Vicodi, StockExchange, University,
Adolena, and PathX. The queries are presented in Table 2.4, and the experiment results
are in Table 2.5.

In principle, the original query will be rewritten based on axioms in TBox. Each approach
has different ways to use these TBox axioms. In our approach we use Datalog rules to
capture the meaning of these axioms except for existential axioms. Thus, when counting
the number of rewritten queries, we take into account the Datalog rules that relate to
rewritten queries. On the column for rewritten queries/rules by KAOS in the Table 2.5, we
distinguish two sub columns: the first column contains the number of queries generated
by our rewriting algorithm, the second one is the total number of generated queries and
the Datalog rules related to these queries. From the experiment results we observe that:

- In all cases, the time for rewriting a query by KAOS is much shorter than the time used
by REQUIEM.

4http://www.vicodi.org/
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- KAOS often generates fewer rewritten queries/rules than REQUIEM-N, and REQUIEM-
G generates fewer rewritten queries than KAOS in average. The number of rewritten
queries generated by REQUIEM-F is comparable with those generated by KAOS.

The number of rewritten queries depends on the insight of the rewriting algorithm, but
the running time much depends on implementation techniques. Commonly, before doing
reasoning, the ontology is normalized, and this may affect the running time of other pro-
cesses. We do not know how long does it take for REQUIEM to normalize ontologies,
thus we cannot take this time into account while comparing running time between RE-
QUIEM and our system. Nevertheless, we provide the normalization time used by our
system and see that even when we count the normalization time as part of rewriting time,
this total time is comparable with the rewriting time of REQUIEM. Table 2.6 provides the
time used to normalize ontologies in the test suite.

Query Answering Evaluation

We make the comparison between KAOS and REQUIEM on LUBM ontologies with
different ABoxes. The rewritten queries/rules are put together with facts corresponding
to ABox assertions to constitute Datalog programs. These Datalog programs are then
evaluated by Datalog engines: DLV and Clingo. The tested ontologies have the same
TBox but different ABoxes ranging from 10MB to 40MB. They are downloadable from
KAON2’s website 5. The queries are given in the Table 2.7. The first fives queries in
this table are get from test suite of REQUIEM. We notice that the university ontology in
the test suite of REQUIEM is not exactly the same as original LUBM ontology, so the
rewritten results can be different with those in Table 2.5. We run Datalog programs with
both DLV and Clingo, the running time are presented in Table 2.8 and Table 2.9. For
readability, we mark the best total running time with a blue color.

According to these results, we have some observations as follows:

• Regarding query rewriting, KAOS always runs faster than REQUIEM, especially
than REQUIEM-G. However, REQUIEM-G produces fewer rewritten queries than
KAOS w.r.t. Q1, . . . , Q5. For the rest, KAOS generates fewer written queries.

• Regarding the Datalog running time, it is not always true that the more rules Datalog
program has, the slower the Datalog engine solves it.

• In almost all queries, Datalog programs obtained from rewritten queries by KAOS
take less time to be evaluated than those by REQUIEM-N. However, Datalog pro-
gram obtained from rewritten queries by REQUIEM-F and REQUIEM-G often
takes less times to be solved than those by KAOS, except for queries Q7, Q8.

• In most of the tests, with respect to the total time of query rewriting and Datalog
evaluation time, KAOS outperforms REQUIEM-N, F, and G.

5http://kaon2.semanticweb.org/

http://kaon2.semanticweb.org/
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2.4.3.2 Scalability Test

Finally, we test our system with ontologies in full Horn-SHIQ. To create an ontology
having full features of Horn-SHIQ, we customize UOBM benchmark [77], which is an
extension of LUBM. In this test, we do not run KAOS with different ABoxes, but we try
to run it with queries having different topologies and constructors disallowed in other less
expressive languages. These queries are presented in Table 2.10.

The experiment results are presented in Table 2.11. Because there are no available systems
supporting query answering over ontologies in Horn-SHIQ, we cannot compare KAOS
with others. The experiment results show that our system scales well.

2.5 Inline Evaluation of DL-Programs over Horn-SHIQ

Conjunctive queries over Horn-SHIQ ontologies can be seen as a special case of a tight
coupling of a single rule and a Horn-SHIQ ontology. Actually the datalog rewriting of
Horn-SHIQ can be further employed in the other combination of rules and ontologies
for efficient reasoning.

The datalog encoding of Horn-SHIQ can also be used for the inline evaluation [101] of
dl-programs. DL-programs are a loosely coupled approach for the combination of rules
and ontologies [33]. The rule components can access the ontology, and vice versa. A
prominent feature is that the rules can be very expressive using default negations and
disjunction in the head. The traditional way of reasoning over dl-programs is using a
rule reasoner and an ontology reasoner accessing the two components, which is not very
efficient. In D3.3 [40] we showed that for certain fragments of DLs which enjoys the
datalog-rewritablity property, the reasoning of dl-programs can be reduced to reasoning
over a DATALOG¬ program, thus can be implemented using only one datalog reasoner.
With a small extension of the definition of datalog-rewritablity (removing the polynomial
rewriting time restriction), the datalog rewriting of Horn-SHIQ is well suited in the
framework of inline evaluation. We briefly show this by the following examples.

We first recall how inline evaluation works for dl-programs by the following example [101].

Example 2.5.1. Let KB = (Σ, P ) be a dl-program, where Σ = { C v D } and P =
{p(a)← ; s(a)← ; s(b)← ;
q ← DL[C ] s ;D ](a), not DL[C ] p;D ](b) }.
Each dl-atom sends up a different input/hypothesis to Σ and that entailments for different
inputs might be different. To this purpose, we copy Σ to new disjoint equivalent versions
for each dl-atom, i.e., for each distinct dl-atom λ, we define a new knowledge base Σλ

that results from replacing all concept and role names by a λ-subscripted version. Thus,
for the set ΛP = {λ1

∆
= C ] s, λ2

∆
= C ] p} of dl-atoms, we have Σλi = { Cλi v Dλi },

i = 1, 2.
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We translate these disjoint ontologies to a DATALOG program, resulting in the rules
Φ(Σλi) = {Dλi (X )← Cλi (X ) }, i = 1, 2.

The inputs in the dl-atoms ΛP can then be encoded as rules ρ(ΛP ):

{Cλ1(X)← s(X); Cλ2(X)← p(X)}.

It remains to replace the original dl-rules with rules not containing dl-atoms: P ord results
from replacing each dl-atom DL[λ;Q](t) in P with a new atom Qλ(t), such that P ois the
DATALOG¬ program

P o ∆
= {p(a)← ; s(a)← ; s(b)← ; q ← Dλ1 (a), not Dλ2 (b)}.

One can see that indeed KB |= q and Φ(Σλ1) ∪ Φ(Σλ2) ∪ P o ∪ ρ(ΛP ) |= q, effectively
reducing reasoning w.r.t. the dl-program to a DATALOG¬ program.

When the ontology component is in Horn-SHIQ, we can apply the new rewriting in this
report.

Example 2.5.2. Let KB′ = (Σ′, P ) be a dl-program, where Σ′ = { C v ∃r.A, A v
B, ∃r.B vD } and P is same with the previous example.

Normalization of Σ′:

Σ′N = { C v ∃r.A, AvB, B v ∀r−.D }.

After saturation, we have sat(Σ′N) = Σ′N ∪ {C v ∃r.(A uB), C vD}.
The completion rules cr(Σ′N) for Σ′N are :

B(X)← A(X).

D(X)← C(X).

D(X)← r(X, Y ), B(Y ).

In dl-programs, we only need to deal with instance query, in which all variables involved
are distinguished. Therefore, query rewriting will not generate new rules.

The rest rules of datalog rewriting for KB′ are same with those in the previous example.
Now we are done.

To summarize, for the inline evaluation of dl-programs over Horn-SHIQ ontology, the
completion rules are enough. Note that there is an extension of dl-programs, called cq-
programs [32], which applies CQ over the ontology. If we want to inline evaluate cq-
programs, the query rewriting part is also needed.
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2.6 Summary

Finding an efficient solution for query answering in expressive DLs is important. The
existing practical approaches are only for query answering in lightweight languages such
as DL-Lite and EL. This raises the need for more expressive languages and Horn-SHIQ
is an attractive candidate. As there have been no efficient techniques for query answering
over ontologies in Horn-SHIQ, we proposed in this work a practical query rewriting
approach for this issue.

We also provided a prototype implementation and primary experimental results. To the
best of our knowledge, this is the first system offering conjunctive query answering ser-
vices over ontologies in Horn-SHIQ, that allows for unknown individuals in the queries.
Although query answering in Horn-SHIQ is challenging, KAOS has shown promising
results.

We showed that the datalog rewriting of Horn-SHIQ is well suited in the framework of
inline evaluation for dl-programs. A new version of DReW (targeting Horn-SHIQ) can
be implemented based on the results of this work.
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2.7 Appendix

2.7.1 Tables for downscaling test

Ontology Queries
Adolena Q1 Q(?0)← Device(?0), assistsWith(?0,?1)

Q2 Q(?0)← Device(?0), assistsWith(?0,?1), UpperLimbMobility(?1)
Q3 Q(?0)← Device(?0), assistsWith(?0,?1), Hear(?1), affects(?2,?1), Autism(?2)
Q4 Q(?0)← Device(?0), assistsWith(?0,?1), PhysicalAbility(?1)
Q5 Q(?0)← Device(?0), assistsWith(?0,?1), PhysicalAbility(?1), affects(?2,?1), Quadriplegia(?2)
Q6 Q(?0)← Device(?0), assistsWith(?0,?1), ReadingDevice(?1)
Q7 Q(?0)← Device(?0), assistsWith(?0,?1), ReadingDevice(?1), assistsWith(?1,?2), SpeechAbility(?2)
Q8 Q(?0)← Device(?0), assistsWith(?0,?1), UpperLimbMobility(?1), assistsWith(?1,?2), MovementAbility(?2)

Path5 Q1 Q(?0)← edge(?0,?1)
Q2 Q(?0)← edge(?0,?1), edge(?1,?2)
Q3 Q(?0)← edge(?0,?1), edge(?1,?2), edge(?2,?3)
Q4 Q(?0)← edge(?0,?1), edge(?1,?2), edge(?2,?3), edge(?3,?4)
Q5 Q(?0)← edge(?0,?1), edge(?1,?2), edge(?2,?3), edge(?3,?4), edge(?4,?5)

Path8 Q1 Q(?0)← edge(?0,?1)
Q2 Q(?0)← edge(?0,?1), edge(?1,?2)
Q3 Q(?0)← edge(?0,?1), edge(?1,?2), edge(?2,?3)
Q4 Q(?0)← edge(?0,?1), edge(?1,?2), edge(?2,?3), edge(?3,?4)
Q5 Q(?0)← edge(?0,?1), edge(?1,?2), edge(?2,?3), edge(?3,?4), edge(?4,?5)
Q6 Q(?0)← edge(?0,?1), edge(?1,?2), edge(?2,?3), edge(?3,?4), edge(?4,?5), edge(?5,?6)
Q7 Q(?0)← edge(?0,?1), edge(?1,?2), edge(?2,?3), edge(?3,?4), edge(?4,?5), edge(?5,?6), edge(?6,?7)
Q8 Q(?0)← edge(?0,?1), edge(?1,?2), edge(?2,?3), edge(?3,?4), edge(?4,?5), edge(?5,?6), edge(?6,?7, edge(?7,?8)

Stock Q1 Q(?0)← StockExchangeMember(?0)
Q2 Q(?0,?1)← Person(?0), hasStock(?0,?1), Stock(?1)
Q3 Q(?0,?1,?2)← FinantialInstrument(?0), belongsToCompany(?0,?1), Company(?1), hasStock(?1,?2), Stock(?2)
Q4 Q(?0,?1,?2)← Person(?0), hasStock(?0,?1), Stock(?1), isListedIn(?1,?2), StockExchangeList(?2)
Q5 Q(?0,?1,?2,?3)← FinantialInstrument(?0), belongsToCompany(?0,?1), Company(?1), hasStock(?1,?2),

Stock(?2), isListedIn(?1,?3), StockExchangeList(?3)
University Q1 Q(?0)← worksFor(?0,?1), affiliatedOrganizationOf(?1,?2)

Q2 Q(?0,?1)← Person(?0), teacherOf(?0,?1), Course(?1)
Q3 Q(?0,?1,?2)← Student(?0), advisor(?0,?1), FacultyStaff(?1), takesCourse(?0,?2), teacherOf(?1,?2), Course(?2)
Q4 Q(?0,?1)← Person(?0), worksFor(?0,?1), Organization(?1)
Q5 Q(?0)← Person(?0), worksFor(?0,?1), University(?1), hasAlumnus(?1,?0)
Q6 Q(?0,?1)← Professor(?0), teacherOf(?0,?1), GraduateCourse(?1)
Q7 Q(?0,?2)← Department(?1), Professor(?2), Student(?0), memberOf(?0,?1), worksFor(?2,?1)
Q8 Q(?0,?2)← Student(?0), Course(?1), takesCourse(?0,?1), Professor(?2), teacherOf(?2,?1)

Vicodi Q1 Q(?0)← Location(?0)
Q2 Q(?0,?1)←Military-Person(?0), hasRole(?1,?0), related(?0,?2)
Q3 Q(?0,?1)← Time-Dependant-Relation(?0), hasRelationMember(?0,?1), Event(?1)
Q4 Q(?0,?1)← Object(?0), hasRole(?0,?1), Symbol(?1)
Q5 Q(?0)← Individual(?0), hasRole(?0,?1), Scientist(?1), hasRole(?0,?2), Discoverer(?2), hasRole(?0,?3), Inventor(?3)

Table 2.4: Queries for rewriting evaluation
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Ontology Query Number of generated rules/CQs Time (msec)
REQUIEM RF RG Kaos REQUIEM RF RG Kaos

Queries Q & R
adolena Q1 402 27 27 13 42 226 647 226 6
adolena Q2 103 50 50 2 31 111 162 240 5
adolena Q3 104 104 104 1 31 236 289 376 6
adolena Q4 492 224 224 5 39 354 628 475 6
adolena Q5 624 624 624 1 36 750 1288 1092 3
adolena Q6 364 364 364 1 30 334 596 512 4
adolena Q7 2548 2548 2548 3 32 1903 7256 7547 6
adolena Q8 936 936 936 5 38 772 2408 2561 7
path5 Q1 6 6 6 6 6 6 9 8 1
path5 Q2 10 10 10 10 10 28 37 37 2
path5 Q3 13 13 13 13 13 247 323 275 5
path5 Q4 15 15 15 15 15 1018 2173 2349 5
path5 Q5 16 16 16 16 16 6047 17064 17505 6
path8 Q1 9 9 9 9 9 8 14 10 3
path8 Q2 16 16 16 16 16 66 96 88 4
path8 Q3 22 22 22 22 22 753 1625 1900 6
path8 Q4 27 27 27 27 27 3935 13954 14290 9
path8 Q5 - - - 31 31 - - - 12
path8 Q6 - - - 34 34 - - - 19
path8 Q7 - - - 36 36 - - - 21
path8 Q8 - - - 37 37 - - - 24
stock Q1 6 6 6 1 10 8 9 13 5
stock Q2 160 2 2 1 25 243 452 292 3
stock Q3 480 4 4 1 10 1119 1670 1461 2
stock Q4 960 4 4 1 27 1069 1848 1805 3
stock Q5 2880 8 8 1 12 5361 18472 18045 2
university Q1 2 2 2 1 2 6 9 13 1
university Q2 148 1 1 1 48 165 317 183 2
university Q3 224 4 4 1 20 257 551 431 2
university Q4 1628 2 2 1 63 790 2791 2489 1
university Q5 2960 10 10 1 52 1821 8308 7469 2
university Q6 10 10 10 1 10 8 12 17 3
university Q7 320 320 320 1 16 413 672 590 2
university Q8 160 40 40 1 16 177 414 194 1
vicodi Q1 15 15 15 1 15 8 12 13 0
vicodi Q2 10 10 10 1 10 9 14 16 1
vicodi Q3 72 72 72 1 26 48 136 68 0
vicodi Q4 185 185 185 1 41 123 339 262 0
vicodi Q5 30 30 30 1 8 34 102 94 0

Table 2.5: Query rewriting evaluation (RF=REQUIEM-F, RG=REQUIEM-G)
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Ontology Query Generated Normalization Rewriting time
rules/CQs time time

adolena Q1 42 390 6
adolena Q2 31 390 4
adolena Q3 31 379 5
adolena Q4 39 388 7
adolena Q5 36 382 4
adolena Q6 30 401 4
adolena Q7 32 379 6
adolena Q8 38 382 8
path5 Q1 6 270 1
path5 Q2 10 257 4
path5 Q3 13 254 3
path5 Q4 15 255 5
path5 Q5 16 256 8
path8 Q1 9 269 3
path8 Q2 16 270 5
path8 Q3 22 271 7
path8 Q4 27 271 9
path8 Q5 31 264 12
path8 Q6 34 273 17
path8 Q7 36 272 22
path8 Q8 37 262 23
stock Q1 10 341 4
stock Q2 25 335 7
stock Q3 10 340 2
stock Q4 27 342 3
stock Q5 12 338 3
university Q1 2 388 2
university Q2 48 382 2
university Q3 20 385 2
university Q4 63 387 2
university Q5 52 387 1
university Q6 10 388 2
university Q7 16 405 3
university Q8 16 390 3
university Q9 6 393 3
vicodi Q1 15 447 0
vicodi Q2 10 436 0
vicodi Q3 26 452 0
vicodi Q4 41 442 1
vicodi Q5 8 442 0

Table 2.6: Normalization time

Queries
Q1 Q(?0) ← worksFor(?0,?1), affiliatedOrganizationOf(?1,?2)
Q2 Q(?0,?1) ← Person(?0), teacherOf(?0,?1), Course(?1)
Q3 Q(?0,?1,?2) ← Student(?0), advisor(?0,?1), FacultyStaff(?1), takesCourse(?0,?2), teacherOf(?1,?2), Course(?2)
Q4 Q(?0,?1) ← Person(?0), worksFor(?0,?1), Organization(?1)
Q5 Q(?0) ← Person(?0), worksFor(?0,?1), University(?1), hasAlumnus(?1,?0)
Q6 Q(?0,?1) ← Professor(?0), teacherOf(?0,?1), GraduateCourse(?1)
Q7 Q(?0,?2) ← Department(?1), Professor(?2), Student(?0), memberOf(?0,?1), worksFor(?2,?1)
Q8 Q(?0,?2) ← Student(?0), Course(?1), takesCourse(?0,?1), Professor(?2), teacherOf(?2,?1)
Q9 Q(?0) ← Student(?0), advisor(?0,?1), headOf(?1,?2)
Q10 Q(?0) ← Student(?0), advisor(?0,?1), memberOf(?0,?2), takesCourse(?0,?3), worksFor(?1,?2), teacherOf(?1,?3)
Q11 Q(?0) ← Student(?0), memberOf(?0,?1), hasAlumnus(?1,?2), orgPublication(?1,?3)

Table 2.7: Queries used to compare with REQUIEM
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2.7.2 Tables for scalability test

Queries
Q1 q(X1) ← worksFor(X1, X2), affiliatedOrganizationOf(X2, X3)
Q2 q(X1, X3) ← LeisureStudent(X1), takesCourse(X1,X2), isTaughBy(X2,X3), SportsLover(X3)
Q3 q(X0, X1) ← enrollIn(X0,X1), hasDegreeFrom(X0, X1)
Q4 q(X1, X3) ← Student(X1), hasDegreeFrom(X1, X2), Professor(X3), worksFor(X3 ,X2 )
Q5 q(X1) ← Postdoc(X1), worksFor(X1, X2), University(X2), hasAlumnus(X2 ,X1 )
Q6 q(X1) ← Person(X1), like(X1, X2), Chair(X3), isHeadOf(X3,X4), like(X3,X2 )
Q7 q(X1,X2 ) ← Postdoc(X1), hasAlumnus(X2, X1)
Q8 q(X1,X2) ← GraduateCourse(X1), isTaughtBy(X1, X2), isHeadOf(X2,X3 )
Q9 q(X1) ← PeopleWithManyHobbies(X1), isMemberOf(X1, X2)

Q10 q(X1) ← SportsLover(X1), isHeadOf(X1, X2), ResearchGroup(X2)

Table 2.10: Queries to run with UOBM-Horn-SHIQ

Ontology Query Generated Normalization Rewriting Datalog running time
queries/rules time time in DLV

uobm-hornshiq Q1 2 627 59 260
uobm-hornshiq Q2 3 609 53 220
uobm-hornshiq Q3 9 616 67 230
uobm-hornshiq Q4 175 597 53 620
uobm-hornshiq Q5 17 596 53 250
uobm-hornshiq Q6 258 597 73 820
uobm-hornshiq Q7 8 606 55 250
uobm-hornshiq Q8 178 613 56 690
uobm-hornshiq Q9 181 596 54 740
uobm-hornshiq Q10 3 612 54 240

Table 2.11: Experiment with Horn-SHIQ ontology



Chapter 3

Optimal Reasoning with Forest Logic
Programs

During the previous two years of the project we studied a decidable fragment of Open
Answer Set Programming (OASP) called Forest Logic Programs (FoLPs). The integrating
formalism is called f-hybrid knowledge bases. One salient feature of OASP and thus also
of FoLPs, is that while its syntax is typical ASP syntax (albeit allowing for a particular
type of unsafe rules, called free rules), its semantics is a hybrid between the classical
Answer Set Programming semantics and the classical First Order Logics semantics. From
the ASP world it retains a stable model based semantics, while from the FOL world it
retains the possibility of having an infinite domain of interpretation: the universe is a
non-empty superset of the set of constants in the program. The open domain semantics
together with the presence of unsafe rules, make it possible to simulate within FoLPs
reasoning with the expressive DL SHOQ: as such FoLPs serve as an integrative device
for f-hybrid knowledge bases, a tightly-coupled combination of FoLPs themselves and
SHOQ KBs [42].

Example 3.0.1. Consider the following program:

fail(X ) ← not pass(X )
pass(john) ←

Although the predicate fail is not satisfiable under the ordinary answer set seman-
tics – the only answer set being {pass(john)} – it is satisfiable under the open answer
set semantics. If one considers, for example, the universe {john, x}, with x some in-
dividual which does not belong to the Herbrand universe, there is an open answer set
{pass(john), fail(x )} which satisfies fail.

The fact that the universe of interpretation is not restricted to the Herbrand universe makes
it possible to simulate within the formalism, General Inclusion Axioms with an exists
restriction on their right-hand side: this is a feature which was identified as desirable

35
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during the analysis of the ONTORULE Use Cases. For a discussion regarding this feature
please consult the analysis of the Steel Industry Use Case in the Appendix B of deliverable
D3.3 [40].

FoLPs allow for the presence of only unary and binary predicates in rules which have a
tree-like structure. This makes the fragment decidable by ensuring that it has the forest
model property: if a unary predicate is satisfiable, then it is satisfied by a forest-shaped
model. A forest shaped model is a model in which the universe of interpretation can be
seen as a forest, two nodes in the forest being connected iff there is a binary atom in the
model having as arguments the respective nodes.

A sound and complete algorithm for satisfiability checking of unary predicates w.r.t.
FoLPs has been described in deliverable D3.2 [51]. The algorithm exploits the forest
model property of the fragment: it is essentially a tableau-based procedure which builds
such a forest model in a top-down fashion. It starts with a skeleton for a forest model
which contains only one constraint: p, the unary predicate checked to be satisfiable, has
to appear in the label of a node in the forest. Then, in order to satisfy existing constraints,
it progressively introduces new ones by inserting (negated) predicates in the contents of
nodes/arcs of the forest based on the rules of the program. The forest model is constructed
by evolving a data structure called “completion structure” which contains a labeled forest,
the model in construction, together with additional information needed for the construc-
tion. When certain conditions are met, like either there are no unsatisfied constraints, or
the ones left can be satisfied similarly to previously met constraints, the algorithm termi-
nates successfully. We will refer to this algorithm as A1. The algorithm is also described
in [39] and in [42]

During the second year of the project we devised an optimization of the first algorithm
by means of a knowledge compilation technique: the new algorithm which is described
in deliverable D3.3 [40] computes in an initial step all possible building blocks of the
model using A1 and then matches and appends these blocks using similar conditions for
termination as the original algorithm. Such building blocks are restricted to completion
structures, in which there is only one node fully expanded (i.e. all constraints associated
to that node are satisfied), and are called unit completion structures. We will refer to this
algorithm as A2. The algorithm has also been described in [41].

BothA1 andA2 run in the worst case in double exponential time. During this last year of
the project we developed an algorithm with improved running time by dropping the worst
case complexity one exponential level: it runs in the worst case in exponential time in the
size of the input program. This also settles a gap concerning the complexity of FoLPs: it
was known that FoLPs are EXPTIME-hard, but not known whether they are EXPTIME-
complete. The new algorithm shows that they are indeed EXPTIME-complete. We refer
to the new algorithm as A3.

A3 takes over the idea of using unit complete structures from A2. Constraints regard-
ing contents of nodes are satisfied by finding appropriate unit completion structures and
appending them. However, unlikeA2, it employs different termination techniques. In par-
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ticular it employs a new technique for identifying redundancy across a path and a caching
technique.

The section is organized as follows: Section 3.1 introduces some technical preliminaries.
Section 3.2 introduces formally Forest Logic Programs and the notions of forest model
and forest satisfiability. Section 3.3 describes a simplified version ofA2, while Section 3.4
describes the new algorithm. Finally, Section 3.5 draws some conclusions and discusses
future work and Section 3.6 provides a list with the main notions used by the algorithms
described in this chapter.

3.1 Preliminaries

We recall the open answer set semantics [50]. Constants a, b, c, . . ., variables X, Y, . . .,
terms s, t, . . ., and atoms p(t1, . . . , tn) are as usual. A literal is an atom L or a negated
atom not L. We allow for inequality literals of the form s 6= t, where s and t are terms.
A literal that is not an inequality literal will be called a regular literal. For a regular
literal L, pred(L), and args(L) denote the predicate, and the (tuple of) arguments of L1,
respectively. By argsi(L), for a regular literal L, we understand the i-th argument of L.

For a set S of literals or (possibly negated) predicates, S+ = {a | a ∈ S} and S− = {a |
not a ∈ S}. For a set S of atoms, not S = {not a | a ∈ S}. For a set of (possibly
negated) unary predicates S: S(X) = {a(X) | a ∈ S}, and for a set of (possibly negated)
binary predicates S: S(X, Y ) = {a(X, Y ) | a ∈ S}. For a predicate p, ±p denotes p
or not p, whereby multiple occurrences of ±p in the same context will refer to the same
symbol (either p or not p).

A program is a countable set of rules α ← β, where α is a finite set of regular lit-
erals and β is a finite set of literals. The set α is the head and represents a disjunc-
tion, while β is the body and represents a conjunction. Rules can also be named, as in
r : α ← β, where r is the name of the rule. If α = ∅, the rule is called a constraint.
A special type of rules with empty bodies, are so-called free rules which are rules of the
form: q(t1, . . . , tn) ∨ not q(t1, . . . , tn)←, for terms t1, . . . , tn; this kind of rules enables
a choice for the inclusion of atoms in the open answer sets. We call a predicate q free if
there is a free rule: q(X1, . . . , Xn) ∨ not q(X1, . . . , Xn)←, with variables X1, . . . , Xn.
Atoms, literals, rules, and programs that do not contain variables are ground. For a rule
or a program R, let cts(R) be the constants in R, vars(R) its variables, and preds(R)
its predicates with upreds(R) the unary and bpreds(R) the binary predicates. For every
non-free predicate q and a program P , Pq is the set of rules of P that have q as a head
predicate. A universe U for P is a non-empty countable superset of the constants in P :
cts(P ) ⊆ U . We call PU the ground program obtained from P by substituting every
variable in P by every element in U . Let BP (LP ) be the set of regular atoms (literals)
that can be formed from a ground program P .

1If the literal L has just one argument, args(L) will return the argument itself.
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For a term t, the exact replacement of ground term x with ground term y in t, de-

noted tx|y, is defined as follows: tx|y=

{
y, if t = x;

t, otherwise
. The notation extends to tu-

ples of terms, literals, rules, and programs. For a tuple of terms T = (t1, . . . , tn),
Tx|y = ((t1)x|y, . . . , (tn)x|y). For a regular literal L = (not )p(t1, . . . , tn), Lx|y = (not )
p((t1)x|y, . . . , (tn)x|y). For a set of literals S, Sx|y = {Lx|y | L ∈ S}. For a named rule
r : α← β, its image under the exact replacement of x with y is rx |y : αx |y ← βx |y (where
rx|y is the new name of the rule, and does not involve any term replacement). For a ground
program P , its image under the exact replacement of x with y is Px|y = {rx|y | r ∈ P}.
An interpretation I of a ground program P is a subset of BP . We write I |= p(t1, . . . , tn)
if p(t1, . . . , tn) ∈ I and I |= not p(t1, . . . , tn) if I 6|= p(t1, . . . , tn). Also, for ground
terms s, t, we write I |= s 6= t if s 6= t. For a set of ground literals L, I |= L if I |= l for
every l ∈ L. A ground rule r : α ← β is satisfied w.r.t. I , denoted I |= r, if I |= l for
some l ∈ α whenever I |= β. A ground constraint ← β is satisfied w.r.t. I if I 6|= β.

For a positive ground program P , i.e., a program without not , an interpretation I of P is
a model of P if I satisfies every rule in P ; it is an answer set of P if it is a subset minimal
model of P . For ground programs P containing not , the GL-reduct [45] w.r.t. I is defined
as P I , where P I contains α+ ← β+ for α ← β in P , I |= not β− and I |= α−. I is an
answer set of a ground P if I is an answer set of P I .

A program is assumed to be a finite set of rules; infinite programs only appear as byprod-
ucts of grounding with an infinite universe. An open interpretation of a program P is
a pair (U,M) where U is a universe for P and M is an interpretation of PU . An open
answer set of P is an open interpretation (U,M) of P with M an answer set of PU . An
n-ary predicate p in P is satisfiable if there is an open answer set (U,M) of P s. t.
p(x1, . . . , xn) ∈M , for some x1, . . . , xn ∈ U .

We introduce notation for trees which extend those in [97]. Let · be a concatenation
operator between sequences of constants or natural numbers. A tree T with root c (also
denoted as Tc), where c is a specially designated constant, is a set of nodes, where each
node is a sequence of the form c · s, where s is a (possibly empty) sequence of positive
integers formed with the help of the concatenation operator (we denote the set of all such
sequences with 〈N∗〉, where N∗ is the set of positive integers); for x · d ∈ T , d ∈ N∗, we
must have that x ∈ T . For example a tree with root c and 2 successors will be denoted as
{c, c ·1, c ·2} or {c, c1, c2} 2. The set AT = {(x, y) | x, y ∈ T,∃n ∈ N∗ : y = x ·n} is the
set of arcs of a tree T . For x, y ∈ T , we say that x <T y iff x is a prefix of y and x 6= y.
The predecessor of a node x in a tree T is denoted with prevT (x) and it is the node y such
that there exists ı ∈ N∗ such that x = y · i. The deepest common ancestor of two nodes x
and y in a tree T , denoted commonT (x, y) is the node z such that z <T x, z <T y, and
there is no node z′ ∈ T such that z′ >T z, z′ <T x, and z′ <T y. A node x ∈ T is said
to be to the right of a node y ∈ T and denoted with rightT (x, y) iff there exists a node

2By abuse of notation, we consider that there are at most 9 successors for every node, so we can abbre-
viate a · b with ab



CHAPTER 3. OPTIMAL REASONING WITH FOREST LOGIC PROGRAMS 39

z ∈ T , i, j ∈ N∗, and s1, s2 ∈ 〈N∗〉, such that x = z · i · s1, y = z · j · s2, and i > j. The
subtree of Tc at y, denoted Tc[y], is the set {x | x ∈ Tc, x = y · s, s ∈ 〈N∗〉}. A path in a
tree T from x to y is denoted with pathT (x, y) = {z | x 6 z 6 y}.
A forest F is a set of trees {Tc | c ∈ C}, where C is a set of distinguished constants. We
denote with NF = ∪T∈FT and AF = ∪T∈FAT the set of nodes and the set of arcs of a
forest F , respectively. Let <F be a strict partial order relationship on the set of nodes NF

of a forest F where x <F y iff x <T y for some tree T in F . An extended forest EF
is a tuple (F,ES ) where F = {Tc | c ∈ C} is a forest and ES ⊆ NF × C. We denote
by NEF = NF the nodes of EF and by AEF = AF ∪ ES its arcs. So unlike a normal
forest, an extended forest can have arcs from any of its nodes to any root of some tree in
the forest.

In the following, all terms in ground programs which we operate with are nodes in some
extended forest, and as such they are sequences formed with the help of the · operator.
Taking into account the structure of such terms, we introduce a finer grain (ground) term
replacement operator which replaces the prefix of a term with another term. This is simply
called replacement of x with y in t, it is denoted with tx||y, and it is defined as tx||y ={
y · z, if t = x · z;

t, otherwise
. Similarly as for the exact replacement, the notion of replacement

is extended to (sets of) literals, tuples, rules, and programs.

When an extended forest EF = (F,ES ), is such that F is a set of trees {Tc | c ∈ C}, for
C a set of distinguished constants, and there exists d ∈ C such that Tc = {c}, for every
c ∈ C\{d}, and ES ⊆ Td × C, we call the forest an extended tree with root d w.r.t. C:
all trees but one are single-node trees and the nodes of the distinguished tree Td can be
interlinked with constants from C; no other links from elements of C are allowed. The
depth of an extended tree is the depth of its distinguished tree.

Finally, a directed graph G is defined as usual by its sets of nodes V and arcs A. We
introduce some graph-related notations: pathsG denotes the set of paths in G, where each
path is a tuple of nodes from V : pathsG = {(x1, . . . , xn) | ((xi, xi+1) ∈ A)16i<n},
pathsG(x, y) denotes the set of paths in G from x to y: pathsG(x, y) = {(x1 = x, . . . , xn
= y) | ((xi, xi+1) ∈ A)16i<n}, while connG denotes the set of pairs of connected nodes
from V : connG = {(x, y) | ∃Pt = (x1, . . . , xn) ∈ pathsG : x1 = x ∧ xn = y}. As an
extended forest is a particular type of graph, these notations apply also to extended forests.
Cycles and elementary cycles in directed graphs are defined as usually. In order to operate
with paths in directed graphs we also introduce some tuple operators: the concatenation
of two tuples T1 = (x1, . . . , xn), and T2 = (y1, . . . , ym), denoted T1ˆT2 is the tuple
(x1, . . . , xn, y1, . . . , ym). A tuple T1 is part of another tuple T2: T1 ⊆ T2, if there exists
two (possibly empty) tuples T3 and T4 such that T2 = T3ˆT1ˆT4.
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3.2 FoLPs

Forest Logic Programs are a subset of Open Answer Set Programming (OASP) which
allows one to simulate the DL SHOQ, underpinning the tightly-coupled combination of
rules and ontologies: f-hybrid knowledge bases.

Definition 3.2.1. A forest logic program (FoLP) is a program with only unary and binary
predicates, and such that a rule is either:

• a free rule:
a(s) ∨ not a(s)← or f (s , t) ∨ not f (s , t)← (3.1)

where s and t are terms;

• a unary rule:
a(s)← β(s), (γm(s , tm), δm(tm))16m6k , ψ (3.2)

with ψ ⊆
⋃

16i 6=j6k{ti 6= tj} and k ∈ N, or a binary rule:

f (s , t)← β(s), γ(s , t), δ(t) (3.3)

where a ∈ upreds(P ) and f ∈ bpreds(P ), s, t, and (tm)16m6k are terms, β, δ,
(δm)16m6k ⊆ upreds(P )∪not (upreds(P )) (sets of (possibly negated) unary pred-
icates), γ,(γm)16m6k ⊆ bpreds(P ) ∪ not (bpreds(P )) (sets of (possibly negated)
binary predicates), and

1. inequality does not appear in any γ: {6=} ∩ γm = ∅, for 1 6 m 6 k, and
{6=} ∩ γ = ∅;

2. there is a positive atom that connects the head term s with any successor term
which is a variable: γ+

m 6= ∅, if tm is a variable, for 1 6 m 6 k, and γ+ 6= ∅,
if t is a variable;

• a constraint: ← a(s) or ← f (s , t), where s and t are terms.

In every rule, all terms which are variables are distinct3.

Example 3.2.2. The following program4 P is a FoLP which says that an individual is
a special member of an organization (smember) if it has the support of another special
member: rule r1, or if it has the support of two regular members of the organization
(rmember): rule r2. The binary predicate supportedBy which describes the ‘has support’
relationship is free: rule r3. No individual can be at the same time both a special member
and a regular member: constraint r4. Somebody is a regular member if it is involved in

3This restriction precludes the presence in rules of literals of the form f(X,X) or not f(X,X) which
would break the forest model property.

4The example is a variation of an example introduced in deliverable D3.3 [40].
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some project: rule r5. The binary predicate involvedIn which describes the ‘involved in a
project’ relationship is free: rule r6. There is a project j: fact r7.

r1 : smember(X ) ← supportedBy(X ,Y ), smember(Y )
r2 : smember(X ) ← supportedBy(X ,Y ), rmember(Y ),

supportedBy(X,Z), rmember(Z),
Y 6= Z

r3 : supportedBy(X ,Y ) ∨ not supportedBy(X ,Y ) ←
r4 : ← smember(X ), rmember(X )
r5 : rmember(X ) ← involvedIn(X ,Y ), project(Y )
r6 : involvedIn(X ,Y ) ∨ not involvedIn(X ,Y ) ←
r7 : project(j ) ←

As already mentioned, FoLPs have the forest model property.

Definition 3.2.3. Let P be a program. A predicate p ∈ upreds(P ) is forest satisfiable
w.r.t. P if there is an open answer set (U,M) of P and there is an extended forest EF ≡
({Tε} ∪ {Ta | a ∈ cts(P )},ES ), where ε is a constant, possibly one of the constants
appearing in P 5, and a labeling function L : {Tε}∪{Ta | a ∈ cts(P )}∪AEF → 2preds(P )

such that

• p ∈ L(ε),

• U = NEF , and

• M = {L(x)(x) | x ∈ NEF} ∪ {L(x, y)(x, y) | (x, y) ∈ AEF}, and

• for every (z, z · i) ∈ AEF : L(z, z · i)+ 6= ∅.

We call such a (U,M) a forest model and a program P has the forest model property if
the following property holds:

If p ∈ upreds(P ) is satisfiable w.r.t. P then p is forest satisfiable w.r.t. P .

Proposition 3.2.4 ([49]). FoLPs have the forest model property.

Example 3.2.5. Consider the FoLP P introduced in Example 3.2.2.

The unary predicate smember is forest satisfiable w.r.t. P : there is a forest model
({j, x, y, z, t}, {smember(x), supportedBy(x, y), smember(y), rmember(z), rmember(t),
supportedBy(y, z), supportedBy(y, t), involvedIn(z, j), involvedIn(t, j), project(j)})
in which smember appears in the label of the (anonymous) root of one of the trees in the
forest (see Figure 3.1).

5Note that in this case Tε ∈ {Ta | a ∈ cts(P )}. Thus, the extended forest contains for every constant
from P a tree which has as root that specific constant and possibly, but not necessarily, an extra tree with
unidentified root node.
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x{smember}

y{smember}

z{rmember} t{rmember}

j{project}

{supportedBy}

{supportedBy}{supportedBy}

{involvedIn}

{involvedIn}

Figure 3.1: A forest model for P .

3.3 Previous Algorithm for Reasoning with FoLPs using
Unit Completion Structures

As mentioned in the introduction, all algorithms we developed for reasoning with FoLPs
have the same underlying principle: they try to construct a forest model in a tableau-like
fashion. All algorithms share the same data structure, called completion structure, which
is a representation of a forest model in construction. In section 3.3.1 we describe this data
structure and recall how it can be evolved using so-called expansion rules introduced in
Deliverable D3.2 [51]. These expansion rules are used by A2, the algorithm developed
during the second year of the project and described in Deliverable D3.3 [40], to construct
the set of unit completion structures. The new version of the algorithm, A3 reuses the
knowledge compilation technique introduced by A2. As such, section 3.3.2 recalls A2.

3.3.1 Completion Structures

The main data structure used by all three algorithms is a so-called completion structure.
A completion structure describes a forest model in construction. It contains an extended
forest EF , whose set of nodes constitutes the universe of the model in construction, and
a labeling function ct (content), which assigns to every node, resp. arc of EF , a set
of possibly negated unary, resp. binary predicates. The presence of a predicate symbol
p/not p in the content of some node or arc x indicates the presence/absence of the atom
p(x) in the open answer set. Note that unlike the labeling function L in Definition 3.2.3,
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that describes which atoms are in the forest model, the labeling function ct keeps track
also of which atoms are not in the forest model. This is needed as the completion structure
is updated by justifying both the presence or the absence of a certain atom in the model.

There is a difference in how a completion structure is updated by A1 as opposed to how
it is updated by A2 and A3. The original algorithm A1 updates a completion structure
by means of so-called expansion rules which justify or assert the presence/absence in the
model of one atom at a time. The ‘local status’ function lst assigns the value unexp
to pairs of nodes/arcs and possibly negated unary/binary predicates which have not yet
been ‘expanded’, i.e. justified, and the value exp to such pairs which have already been
considered. However, A2 and A3, update the structure by considering one node at a time
and trying to satisfy all constraints imposed by that node in a single step. So, in this case,
the local status function has been replaced by a ‘status’ function st which assigns one of
the values exp or unexp to nodes of the forest, depending whether their content has been
justified or not. Based on this difference concerning the status function, we distinguish
between A1- and A2- completion structures.

Furthermore, all algorithms have to ensure that the constructed forest model is a well-
supported one [37], or in other words, no atom in the model is circularly justified (does
not depend on itself) or infinitely justified (does not depend on an infinite chain of other
atoms). As such, a graph G which keeps track of dependencies between atoms in the
model is maintained both by a A1- and a A2- completion structure. The formal definition
is given below.

Definition 3.3.1. An A1-/A2- completion structure for a FoLP P is a tuple 〈EF , ct,
lst/st, G〉 where:

• EF = 〈F,ES 〉 is an extended forest,

• ct : NEF ∪ AEF → 2preds(P )∪not (preds(P )) is the ‘content’ function,

• lst : NEF×2upreds(P )∪not upreds(P )∪AEF×2bpreds(P )∪not bpreds(P ) → {exp, unexp}/st :
NEF → {exp, unexp} is the ‘local status’/‘status’ function,

• G = 〈V,A〉 is a directed graph which has as vertices atoms in the answer set in
construction: V ⊆ BPNEF

.

A1-/A2- completion structures are constructed by starting with a skeleton for a model of
a FoLP P which satisfies a unary predicate p, which is called A1-/A2- initial completion
structure for checking satisfiability of a unary predicate p w.r.t. P and then progressively
updating such a structure.

An A1-/A2- initial completion structure for checking satisfiability of a unary predicate
p w.r.t. a FoLP P imposes a single constraint on the model in construction: that some
atom p(ε) has to be part of the model, where ε is an anonymous individual or one of the
constants in the program. As every model of P has as part of its universe the set cts(P ),
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the extended forest EF is initialized with a set of single-node trees, one tree for each
constant appearing in P (having the respective constant as a root) and possibly a new
single-node tree with an anonymous root (in case ε, the node where p is asserted to be
satisfied, is anonymous)6. The content of ε is initialized with {p}, while the contents of
the other nodes (roots) are initialized with ∅. G is initialized to the graph with a single
vertex p(ε). Formally:

Definition 3.3.2. An A1-/A2- initial completion structure for checking satisfiability of a
unary predicate p w.r.t. a FoLP P is a completion structure 〈EF , ct, st, G〉, where:

• EF = (F, ∅), F = {Tε} ∪ {Ta | a ∈ cts(P )}, where ε is a constant, possibly in
cts(P ),

• Tx = {x}, for x ∈ {ε} ∪ cts(P ),

• lst(ε, p) = unexp/st(x) = unexp, for x ∈ {ε} ∪ cts(P ),

• G = 〈V, ∅〉, V = {p(ε)}, and

• ct(ε) = {p}.

Note that the extended forest EF in an A1-/A2- initial completion structure for checking
satisfiability of a unary predicate p w.r.t. a FoLP P is an extended tree.

The original algorithm, A1, expands an A1-completion structure by means of so-called
expansion rules which justify or assert the presence/absence in the model of one atom
at a time. Expansion rules satisfy current constraints in the structure, or in other words,
they justify the presence/absence of certain atoms in the constructed model, by making
true the body of a ground rule which has the atom in the head (in case the atom is in
the model) or making false all bodies of ground rules which have the atom in the head (in
case the atom is not in the model). Concretely, expansion rules may introduce new succes-
sors for the node under consideration in order to obtain successful groundings for unary
rules, and may assert predicate symbols or their negation to the contents of nodes/arcs
in the completion structure in order to make the body of the corresponding ground rule
satisfiable/unsatisfiable. The expansion rules which take care of this are called expand
unary/binary positive/negative rules and they are formally described in deliverable D3.2
[51] as the expansion rules (i)-(ii) and (iv)-(v).

Newly introduced domain elements give rise to new ground atoms and rules and some
of these rules might render the program inconsistent. In order to be sure that the par-
tially constructed model is a complete one every ground atom which can be formed with
unary/binary predicates from the program and nodes/arcs in the forest model in construc-
tion has to be proved to be either part or not part of the forest model. As such, if for
a unary/binary atom, neither the atom nor its negation appear in the content of some

6Note that this complies with the generic shape of a forest model described in section 3.2.
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node/arc in the forest, either the unary/binary atom or its negation is inserted in the con-
tent of such a node/arc. The expansion rules which take care of this are called choose
unary/binary rules and they are formally described in deliverable D3.2 [51] as the expan-
sion rules (iii) and (vi).

For examples concerning the application of the expansion rule please consult deliverable
D3.2 [51].

Before describing the knowledge compilation method introduced in Deliverable D3.3 [40]
we recall one more notation introduced in D3.2 (as part of the applicability rule (vii)
Saturation): a node x ∈ NEF is said to be saturated if every unary predicate or its negation
appear in its content with status exp and every binary predicate or its negation appear in
the content of each of its outgoing arcs with status exp.

3.3.2 Unit Completion Structures

A unit completion structure (UCS) is a completion structure in which EF is an extended
tree of depth 1 having as roots of the trees the constants in the program and possibly an
additional node standing for an anonymous individual: if there is such an anonymous
individual, it is the root of the distinguished tree in the extended tree. The root of the
distinguished tree, ε, is saturated: every unary predicate appears (either in a positive or a
negated form) in ct(ε) and every binary predicate appears (either positive or negated) in
the content of every outgoing arc of ε. As the distinguished tree has depth 1, we call the
nodes which are direct successors of ε in EF simply successor nodes (in the UCS). Note
that successor nodes can be either anonymous individuals or constants from the program.

Unit completion structures can be used as building blocks of a forest model. A UCS
describes how the literals formed with the (possibly negated) unary/binary predicates in
the content of ε and its outgoing arcs are justified by the presence of some other (possibly
negated) predicates in the contents of the nodes/arcs of the structure. No predicate in the
contents of successor nodes is expanded. At an abstract level a UCS captures the process
of justifying the constraints imposed by a node in a completion structure by introducing
new constraints in the form of successors of that node.

3.3.2.1 Constructing the Set of Unit Completion Structures

In order to construct a unit completion structure one starts with a skeleton, an initial unit
completion structure which is similar to an A1-initial completion structure for checking
the satisfiability of a unary predicate p w.r.t. a FoLP P . An initial unit completion struc-
ture has the same extended tree skeleton like an A1-initial completion structure, but it
does not impose any constraints regarding membership of predicates to nodes/arcs. This
is because UCSs have to be more generic if they are to be reused as building blocks of the
model. It also employs a ‘local status function’ as a UCS is constructed from an initial
UCS by using the expansion rules (i)-(vi) introduced in Deliverable D3.2 [51]. So, an
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initial unit completion structure is actually an A1-completion structure.

Definition 3.3.3. An initial unit completion structure with root ε for a FoLP P is an A1-
completion structure 〈EF , ct, st, G〉 where:

• EF = (F,ES ), F = {Tε} ∪ {Ta | a ∈ cts(P )}, where ε is a constant, possibly in
cts(P ), and ES = ∅,

• Tx = {x} for every x ∈ {ε} ∪ cts(P ),

• ct(x) = ∅, for every x ∈ {ε} ∪ cts(P ),

• G = 〈V,A〉, V = ∅, A = ∅.

Next we specify when a unit completion structure is ‘fully’ expanded.

Definition 3.3.4. A unit completion structure 〈EF , ct, lst, G〉 with root ε for a FoLP P ,
with EF = ({Tε},ES ), is an A1-completion structure derived from an initial unit com-
pletion structure with root ε for P by application of the expansion rules (i)-(vi) described
in Deliverable D3.2 Section [51], which has the following properties:

• for all p ∈ upreds(P ), either p ∈ ct(ε) and lst(p, ε) = exp, or not p ∈ ct(ε)
and lst(not p, ε) = exp;

• for all c ∈ N∗ s.t. ε · c ∈ T , and for all f ∈ bpreds(P ), either f ∈ ct(ε, ε · c) and
lst(p, (ε, ε · c)) = exp, or not f ∈ ct(ε, ε · c) and lst(not p, (ε, ε · c)) = exp;

• for all c ∈ cts(P ) s.t. (ε, c) ∈ ES and for all f ∈ bpreds(P ) either f ∈ ct(ε, c)
and lst(p, (ε, c)) = exp, or not f ∈ ct(ε, c) and lst(not p, (ε, c)) = exp ;

• for all c s.t. ε · c ∈ T and for all ±p ∈ ct(ε · c), lst(±p, ε · c) = unexp;

• for all c s.t. (ε, c) ∈ ES and for all ±p ∈ ct(c), lst(±p, c) = unexp.

For examples of unit completion structures for a FoLP P we point the reader to deliverable
D3.3 [40].

Proposition 3.3.5. There is a deterministic procedure which computes all unit completion
structures for a FoLP P in the worst-case scenario in exponential time in the size of P .

Proof Sketch. The result follows from the fact that there is an exponential number of unit
completion structures for a FoLP P in the worst case scenario. �

Once a unit completion structure is constructed, the local status function is no longer
relevant. As such, from now on we will refer to unit completion structures as triples
〈EF,ct, G〉, leaving the local status function apart.
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3.3.2.2 Using Unit Completion Structures

As mentioned previously, in a unit completion structure, the contents of the root and of the
arcs are fully justified while no constraint associated with one of the successor nodes is
satisfied. AnA2-completion structure is evolved by starting with anA2-initial completion
structure and repeatedly appending new unit completion structures to the structure such
that every new added UCS justifies the constraints imposed by some unexpanded node
in the structure. Leaf nodes of the completion structure in construction (successor nodes
of previously added UCS) are matched with new UCS-s and are eventually replaced by
these. The notion of matching will be made clear later.

We introduce next the notion of local satisfiability for a unit completion structure.

Definition 3.3.6. A unit completion structureUC for a FoLP P with root ε locally satisfies
a (possibly negated) unary predicate p iff p ∈ ct(ε). Similarly, UC locally satisfies a set
S of (possibly) negated unary predicates iff S ⊆ ct(ε).

It is easy to observe that if a unary predicate p is not locally satisfied by any unit comple-
tion structure UC for a FoLP P (or equivalently not p is locally satisfied by every unit
completion structure), p is unsatisfiable w.r.t. P . However, local satisfiability of a unary
predicate p in every unit completion structure for a FoLP P does not guarantee ’global’
satisfiability of p w.r.t. P .

A node of a completion structure can be matched with a unit completion structure if
the unit completion structure locally satisfies the content of the node and the constraints
imposed by the UCS on nodes which are constants from P are not in contradiction with
the current contents of those nodes.

Definition 3.3.7. Let CS = 〈EF,ct, st, G〉 be an A2-completion structure. A node
x ∈ NEF is matchable with a unit completion structure UC = 〈EF ′,ct′, G′〉 with root
ε, with EF ′ = (F ′, ES ′), iff:

• st(x) = unexp,

• x = ε, if7 ε ∈ cts(P ),

• UC locally satisfies ct(x), and

• for every arc (x, c) ∈ ES ′, and for every ±p ∈ ct′(c): ∓p 6∈ ct(c).

We say that UC matches x.

Next we define the operation which expands anA2-completion structure by adding a new
UCS which matches an unexpanded node in the structure. Suppose that x is such an un-
expanded node in an A2-completion structure CS = 〈EF , ct, st, G〉, with G = (V,A),

7Unit completion structures with roots constants can only be matched with the corresponding constant
nodes.
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and that x is matchable with a unit completion structure UC = 〈EF ′ , ct′ , G′〉, with root
ε, EF = (F ′, ES

′
), and G′ = (V

′
, A
′
) . Suppose also that x ∈ Tc ∈ EF . Node x can

then be expanded by replacing it with UC using an operation called expandCS(x, UC)
which updates CS as follows:

• st(x) = exp,

• Tc = Tc ∪ (Tε)ε||x;

• ES = ES ∪ {(x, v) | (ε, v) ∈ ES ′};

• if u ∈ Tε and v ∈ succEF ′(u): ct(uε||x) = ct′(u) and ct(uε||x, vε||x) = ct′(u, v);

• if u ∈ Tc[x] (the new Tc[x]) and v ∈ NEF : st(uε||x) = st′(u) and st(uε||x, vε||x) =
st′(u, v);

• for all c ∈ cts(P ): ct(c) = ct(c) ∪ ct′(c);

• V = V ∪ {aε||x | a ∈ V ′};

• A = A ∪ {(aε||x, bε||x) | (a, b) ∈ A′}.

Rule. Match. For a node x ∈ NEF : if st(x) = unexp, non-deterministically choose a
unit completion structure UC which matches x and perform expandCS(x, UC).

Now that we have a way to evolve a completion structure some conditions regarding
termination are in order. The algorithm uses two rules for this: the first one, blocking,
describes a condition for successful termination of expansion of a branch of a completion
structure, while the other, redundancy, describes a condition for unsuccessful termination
- if this condition is met, the algorithm backtracks.

Rule. (viii) Blocking. A node x ∈ NEF is blocked if there is an ancestor y of x in F ,
y <F x, y 6∈ cts(P ), s. t.:

• ct(x) ⊆ ct(y), and

• the set connprG(y, x) = {(p, q) | (p(y), q(x)) ∈ pathsG ∧ q is not free} is empty.

We call (y, x) a blocking pair. No expansions can be performed on a blocked node
(st(x)=exp).

Unlike the typical case for tableau algorithms for DLs [4], subset blocking is not enough
for pruning the expansion of a path in the extended forest. To understand why, we re-
call the intuition behind using blocking techniques in tableau algorithms: the idea is that
a completion structure which contains a blocking pair (y, x) is unfolded to a model by
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x

y

x · 1 . . . x · i . . . x · n

x · 1 . . . x · i . . . x · n

c

Figure 3.2: Justifying a blocked node y by replicating the justification of its corresponding
blocking node x

justifying the content of the blocked node x similarly to the way the content of its corre-
sponding blocking node y has been already justified. This can be done either by copying
the subtree Ty at x or by reusing the successors of y as successors of x. The first case is
described by Figure 3.2: in this case one obtains an infinite forest shaped model, as the
new copy of Ty contains a new copy of x, which again will be justified by copying there
Ty, and so on. In the second case, the resulted model is no longer forest-shaped: this is
the way we construct models from completion structures in our Soundness proof and it is
depicted in Figure 3.7.

The particularity in dealing with FoLPs consists in the fact that unraveling the completion
by applying one of the two operations described above can potentially introduce infinite
paths in G (in the first case) or cycles in G (in the second case). This would contradict the
fact that every atom in the open answer set has to be finitely motivated [48, Theorem 2].
In order to avoid this, the blocking rule verifies also that there is no path from a p(y) to a
q(x). The extra condition makes the blocking rule insufficient to ensure the termination
of the algorithm. The following applicability rule ensures termination.

Rule. (ix) Redundancy. A node x ∈ NEF is redundant iff:

• x is saturated and not blocked, and

• there are k ancestors of x in F , (yi)16i6k, with k = 2p(2p
2 − 1) + 3, and p =

|upreds(P )|, s. t. ct(x) = ct(yi).
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The algorithm aborts when a redundant node is detected.

In other words, a node is redundant if it is not blocked and it has k ancestors with content
equal to its content: any forest model of a FoLP P which satisfies p can be reduced to
another forest model which satisfies p and has at most k + 1 nodes with equal content on
any branch of a tree from the forest model, and furthermore the (k + 1)th node, in case
it exists, is blocked [39]. One can thus search for forest models only of the latter type.
As such the detection of a redundant node indicates a failure in the expansion process and
stops the expansion.

Next we define when the expansion of a completion structure is complete, and when the
completion structure is a ‘good one’, i.e. it is clash-free.

Definition 3.3.8. An A2-complete completion structure for a FoLP P and a unary pred-
icate p ∈ upreds(P ), is a completion structure that results from repeated applications
of the rule Match to an initial completion structure for p and P , taking into account the
applicability rules (viii) and (ix), s. t. no further rules can be further applied.

The local clash conditions regarding contradictory structures or structures which have
cycles in the dependency graph G are no longer relevant: if among the first k + 1 nodes
on a path with equal content, there is no blocking node, the last node on the path is
redundant.

Definition 3.3.9. An A2-completion structure CS = 〈EF , ct, st, G〉 is clash-free if EF
does not contain redundant nodes and there is no node x ∈ NEF s.t. st(x) = unexp.

3.3.2.3 Termination, Soundness, Completeness

The termination of the algorithm follows immediately from the usage of the blocking and
of the redundancy rule:

Proposition 3.3.10. An initial completion structure for a unary predicate p and a FoLP
P can always be expanded to an A2-complete completion structure in a finite number of
steps.

The algorithm is sound and complete:

Proposition 3.3.11. A unary predicate p is satisfiable w.r.t. a FoLP P iff there is an
A2-complete clash-free completion structure.

Proof Sketch. The soundness of A2 follows from the soundness of A1: any completion
structure computed using A2 could have actually been computed using A1 by replacing
every usage of the Match rule with the corresponding rule application sequence used by
A1 to derive the unit completion structure which is currently appended to the structure.
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The completeness of A2 derives from the completeness of A1: any clash-free complete
A1-completion structure can actually be seen as a complete clash-free A2-completion
structure.

As we still employ the redundancy rule in this version of the algorithm, an A2-complete
completion structure has in the worst case a double exponential number of nodes in the
size of the program. As such:

Proposition 3.3.12. A2 runs in the worst-case in double exponential time.

3.4 Optimized/Optimal Reasoning with FoLPs

This section describes A3, the worst-case optimal algorithm we developed during the last
year of the project. Like before, a structure is constructed by appending UCSs using the
Match rule, but a different strategy is employed for termination.

Firstly, the algorithm employs a technique that identifies when some redundant computa-
tion has been performed during the expansion of a path and stops the expansion of that
path, much earlier than the redundancy rule in A1 did. This led to the replacement of the
redundancy rule with a new rule with the same name. This rule is described in Section
3.4.1.

Secondly, A3 is able to identify when some computation on a path can be reused during
the expansion of another path: if a node which is currently selected for expansion is
similar to a non-ancestor node which has already been expanded, the justification of the
latter is reused when dealing with the current node. The new rule which deals with this is
called caching. This rule is described in Section 3.4.2.

Section 3.4.3 introduces the usual notions of complete and clash-free A3-completion
structure, while Section 3.4.4 shows that the algorithm terminates by computing a bound
on the size of an A3-completion structure: a structure has a maximum number of nodes
which is exponential in the size of the input program.

Further on, Sections 3.4.5 and 3.4.6 show that the algorithm is sound and complete. While
the two new applicability rules are at a first glance not that much different to previous
applicability rules they rely on different proof strategies, especially on a different strategy
to reduce an infinite model to a finite one (which is part of the completeness proof). As
such we consider these proofs to be a main contribution of this work and reproduce them
inline.

The usage of the caching rule has improved the worst case running time of the algorithm
by one exponential level. The formal complexity analysis can be found in section 3.4.7.
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3.4.1 Failure: Redundancy

As discussed in section 3.3.2 the blocking condition is complex enough to not always
be fulfilled when exploring a finite number of nodes. The previous algorithm used an
extra condition to ensure termination: if a certain number of nodes with equal content had
already been explored on a path, there was a failure and the algorithm aborted. Now we
introduce a more refined strategy for aborting expansion of a path which is based on the
idea that the set of oldest paths running between two nodes with similar content should
decrease. While before failure was detected only when reaching a node with exponential
depth, the new strategy identifies failure much earlier.

The idea is to keep track of the oldest path in G (’oldest’ refers to its starting level w.r.t.
the forest) from which every atom makes part and to try to minimize the set of oldest
paths running along a path of the forest. Nodes with identical content are allowed on the
same path only if every subsequent occurrence of such a node shrinks the set of oldest
paths.

A new notation is introduced: by rank of an atom a one understands the shallowest depth
of a node x such that there exists a unary/binary p/f where (p(x)/f(x, y), a) ∈ pathsG.

Formally:
rank(p(x)) = min({|x|} ∪ {rank(a)|(a, p(x)) ∈ AG})

rank(f(x, y)) = min({|y|} ∪ {rank(a)|(a, f(x, y)) ∈ AG})
rank(x) = min

p∈ct(x)
rank(p(x))

Example 3.4.1. Consider again the forest model depicted in Figure 3.1. Every atom in
the model can be reached by a path starting with smember(x). As smember(x) is not
reached by any other atom, its rank is equal to its depth, 1. Thus, all atoms in the model
have rank 1.

Example 3.4.2. Figure 3.3 shows an extract from a completion structure in which every
predicate p in the content of a node x is augmented with the rank of p(x). The arcs
between predicates in the content of some node are arcs in the dependency graph: thus,
G contains arcs from b(x) to a(y), b(y), and c(y), respectively. As rank(b(x)) = 1 we
have that also: rank(a(y)) = rank(b(y)) = rank(c(y)) = 1.

We will denote with in(k, x) the set of incoming paths from level k to node x (presuming
|x| > k):

in(k, x) = {p|rank(p, x) = k}

Example 3.4.3. For the completion structure depicted in Figure 3.3 we have that: in(x, 1) =
{a, b}, in(x, 2) = {c}, and in(1, y) = {a, b, c}.

Formally:
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x {(a, 1),(b, 1)} (c, 2)}

y {(a, 1), (b, 1), (c, 1)}

Figure 3.3: Redundancy: y is redundant as the set of paths coming from the ancestor at
depth 1 increases

Rule. (ix’) Redundancy. A node x ∈ NEF is redundant if there is an ancestor y of x in
F , y <F x, y 6∈ cts(P ), s. t.:

• ct(x) ⊆ ct(y),

• rank(x) = rank(y) = r, and in(r, x) ⊇ in(r, y).

The expansion stops when a redundant node is identified.

Intuition: Both strategies for identifying redundant nodes are related to techniques for
reducing an infinite forest model to a finite one (used in the completeness proof of the
algorithm). In the general case this can be done by considering nodes in the infinite model
which are on the same path and have equal content and collapsing the two nodes onto each
other by deleting the path between the two nodes (together with all the paths which start
with nodes on this path). However, nodes with equal content cannot be indiscriminately
collapsed: some extra conditions have to be met in order for the remaining structure to
still remain a model.

In the original algorithm, the technique used for reducing a model was to first identify
blocking pairs (nodes with equal content with no path running between them) and then
collapse nodes with equal content if the set of paths between a ’reference’ node and the
first node is included or equal within the set of paths between the reference node and the
second node. Some extra conditions had to be met for collapsing the two nodes, like there
is no blocking node between them. Such conditions can only be checked at ’proof time’,
but not at ’construction time’. That’s why at construction time one could only use the
bound established by this technique, but not the technique itself.

The new technique for reducing models using the set of oldest paths traversing a node
does not use any reference point when comparing nodes with equal content. Also, except
for checking subset inclusion of the set of oldest paths, no extra condition has to be met
before collapsing a node into another. This is due to the fact that when reducing a model
and scanning a path, first such redundant nodes are identified and collapsed, and then
eventually a blocking pair is found. This is guaranteed by the fact that, for infinite paths,
by always chasing the set of oldest paths (and exhausting them in a finite number of
steps) we reach a point where there are no running paths between two nodes (within finite
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x{(smember, 1), not rmember, not project}

{(supportedBy, 1), not . . .)}

y{(smember, 1), not rmember, not project}

Figure 3.4: x and y form a redundancy pair

distance of each other), and due to the infinity of the path we reach two nodes with equal
content with this property (within finite distance of each other).

Example 3.4.4. Nodes x and y in Figure 3.3 are such that ct(y) ⊂ ct(x), and the set of
oldest paths is expanding when traversing y: in(1, y) ⊃ in(1, x). Thus, y is redundant.

Example 3.4.5. Consider the FOLP P in example 3.2.2 and the open answer set depicted
in Figure 3.6. That particular open answer would never be constructed by our algorithm:
if one constructs a completion structure for checking satisfiability of smember w.r.t. P , in
the style of that particular forest model, one encounters a redundancy node, y. The situ-
ation is depicted in Figure 3.4 (negative predicates do not have ranks): ct(x) = ct(y) =
{smember, not rmember, not project}, rank ( smember (x)) = rank(smember(y)) =
1 and in(1, x) = in(1, y) = {smember}, and thus, node y is redundant.

3.4.2 Caching

Blocking can be generalized to the so-called anywhere blocking or caching where a node
reuses the justification/expansion of another node which is not on the same path as itself.
Again, the typical condition regarding subset inclusion of the contents of the nodes has
to be fulfilled. Additionally, a condition regarding sets of paths running between the
common ancestor of the nodes and the nodes themselves has to be fulfilled. Formally:

Rule. (x) Caching. A node y ∈ T ∈ NEF is said to be cached if there is a node x ∈ T ∈
NEF , y 6<T x, x 6<T y, x 6∈ cts(P ), s. t.:

• rightT (y, x),

• ct(y) ⊆ ct(x), and

• connprG(z, y) ⊆ connprG(z, x), where z is the common ancestor of x and y:
z = commonT (x, y).

We call (y, x) a caching pair and y a caching node. A cached node is no longer expanded
(st(x)=exp).
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x y

x · 1 . . . x · i . . . x · n y · 1 . . . y · i . . . y · n

v v′

c

Figure 3.5: Justifying a cached node y by replicating the justification of its corresponding
caching node x

Intuition. Similarly to dealing with blocking pairs, the cached node will be expanded
similarly to the caching node. One prerequisite for this is that the content of the cached
node is a subset of the content of the caching node.

Like in the case of blocking, the content of the cached node can be justified in two different
ways: either by copying the subtree Tx at y or by reusing the successors of x as successors
of y. In the first case (depicted in Figure 3.5), it has to hold that if (u, v) is a blocking
pair, with u being a leaf node in Tx, and v >T z, where z = commonT (x, y), then
(u, v′) is still a blocking pair, where v′ is the copy of v in the new subtree Ty (1). In
the second case, the obtained model is no longer forest shaped and one has to check that
no cycles are introduced in G (2): this is the approach we take in the Soundness proof
and it is described in Figure 3.8 in Section 3.4.5. The extra condition connprG(z, y) ⊆
connprG(z, x) ensures that (1) and (2) hold.

For a cached node to not reuse its own justification in case a successor of its caching node
is at its turn a cached node, we impose that a cache node is always ’to the right’ of the
corresponding caching node in their common tree. Together with this requirement, we
enforce the following expansion strategy for the completion structure: a node x ∈ T ∈
F can be expanded iff every node y s.t.: rightT (y, x) is either expanded, blocked, or
cached8. This equates to expanding trees in the extended forest in a depth-first manner.
The Match rule becomes:

Rule. Match’. For a node x ∈ NEF : if st(x) = unexp and for every node y s.t.
rightT (y, x): st(y) = exp, non-deterministically choose a unit completion structure UC

8We want to avoid the situation in a which a node could potentially be cached, but instead it is expanded
using the Match rule, as its corresponding caching node, which is at its right, has not been yet expanded.
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y{smember,not rmember,not project}

z{rmember,not smember,not project} t{rmember}

j{project,not smember,not rmember}

{supportedBy,
not involvedIn}

{supportedBy,
not involvedIn}{involvedIn,

not supportedBy}

Figure 3.6: A completion structure in which (z, t) is a caching pair

which matches x and perform expandCS(x, UC).

Example 3.4.6. Figure 3.6 shows a completion structure for P from example 3.2.2 in
which every node except t is expanded: note that the completion structure contains no re-
dundancy pair. We have that y = commonT (z, t), ct(t) ⊂ ct(z), and connprG(y, z) =
connprG(y, t) = (smember, rmember), and thus z and t form a caching pair: t will
be expanded similar to z either by reusing the successors of z or replicating the expan-
sion of z: note that in this case the two types of justification give the same result as the
only successor of z is a constant j (thus, also when replicating the expansion of z, a new
successor is not introduced, but j is reused).

3.4.3 Complete/Clash-free Completion structures

In this section we redefine the notions of complete completion structure and clash-free
completion structure to reflect on the changes introduced by the new applicability rules.

Definition 3.4.7. AnA3-complete completion structure for a FoLP P and a p ∈ upreds(P ),
is anA3-completion structure that results from the repeated application of the rule Match’
to an initial A3-completion structure for p and P , taking into account the applicability
rules (viii) Blocking, (ix’) Redundancy, and (x) Caching s. t. no rules can be further
applied.

As regards clash conditions, the presence of redundant nodes as defined by rule (ix’) Re-
dundancy constitutes also in this case a clash. Another clash condition is the impossibil-
ity to expand an unexpanded node (by finding an appropriate matchable unit completion
structure, blocking or caching node):

Definition 3.4.8. A complete A3-completion structure CS = 〈EF , ct, st, G〉 is clash-
free if there is no redundant node in EF and for every x ∈ NEF : st(x) = exp.
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An overview of the algoritmA3 for checking satisfiability of pw.r.t. a FoLP P is provided
by Algorithm 3.1.

3.4.4 Termination

In this section we show that the algorithm A3 terminates: first we compute a bound on
the path length in any A3-completion structure, and then, using this result, we compute
a bound in the total number of nodes in any A3-completion structure. Both bounds are
exponential in the size of the input FoLP P . The latter result is a direct consequence of
employing the caching rule.

Proposition 3.4.9. Every path in anA3-completion structure for a unary predicate p and
a FoLP P has at most an exponential number of nodes in the size of P .

Proof. We show that any path has at most n22n nodes, where n = |upreds(P )|.
There is a finite amount of nodes with different contents: 2n, on any path in the completion
structure and in the completion structure itself. As such, there are at least n2n nodes
with equal content on any path which contains n22n nodes. Let x1 < . . . < xn2n be
a sequence of such nodes and let (rl)16l6n be the ordered sequence of ranks of unary
predicates in ct(x1): rl ∈ {k | p ∈ ct(x1) ∧ rank(p, x1) = k}|, for 1 6 l 6 n,
and rl > rl+1, for 1 6 l < n. As some predicates might have equal ranks, and thus
r = |{k | p ∈ ct(x1) ∧ rank(p, x1) = k}| < n, we take ri = |x1|, for every i > r. We
show that rank(xj2n) > rj , for every 1 6 j 6 n by induction.

Base case: j = 1. We have that rank(xi) > rank(x1) = r1, for 1 6 i 6 2n, and
(xi, xk) is neither a blocking nor a caching pair, for any 1 6 i < k 6 2n. Assume that
rank(x2n) = r1. Then rank(xi) = r1, for 1 6 i 6 2n, and in(x1, r) 6⊆ in(xk, r), for
any 1 6 i < k 6 2n. But |{S | S = in(xi, r), for some xi ∈ NEF and r ∈ N}| = 2n,
which contradicts with the previous statement. Thus, the original assumption was false
and rank(x2n) > r1.

Induction case: if rank(x2j) > rj , for a certain 1 6 j < n, one can bring a similar
argument to the one from the base case to show that rank(x2j+1) > rj+1.

As such, rank(xj2n) > rj , for every 1 6 j 6 n, and in particular, rank(xn2n) > rn,
for every 1 6 j 6 n. As rank(p, x1) 6 rn, for every p ∈ ct(x1), it results that
rank(p, x1) < rank(xn2n), for every p ∈ ct(x1). This translates in the fact that the set
of oldest paths in G traversing xn2n started at a node below x1, and thus there are no paths
in G running between x1 and xn2n . As ct(x1) = ct(xn2n), this implies that (x1, xn2n)
is a blocking pair and thus xn2n , being a blocked node is the last node on the path. This
reasoning applies to every possible content for a node, thus in case n > 1, we achieve that
there have to be less than n22n nodes on every path: otherwise, there is a blocking node
for every possible type of content for a node, which contradicts the fact that a path has at
most one blocking node.
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Algorithm 3.1: Overview of A3.
input : FoLP P , unary predicate p;
output: checks satisfiability of p w.r.t.P ;

1) Construct the set of Unit Completion Structures (UCSs) for P (if not constructed
already):;

To construct a UCS: a) Construct an initial unit completion structure for p w.r.t. P
as in Definition 3.3.3;
b) Apply expansion rules (i)-(vi) introduced in Deliverable D3.2 [51] until the
conditions in Definition 3.3.4 are met.;

2) Construct an A2-initial completion structure for p w.r.t. P as in Definition 3.3.2;

3) For every x ∈ NEF apply one of the followings rules (in decreasing order of priority)
(we assume EF is explored in a depth-first fashion): ;

a) if there is an ancestor y of x: y <F x, y 6∈ cts(P ), s. t. ct(x) ⊆ ct(y), and
connprG(y, x) = {(p, q) | (p(y), q(x)) ∈ pathsG ∧ q is not free} is empty then

x is blocked;
end
b) if there is an ancestor y of x in F , y <F x, y 6∈ cts(P ), s. t. ct(x) ⊆ ct(y),
rank(x) = rank(y) = r, and in(r, x) ⊇ in(r, y) then

x is redundant: return false;
end
c) if there is a node y ∈ T ∈ NEF , y 6<T x, x 6<T y, y 6∈ cts(P ), s. t. rightT (x, y),
and ct(x) ⊆ ct(y), and connprG(z, x) ⊆ connprG(z, y), where
z = commonT (x, y) then

x is cached;
end
d) if st(x) = unexp and for every node y s.t. rightT (y, x): st(y) = exp then

non-deterministically choose a unit completion structure UC which matches x
and perform expandCS(x, UC) (Match’);

end

4) if for every node x ∈ NEF : st(x) = exp then
return true

end
return false.
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Furthermore, one can show that after an exponential number of steps, one always reaches
a complete completion structure. Note that in the previous version of the algorithm a
complete completion structure had in the worst case a double exponential number of node
in the size of the program. Now, due to caching, the complexity drops one exponential
level.

Proposition 3.4.10. A complete A3-completion structure for a unary predicate p and a
FoLP P has at most an exponential number of nodes in the size of P .

Proof. Interestingly, the additional condition concerning paths running between the
common ancestor and the two nodes in a caching pair can be reformulated in a condition
regarding inclusion of the intersections of sets of paths running through the tree with the
two nodes ordered by their ranking.

connprG(z, x) ⊆ connprG(z, y) iff in(r, x) ⊆ in(r, y), for every r 6 rank(z)

This property enables us to obtain an exponential bound on the number of nodes in any
complete completion structure using the three applicability rules. To do this we overesti-
mate the number of nodes, by making caching even harder by imposing an even stricter
condition: in(r, x) ⊆ in(r, y), for every r > 0.

We count how many structures of the type ((x1, r1), (x2, r2), . . .) are, where x1, x2, . . . ∈
upreds(P )∪ not upreds(P ), r1, r2, . . . ∈ 0, n, xi-s are distinct, and n is a natural number
exponential in the size of P (the maximum length of a path in a completion structure -
see Proposition 3.4.9), or, in other words, the number of possible node contents annotated
with the rank of every predicate in the content (predicates which appear negated in the
content of some node are annotated with 0). This is equal to the number of functions
f : 2upreds(P ) → 0, n ∪ 0, n

2 ∪ . . . 0, n|upredsP | such that f(x) ∈ 0, n
|x|, which at its turn

is exponential in the size of P .

Assume there are two distinct nodes with identical annotation structures as described
above. If they are on the same path, they form a redundant pair, otherwise they form a
caching pair.

3.4.5 Soundness

Proposition 3.4.11 (soundness). Let P be a FoLP and p ∈ upreds(P ). If there exists a
complete clash-free completion structure for p w.r.t. P , then p is satisfiable w.r.t. P .

Proof. From a clash-free complete completion structure for p w.r.t. P , we construct
an open interpretation, and show that this interpretation is an open answer set of P that
satisfies p. Let 〈EF , ct, st, G〉 be such a clash-free complete completion structure
with EF = 〈F,ES 〉 the extended forest and G = (V,A) the corresponding dependency
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Figure 3.7: Justifying a blocked node y by reusing the successors of its corresponding
blocking node x

graph and let bl and ch be the sets of blocking pairs and caching pairs corresponding to the
completion. Let blocked and cached be the sets of blocked and cached nodes respectively:
blocked = {y | (x, y) ∈ bl} and cached = {y | (x, y) ∈ ch}.

1. Construction of open interpretation.

We construct a new graph Gext = (Vext , Aext) by extending G in the following way:
for every pair of blocking/caching nodes, the content of the blocking/caching node
is copied into the content of the blocked/cached node, and all connections from the
blocking/caching node to its successors or within itself are replicated by connec-
tions from the blocked/cached node to the successors of the blocking/caching node
or within itself (or, in other words, the content of the blocked/cached node is iden-
tical with the content of the blocking/caching node and it is motivated in a similar
way). The underlying forest is also extended with arcs from the blocked/cached
node to all successors of the blocking/caching node. Formally:

• Vext = V ∪ {ax|y | a ∈ V ∧ args1(a) = x ∧ (x, y) ∈ bl ∪ ch};
• Aext = A ∪ {(ax|y, bx|y) | (a, b) ∈ A ∧ args1(a) = x ∧ (x, y) ∈ bl ∪ ch};
• AextEF = AEF ∪ {(y, z) | (x, y) ∈ bl ∪ ch ∧ (x, z) ∈ AEF}.

Lemma 3.4.12. Let (x, y) ∈ bl ∪ ch and Gext = (Vext , Aext) constructed as de-
scribed above. Then, for any ground rule r ∈ PNEF : Vext |= r iff Vext |= rx|y iff
Vext |= ry|x.

Proof. By construction of Vext . �
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Figure 3.8: Justifying a cached node y by reusing the successors of its corresponding
caching node x

Lemma 3.4.13. Let UC = 〈EF,ct, G〉 be a unit completion structure for a FoLP
P with EF = ({Tε}, ES), and G = (V,A). Then, the open interpretation induced
by UC: (NEF , V ), is an open answer set of the program: ∪r∈P rargs1(head(r))|ε. This
is equivalent to V |= ∪r∈PNEF rargs1(head(r))||ε, or, in other words, the set of atoms
induced by UC satisfies the grounding of P with elements from NEF s.t. the first
term in the head of each ground rule is ε.

Proof. By construction of a unit completion structure. �

Let there be an open interpretation (U,M), with U = NEF , i.e., the universe is the
set of nodes in the extended forest, and M = Vext , i.e., the interpretation corre-
sponds to the set of nodes in the extended graph.

2. M is a model of PM
U . First of all let’s note that M |= PM

U iff M |= PU . We will
show that M |= PU .

Let’s note that PU = ∪x∈U ∪r∈PU rargs1(head(r))||x.

For every node x ∈ U we will show that M |= ∪r∈PU rargs1(head(r))|x:

• (i) suppose x 6∈ blocked ∪ cached. Then, at some point in the construction
of CS, x has been expanded by replacing it with a unit completion structure
UC = 〈EF ′,ct′, G′〉, where G′ = (V ′, A′). According to Lemma 3.4.13,
V ′ |= ∪r∈PNEF ′ rargs1(head(r))||ε. Let V ′′ = {aε||x | a ∈ V ′}. Then V ′′ |=
∪r∈PNEF ′ rargs1(head(r))||x. As V ′′ ⊆ V , V ⊆M , and∪r∈PNEF ′ rargs1(head(r))||x =

∪r∈PU rargs1(head(r))||x, so M |= ∪r∈PU rargs1(head(r))||x.
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• (ii) suppose x ∈ blocked ∪ cached. Then, according to Lemma 3.4.12, for
every r ∈ PU : M |= r iff M |= rx|y, where y is the corresponding blocking or
caching node. That M |= rx|y follows from case (i).

3. M is a minimal model of PM
U . Before proceeding with the actual proof we introduce

a notation and a lemma which will prove useful in the following. Let EF
′

be the
directed graph (NEF , A

′
) which has as nodes all the nodes from EF and as arcs

all the arcs of EF plus some ’extra’ arcs which point from blocked/cached nodes
to successors of corresponding blocking/caching nodes: A

′
= AEF ∪ {(y, z) |

∃x s. t. (x, y) ∈ bl ∪ ch ∧ z ∈ succEF (x)}. The new graph captures in a more
accurate way the structure ofM : blocked/cached nodes are connected to successors
of the corresponding blocking nodes, as their contents is justified similarly as the
content of the blocking/caching nodes.

The following lemma associates paths in the dependency graphs G/Gext to paths
in the underlying extended forest: EF/EF

′
. It basically says that by projecting

a path in the dependency graph on the arguments of every atom in the path and
eliminating all binary arguments and redundant unary arguments one obtains a path
in the extended forest.

Lemma 3.4.14. Let Pt = (a1, . . . , an) ∈ pathsG/pathsGext , with pred(a1) ∈
upreds(P ), and T1 = (args(ai1), . . . , args(aim)) be a tuple obtained by selecting
all and only the unary atoms in Pt1 in the order they appear in Pt and retaining
only their argument: 1 6 ij 6 n, ij < ij+1, for every 1 6 j 6 m, and pred(ak) ∈
upreds(P ) iff there exists 1 6 j 6 m such that k = ij , for every 1 6 k 6 n. Then,
the tuple obtained by eliminating consecutive duplicates in T1, T2 = (b1, . . . , bp),
where for every 1 6 j 6 p, there exists 1 6 k 6 m such that bj = args(aik) and
args(aik) 6= args(aik−1

) is a path in EF/EF
′
: T2 ∈ pathsEF/pathsEF ′ . We will

also call T2, the argument path of Pt and denote it with argpath(Pt).

Furthermore, if Pt1 is a cycle in G/Gext , than T2 is a cycle in EF/EF
′
.

Proof. We construct a sequence of pairs of indexes ((k1, q1), . . . , (kp−1, qp−1))
such that ki is the greatest index for which args(aki) = bi and qi is the smallest
index for which args(aki) = bi+1, for every 1 6 i < p.

Then, we consider subpaths of Pt of the form (aki , . . . , aqi), for 1 6 i < p. Every
such subpath has the form: (p(bi), f1(bi, bi+1), . . . , fs(bi, bi+1), q(bi+1)), with p, q ∈
upreds(P ), f1, . . . , fs ∈ bpreds(P ), and s > 1. Thus: (bi, bi+1) ∈ A/A′ for every
1 6 i < p: T2 is a path in EF/EF

′
.

If Pt is a cycle then a1 = an. By construction of T2, b1 = bn = args(a1). �

Now we can proceed to the actual proof of statement. Assume there is a model
M ′ ⊂ M of Q = PM

U . Then ∃l1 ∈M : l1 /∈ M ′. Take a rule r1 ∈ Q of the form
l1 ← β1 withM |= β1; note that such a rule always exists by construction ofM and
expansion rule (i) . If M ′ |= β1, then M ′ |= l1 (as M ′ is a model), a contradiction.
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Thus, M ′ 6|= β1 such that ∃l2 ∈ β1 : l2 /∈ M ′. Continuing with the same line
of reasoning, one obtains an infinite sequence {l1, l2, . . .} with (li ∈ M)16i and
(li /∈ M ′)16i. M is finite (the complete clash-free completion structure has been
constructed in a finite number of steps, and when constructing M (Vext ) we added
only a finite number of atoms to the ones already existing in V ), thus there must be
1 6 i, j, i 6= j, such that li = lj . We observe that (li, li+1)16i ∈ Eext by construction
of Eext and expansion rule (i), so our assumption leads to the existence of a cycle
in Gext .

Assume Gext contains a cycle C = (a1, . . . , an = a1). Then, potentially, the cycle
falls into one of the following categories:

• ‘local’ cycles: cycles in which all unary atoms have identical arguments or
there are no unary atoms.

• ‘blocking’ cycles: non-local cycles which do not contain unary atoms having
as arguments cached nodes.

• ‘caching’ cycles: non-local cycles which have as arguments cached nodes.

Note that G does not contain any cycle (by construction), so every cycle in Gext

has to be a result of the introduction of new nodes/arcs in G: as such, each cycle
should contain at least an atom having as one of its arguments a blocked or cached
node. We will show by reductio ad absurdum that each of these types of cycles
cannot appear in Gext . In the following we consider only elementary cycles as in
the absence of elementary cycles there cannot be any cycles whatsoever.

Lemma 3.4.15. There are no (elementary) local cycles in Gext .

Proof. Assume C = (a1, . . . , an = a1) is an (elementary) local cycle in Gext .
Then C contains only atoms of the form p(x), and/or f(x, y), for p ∈ upreds(P ),
f ∈ bpreds(P ), and x, y ∈ NEF . Assume x ∈ blocked/cached. Then let z ∈ NEF

be such that (x, z) ∈ bl/ch. Then Cx|z = ((a1)x|z, . . . , (an)x|z = (a1)x|z) is a cycle
in G. Contradiction with the fact that there are no cycles in G. �

To show that there are no elementary blocking cycle in Gext we employ a three step
process: the first two steps restrict the set of possible cycles by constraining the
structure of the argument path of such a cycle (lemmas 3 and 3).

Lemma 3.4.16. There is no elementary cycle C in Gext such that its argument
path contains a blocking path from EF : for every x, y ∈ bl such that x, y ∈ T ,
pathT (x, y) 6⊆ argpath(C).

Proof. Assume pathT (x, y) ⊆ argpath(C). Then, there are two nodes a1, a2 ∈
G, with args(a1) = x, and args(a2) = and a path Pt ∈ pathsG(a1, a2) such that
Pt ∈ C. But this contradicts with the fact that connprG(x1, x2) = ∅. Thus, the
initial assumption was false. �



CHAPTER 3. OPTIMAL REASONING WITH FOREST LOGIC PROGRAMS 64

y y2 y3

z2

x2

xz

x3

x4z3

Figure 3.9: Splitting blocking paths: infinite division

Lemma 3.4.17. Let C be an elementary cycle in Gext which contains a node y such
that (x, y) ∈ bl and x, y ∈ T . Then, pathT (z, y) ∈ argpath(C), where z = x · i
and z < y.

Proof. Assume the opposite. As y ∈ argpath(C) and argpath(C) is a cycle,
there has to be an arc of the type (t, y) ∈ argpath(C). Let z2 ∈ pathT (succT (z), y)
be such that pathT (z2, y) ∈ argpath(C) and (prevT (z2), z2) 6∈ argpath(C). Every
node in pathT (z, y), including z2, has as incoming arcs the arc from its predecessor
in EF and possibly blocking arcs. As (prevT (z2), z2) 6∈ argpath(C), z2 has an
incoming blocking arc: let (y2, z2) be such an incoming blocking arc, where y2 ∈ T
and let x2 ∈ T be the corresponding blocking node: (x2, y2) ∈ bl. As (y2, z2) is a
blocking arc, it means that z2 ∈ succT (x2), or in other words x2 = prevT (z2). As
z2 ∈ pathT (succT (z), y), it implies that x2 ∈ pathT (z, prevT (y)).

As y2 ∈ argpath(C) and argpath(C) is a cycle, there has to be an arc of the type
(t, y2) ∈ argpath(C). From lemma 3 we know that pathT (x2, y2) 6⊆ argpath(C).
Thus, there is a node z3 ∈ pathT (succT (x2), y2) such that pathT (z3, y2) ∈ argpath(C)
and (prevT (z3), z3) 6∈ argpath(C). Like before in the case of z2, z3 has an incom-
ing blocking arc (y3, z3) with (x3, y3) ∈ bl. In this case: x3 ∈ pathT (x2, prevT (y2)).

The process repeats itself ad infinitum: figure 3.9 describes it in the general case.
One obtains a sequence of tuples (xi, yi, zi) such that (xi, yi) ∈ bl, xi+1 ∈ pathT
(xi, prevT (yi)), zi = succT (xi), pathT (zi+1, yi) ∈ argpath(C), and (yi, zi) ∈
argpath(C). If yi 6= yj , for every i 6= j, one has an infinite number of nodes in EF
which is a contradiction with the fact that there is a finite amount of nodes in EF .

If however there exist l < k such that yk = yl, then xl = xl+1 = . . . xk, and
(yk, zk)ˆ pathT (zk, yk − 1)ˆ . . .ˆ (yl+1, zl)ˆ pathT (zl+1, yl = yk) is a cycle in
Gext strictly included in C. This contradicts with the fact that C is an elementary
cycle (see Figure 3.10).
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Figure 3.10: Splitting blocking paths: the case where x2 = x3 = x4 and y2 = y4:
z4, y3, z3, y2, z4 form a cycle

Thus, in both cases we obtained a contradiction, and the initial assumption was
false.

Lemma 3.4.18. There are no elementary blocking cycles in Gext .

Proof.
AssumeC = (a1, . . . , an = a1) is a blocking cycle inGext which contains a blocked
node y ∈ T : (x, y) ∈ bl. Then, from lemma 3.4.14 argpath(C) is a cycle in
EF

′
. Also, according to lemma 3 argpath(C) does not contain pathT (x, y), but

according to lemma 3 it does contain pathT (z, y), where z = succT (x). As z ∈
argpath(C), argpath(C), and (x, z) 6⊆ argpath(C) there has to be a blocking arc
of the type (t, z) ∈ argpath(C). The situation is described in Figure 3.11.

Due to the construction of argpath(C), there have to be unary predicates p, q, r ∈
upreds(P ) such that (p(t), q(z)) ∈ Aext and (q(z), r(y)) ∈ connG. But, as prevT (z) =
x, (x, t) is a blocking pair, and (p(t), q(z)) ∈ Aext implies (p(x), q(z)) ∈ A. To-
gether with (q(z), r(y)) ∈ connG it implies that (p(x), q(z)) ∈ connG, and thus
(p, q) ∈ connprG(x, y), which is in contradiction with (x, y) ∈ bl.
Thus, the initial assumption was false and Gext does not contain any elementary
blocking cycle.

Lemma 3.4.19. LetC be an elementary caching cycle inGext for which argpath(C)
contains a cached node y such that (x, y) ∈ ch and for every pair (s, t) ∈ ch, with
s, t ∈ T : rightT (s, x) or t 6∈ C. Then, pathT (z · i, y) ⊆ argpath(C), where
z = commonT (x, y) and z < z · i 6 y.
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Figure 3.11: If (t, z) is a blocking arc, (x, t) is a blocking pair, and the content of (t, z) is
justified similarly to the content of (x, z), then pathsG(t, y) = pathsG(x, y)

Proof.
Assume that argpath(C) does not contain pathT (z · i, y). As y ∈ argpath(C) and
argpath(C) is a cycle, there has to be an arc of the type (t, y) ∈ argpath(C).
Let z2 ∈ pathT (succT (z · i), y) be such that pathT (z2, y) ∈ argpath(C) and
(prevT (z2), z2) 6∈ argpath(C). Every node in pathT (z, y), including z2, has as
incoming arcs the arc from its predecessor in EF and possibly blocking and/or
caching arcs. (prevT (z2), z2) 6∈ argpath(C), so z2 must have either an incoming
caching arc or an incoming blocking arc which is part of argpath(C).

• (i) Assume z2 has an incoming caching arc (*). Then, there is a caching pair
(prevT (z2), t) and prevT (z2) is a caching node. We have that prevT (z2) ∈
pathT (z · i, prevT (y)) and thus z2 >T z · i. At the same time x > z and due to
the expansion and caching strategy rightT (y, x). Thus: x = z · j · s, for some
s ∈ 〈N∗〉, and j ∈ N∗, so it holds that rightT (z2, x). This in contradiction to
the fact that x is the right-est caching node in argpath(C). Thus (*) was false,
and there are no incoming caching arcs to z2 which are part of argpath(C).

• (ii) Assume z2 has an incoming blocking arc. Then, there is a blocking
pair (x2 = prevT (z2), y2) and x2 is a blocking node with: x2 ∈ pathT (z ·
i, prevT (y)). As there is no cycle which contains a blocking path, pathT (x2, y2)
is not part of the cycle. The argument follows similarly to the argument in the
proof of lemma 3: a sequence of tuples (xi, yi, zi) is constructed with similar
properties as in the other lemma. This situation is described in Figure 3.12.
The only difference to lemma 3, is that we always have to show that (xi, yi)
cannot be a caching path, which is done similarly to item (i). As in the proof
of lemma 3 we eventually reach a contradiction.

Thus, in both cases we reach a contradiction, and the original assumption was false:
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Figure 3.12: Splitting blocking paths in a potential caching cycle

pathT (z · i, y) ⊆ argpath(C). �

Lemma 3.4.20. Let C be an elementary caching cycle in Gext such that its argu-
ment path contains n + 1 distinct caching nodes, for n ∈ N. Then, there is an
elementary cycle in Gext such that its argument path contains n distinct caching
nodes.

Proof. Let Pt = argpath(C). Let (x, y) ∈ ch such that: y ∈ Pt, and for every
pair (s, t) ∈ ch, with s, t ∈ T : rightT (s, x) or t 6∈ C. Then, according to lemma
3.4.19: pathT (z · i, y) ⊆ Pt, where z = commonT (x, y). In the following we show
how to transform C in a cycle which does not contain y. (x, y) is a caching pair, so
there must be a successor of x in T , x · j, such that (y, xj) ⊆ Pt.

There are two distinct cases:

• (i) pathT (z, y) ⊆ Pt: let Pt1 = pathT (z, y)ˆ(y, x · j) and Pt2 = pathT (z, x ·
j). Then, for every path Pg1 ∈ pathsGext (p(z), q(x · j)), for some p, q ∈
upreds(P ), such that argpath(Pg1) = Pt1, there is a path Pg2 ∈ pathsGext (
p(z), q(x · j)), such that argpath(Pg2) = Pt2. This follows from the fact that
connprG(z, y) ⊆ connprG(z, x) and connprG(y, x · j) = connprG(x, x · j)
(from the caching condition and construction of Gext ).
Thus, a path Pg ∈ pathsGext with argpath(Pg) = pathT (z, y)ˆ(y, x · j)ˆR,
for some R ∈ pathsGext , is a cycle iff there is another path Pg′ ∈ pathsGext

with argpath ( Pg′) = pathT (z, y)ˆ(y, x·j)ˆR, which is is a cycle. argpath(Pg′)
does not contain cached node y and does not introduce any new cached node,
so, it decreases the number of cached nodes in the cycle. Figure 3.13 depicts
this case: the thick lines are the part from argpath(Pg) which is replaced with
pathT (z, x · j).
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Figure 3.13: Reducing the number of cached nodes which appear in atoms in a cycle of
G: (x, y) ∈ ch and y is eliminated.

• (ii) pathT (z · i, y) ⊆ Pt, but pathT (z, y) 6⊆ Pt: in this case z · i has an
incoming blocking or caching arc (t, z · i), which translates in its predecessor
z being a blocking or caching node and (z, t) ∈ bl ∪ ch. In either of the cases,
(t, z · i) is justified similarly to (z, z · i) and thus one can obtain an equivalent
cycle by substituting t with z in C. The new cycle C ′ = Ct|y fulfills the
condition that pathT (z, y) ⊆ argpath(C ′) and pathT (z, y) ⊆ Pt and thus
falls into case (i). Figure 3.14 depicts this case: the thick lines are the part
from argpath(C) which is replaced with pathT (z, z · i).

Lemma 3.4.21. There are no caching cycles in Gext .

Proof. Assume C is a caching cycle in Gext which contains n caching nodes.
Then, by repeated application of lemma 3.4.20, one obtains a cycle with 0 caching
nodes, thus a cycle which is either a blocking or local cycle. According to lemmas
3.4.18 and 3.4.15 there are no such cycles in Gext , thus the initial assumption is
false, and there are no caching cycles in Gext . �

3.4.6 Completeness

Proposition 3.4.22 (completeness). Let P be a FoLP and p ∈ upreds(P ). If p is sat-
isfiable w.r.t. P , then there exists a complete clash-free completion structure for p w.r.t.
P .

Proof.
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Figure 3.14: Reducing the number of cached nodes which appear in atoms in a cycle of
G: reducing a cycle C in which (z, z · i) 6⊆ argpath(C) to a cycle in which (z, z · i) ⊆
argpath(C).

First, we introduce an operation which replaces the node y of a completion structure
CS = 〈EF , ct, st, G〉, where EF = (F,ES) and G = (V,A), with a matchable unit
completion structure UC = 〈EF ′ = (F ′, ES ′), ct′, st′, G′〉 with root ε. The result of
the operation is a new completion structure obtained by (i) deleting Tc[y] from CS, where
y ∈ Tc, and (ii) adding UC instead using the expand operation introduced in section
3.3.2, and is denoted with replaceCS(y, UC).

i) The removal of Tc[y] transforms CS as follows:

• ES = ES − {(u, v) | u ∈ Tc[y]};

• ct and st are undefined for {u | u ∈ Tc[y]} ∪ {(u, v) | u ∈ Tc[y]};

• V = V − {a | args1(a) ∈ Tc[y]}, A = A− {(a, b) | args1(a) ∈ Tc[y]};

• Tc = Tc − Tc[y].

ii) The addition of UC: expandCS(x, UC).

If p is satisfiable w.r.t. P then p is forest-satisfiable w.r.t. P (Proposition 3.2.4). We con-
struct a clash-free complete completion structure for p w.r.t. P , by guiding the application
of the match, blocking, caching, and redundancy rules with the help of a forest model of P
which satisfies p. The proof is inspired by completeness proofs in Description Logics for
tableau, for example in [57], but requires additional mechanisms to eliminate redundant
parts from Open Answer Sets.

Lemma 3.4.23. Let (U,M) be a forest model for a FoLP P , with the extended forest
EF = 〈{Tε} ∪ {Ta | a ∈ cts(P )},ES 〉, and the labeling function L : {Tε} ∪ {Ta | a ∈
cts(P )} ∪ AEF → 2preds(P ) as in definition 3.2.3. Then, for every node x ∈ U , there is
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a unit completion structure for P : UC = 〈EF ′,ct, G〉, with EF ′ = ({Tε′}, ES ′), and
G = (V,A), which satisfies the following:

• y ∈ NEF ′ iff yε′||x ∈ NEF ;

• (ε′, y) ∈ AEF ′ iff (x, yε′||x) ∈ AEF ′;

• ct(ε′) = L(x) ∪ not (upreds(P )− L(x));

• ct(y) ⊆ L(yε′||x) ∪ not (upreds(P )− L(yε′||x)), for every y ∈ NEF ′;

• ct(ε′, y) = L(x, yε′||x) ∪ not (upreds(P )− L(x, yε′||x)), for every y ∈ NEF ′ .

Proof. Follows from the completeness of algorithm A2.

Now we proceed to the actual construction. Let U,M be the forest model which guides
the expansion with EF = 〈{Tε} ∪ {Ta | a ∈ cts(P )},ES 〉, where p ∈ L(ε) and let
CS = 〈EF ′,ct, st, G〉 be an initial completion structure for checking satisfiability of
p w.r.t. P with EF ′ = 〈{T ′ε′} ∪ {T ′a | a ∈ cts(P )},ES ′〉, where p ∈ ct(ε′). We will
expand CS in a depth-first fashion (the order of processing trees is not important, just
that their contents are expanded depth-first; the expansions of different trees can also be
interleaved). Always a node with status unexp is selected for expansion.

Let π be a function which relates nodes from the extended forest in the completion struc-
ture in construction to nodes in the forest model: π : NEF ′ → U . We show that at any
point during the construction the following property holds: (Γ) for every node x ∈ NEF ′

there is a node π(x) ∈ NEF , such that ct(x) ⊆ L(π(x)) ∪ not (upreds(P )− L(π(x))).
Intuitively, the positive content of a node/edge in the completion structure is contained in
the label of the corresponding forest model node, and the negative content of a node/edge
in the completion structure cannot occur in the label of the corresponding forest model
node.

The property will be proved by induction and it is used at every step of the construction
(for nodes for which it was already proved to hold): as such the induction step coincides
with the construction step.

Base case: We set π(ε′) := ε and π(a) := a, for every a ∈ cts(P ). That the induction
hypothesis is fulfilled follows from the way the initial completion structure for p w.r.t. P
was defined.

Induction/Construction step: Let x be the node currently selected for expansion in EF ′:
st(x) := unexp. Perform the following operations:

(i) Check whether the blocking or caching conditions are met:

• assume there is a node y ∈ NEF ′ such that (y, x) form a blocking pair. Then mark
x as a blocked node and stop its expansion.
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• assume there is a node y ∈ NEF ′ such that (y, x) form a caching pair. Then mark x
as a cached node and stop its expansion.

Naturally, in both cases (Γ) still holds, as we have not modified the content of nodes and
we also did not add any new nodes. Note that when applying the blocking or caching
rule we no longer use the guidance of (U,M): (U,M) might justify in a different way
the atoms which have x and its successors as one of their arguments; we are interested in
finding a finite representation of a model which satisfies p, not necessarily of the original
model which we used for guidance (actually the soundness proof constructs a non-forest
model from a clash-free complete completion structure).

(ii) If x is neither blocked nor cached, according to the induction hypothesis, there is
a node π(x) ∈ NEF such that ct(x) ⊆ L(π(x)) ∪ not (upreds(P ) − L(π(x))). Let
UC be a unit completion structure with root ε′ corresponding to node π(x) as in Lemma
3.4.23. UC has the property that ct(ε′′) = L(π(x)) ∪ not (upreds(P ) − L(π(x))) and
ct(a) ⊆ L(a) ∪ not (upreds(P ) − L(a)), for every a ∈ cts(P ); this, together with the
induction hypothesis, implies that x ∈ NEF ′ is matchable with UC. Apply the Match rule
for x and UC.

For every node y added to/updated from EF ′ by addition of UC: y ∈ NEF ′ and (x, y) ∈
AEF ′ , we have that: ct(y) ⊆ L(yx||π(x))∪ not (upreds(P )−L(yx||π(x))). We set π(y) =
yx||π(x), for every such node, and the induction hypothesis holds.

(ii) Check whether the redundancy rule condition is met: assume there is a node y ∈ NEF ′

such that (y, x) form a redundancy pair.

Note that unlike the models constructed by our algorithm, arbitrary forest models might
contain ’redundant’ nodes (or better said they translate to completion structures which
contain such nodes). A redundancy pair (y, x) signals a redundant computation in the
form of the tree in the extended forest from y to x The way to overcome this is to simply
ignore the redundancy when constructing a completion structure. As the redundant part
of the model is first incorporated in the completion structure, when encountering such a
redundancy pair we modify the structure by cutting out the redundant part: y is replaced
with x (technically with the completion structure at x): replaceCS(y, CSx).

As concerns the image of y under π in EF , it is changed to the previous image of x:
π(y) := π(x). The induction hypothesis still holds.

Given that the construction process described above terminates after a finite amount of
time, its result is obviously a clash-free complete completion structure: the extended
forest has been constructed by appending UCS-s to matchable nodes of the forest, no rule
can be further applied, all redundant nodes are eliminated, and every node is expanded,
blocked, or cached. Next we show by reductio ad absurdum that the construction can
always be performed in a finite amount of steps.

We show that the number of operations related to constructing a path of the completion
structure is finite. Assume the opposite, that the construction of a path in the structure
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does not terminate. First, one can only apply blocking or caching once on every path.
Second, every completion structure has a finite number of nodes (from the Termination
theorem). The only possibility for the construction to not terminate is by application of
the redundancy rule an infinite number of times: note that also in this case, the path in
construction should always have a finite number of nodes. Thus, in this case, there will
be a repeated processing of chunks of the forest model which are found to be redundant.

In order to formalize this scenario, we first introduce the notion of relaxed completion
structure which is a completion structure constructed in the usual way, except for the
fact that it can contain redundancy pairs: the redundancy rule is not taken into account.
Note that any completion structure is a relaxed completion structure, while the reciprocal
statement is not true.

Lemma 3.4.24. Let (x, y) and (y, z) be two redundancy pairs in a relaxed completion
structure. Then (x, z) is still a redundancy pair.

Proof. Follows directly from the definition of redundancy pair and transitivity of the
subset-equal relationship. �

Formally, let (xi, yi)i>0 be the infinite sequence of redundancy pairs which are identi-
fied during the construction process on the same path of the completion structure. Note
that these redundancy pairs do not coexist at any time during the construction process:
each time a new pair is identified, previous redundancies have already been removed. Let
also CS0 = 〈EF 0, ct0, st0, G0〉 be a relaxed completion structure which is constructed
similarly to the completion structure in discussion, CS, all steps being the same except
that in the case of CS0 the redundancy rule does not apply. Starting from CS0, we
define inductively a sequence of relaxed completion structures (CSi)i>0, each one (ex-
cept for CS0) being obtained from the previous completion in the sequence by elimina-
tion of the redundant part indicated by the redundancy pair (xi, yi). Formally, CSi =
replaceCSi−1(xi−1, CS

i−1[yi−1]). We also introduce the notation ui to denote the new
node in the relaxed completion structure CSi corresponding to u in CS0, also denoted as
u0 (if it was not deleted along the way). We have that for every ui ∈ NEF i:

ui+1 =


ui, if ui 6 xi

uiyi||xi if ui > yi

undefined, otherwise

It is clear from the previous identity that for every node u ∈ NEF i , there exists a node
v ∈ NEF 0 , such that u = vi (as nodes are always removed from the original relaxed
completion structure). Let ui, vi ∈ NEF 0 be such that xi = uii and yi = vii , for every
i > 0. As each redundancy pair ’appears’ later in the construction process we have that
vi+1 > vi, for every i > 0. As the path in CS0 to which ui and vi belong is infinite
and the result of removing every redundancy pair is a finite pair, an infinite part of the
path is eventually removed. This infinite part is formed from chained pairs of nodes
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which correspond to redundancy pairs in some ’future’ relaxed completion structure. The
following lemma formalizes this observation.

Lemma 3.4.25. There is a sequence (ki)i>0 (possibly infinite) such that vki = uki+1
and

an index n > 0 such that path(vk0 , ukn) is a path of infinite length in CS0.

Proof. We start by constructing a sequence of pairs (vli , uli)l>0 such that vli+1
> uli ,

for every i > 0. For this we simply eliminate all pairs (vi, ui) from the original sequence
for which there is an index j such that vj 6 vi < ui < uj . Note that this sequence
might be finite. The number of nodes after applying all transformations corresponding
to the redundancy pairs is:

∑
uli<vli+1

|path(uli , vli+1
)|. This is a finite number, thus also

|{i | uli < vli+1
}| is also finite. We have that

∑
i |path(vli , uli)| is infinite. Depending on

the length of the sequence (vli , uli)l>0 there are two possibilities:

• the sequence is finite: then there must be an index lm such that path(vlm , ulm) is
infinite. Let k0 = kn = m .

• the sequence is infinite: as, |{i | uli < vli+1
}|, there must be an index lm such that

uli = vli+1
, for every i > m. Let k0 = m and kn some arbitrary number at infinite

distance from k0.

The following lemma will prove useful in concluding our argument regarding the impos-
sibility of applying the redundancy rule an infinite number of times when constructing a
path in a completion structure guided by a forest model.

Lemma 3.4.26. For every i > 0, rank(ui) = rank(vi).

Proof. As (xi, yi) is a redundancy pair, it is clear that rank(uii) = rank(vii). We show
that rank(uji ) = rank(vji ) implies rank(uj−1

i ) = rank(vj−1
i ), for every 0 < j 6 i.

Figure 3.15 depicts the possible positions of uj−1
i , vj−1

i relative to the positions of xj−1

and yj−1. There are two different situations:

• a) yj−1 6 uj−1
i (Figure 3.15 a)): again this case splits in two subcases:

– rankj(u
j
i ) = rankj(xj−1) = k: then, there exist a, b ∈ upredsP such

that rankj(a(xj−1)) = k and (a, b) ∈ connprGj(xj−1, v
j
i ); this, implies that

rankj−1(a(xj−1)) = k and (a, b) ∈ connprGj−1
(yj−1, v

j−1
i )(see figure); from

the fact that (xj−1, yj−1) is a redundancy pair, it results that: rankj−1(a(yj−1)) =
k and together with (a, b) ∈ connprGj−1

(yj−1, v
j−1
i ), it results rankj−1(b(vj−1

i )) =

k, thus rankj−1(vj−1
i ) = k = rankj−1(uj−1

i );

– rankj(u
j
i ) > rankj(xj−1): similar to the previous case;
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Figure 3.15: Backward preservation of equal rankings for (uji , v
j
i ) pairs.

• b) uj−1
i 6 xj−1 < yj−1 < vj−1

i (Figure 3.15 b)): in this case, rankj(u
j
i ) =

rankj(xj−1) = k. Then there exists a, b, c ∈ upreds(P ) such that rankj(a(uji )) =
k, (a, b) ∈ connprGj(u

j
i , xj−1), and (b, c) ∈ connprGj(xj−1, v

j
i ).

From the figure, one can see that rankj−1(xj−1) = k. As (xj−1, yj−1) is a re-
dundancy pair, rankj−1(yj−1) = k. If (a, b) ∈ connprGj−1

(uj−1
i , xj−1) and rank

(a(uj−1
i )), then (a, b) ∈ connprGj−1

(uj−1
i , yj−1) (again from the redundancy of

(xj−1, yj−1)).

From lemma 3.4.25 and 3.4.26 it results that there is a sequence of nodes (uki , vki)06i6n

such that uki = vki+1
, and rank(uki) = rank(vki) = r, for every 0 6 i 6 n and the path

path(uk0 , vkn) is infinite. As rank(uk0) = rank(vk0) = r, this implies that there is a path
of infinite length of rank r in G0. As G0 reflects the dependencies between the atoms in
the forest model, this is equivalent to the existence of an atom in the forest model which
is motivated by an infinite chain of atoms in the model. This contradicts with the fact that
any atom in an open answer set is justified in a finite number of steps[48, Theorem 2].
Thus, the construction of a complete clash-free completion structure from a forest model
does terminate.
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3.4.7 Complexity

Proposition 3.4.10 implies the following complexity result for our algorithm A3:

Proposition 3.4.27. A3 runs in the worst case in non-deterministic exponential time.

However, one can transform the algorithm to a deterministic procedure which can be
executed in exponential time. The deterministic procedure which we will call DET −A3

consists in constructing an AND/OR extended forest with depth double in the size of the
largest depth encountered when running the nondeterministic algorithm. At odd levels,
there are OR nodes with unexpanded content (they contain just the constraints imposed
by their predecessor or the predicate checked to be satisfiable in case of one root node
and an empty set for the other root nodes), while at even levels, there are AND saturated
nodes which are ‘realizations’ of their predecessor, i.e., they (together with their outgoing
arcs and direct successors) describe a possible way to expand the predecessor node. For
every OR node, each of its ‘realizations’ spawns a new copy of the graph G. We call such
a structure an AND/OR completion structure.

Blocking and caching are applied by considering only pairs of AND nodes in the extended
forest. For simplicity, we consider the stricter caching condition used in the proof of
lemma 3.4.10.

A leaf of the AND/OR extended forest is labeled with false if it is unexpanded and it is
not a blocked or cached node, with true if it is a blocked node, and it is labeled with the
label of its corresponding caching node otherwise (if the leaf is cached node). A predicate
p is satisfiable in such a structure if the root node of every tree in the structure evaluates to
true. In this case the structure is called a successful AND/OR completion structure. The
evaluation can be done straightforwardly as the evaluation of a caching node does not
depend on the evaluation of its cached done due to the fact that, like before, the extended
forest is constructed in a depth-first manner.

Proposition 3.4.28. DET −A3 is sound, complete, and runs in the worst case in deter-
ministic exponential time.

Proof Sketch.

Soundness

From a successful AND/OR completion structure we construct a clash-free complete
completion structure.

For every pair (S, r) for which there is at least a node x in the extended AND/OR forest
with ct(x) = S and rank(x) = r, let x(S,r) be the ’witness’ AND node for (S, r), i.e. the
node which is expanded and which will be a caching node in every caching pair of nodes
with profile (S, r).

Assume that the root node of every tree in the successful deterministic structure evaluates
to true. For every OR node, pick a successor which is true and add it to the completion
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structure in construction. For every AND node y, if it is blocked or expanded, simply add
it to structure in construction. If y is cached and x(ct(y),rank(y)) has not been added to the
completion structure in construction, copy x(ct(y),rank(y)) instead of y to the structure.

Completeness

From a clash-free complete completion structure we construct a successful AND/OR
completion structure. At every OR node we always add as the first successor of the node
the unit completion structure chosen when constructing the clash-free complete comple-
tion structure. It is easy to see that a deterministic structure constructed in such a way is
successful.

Complexity

Using a similar argument as in lemma 3.4.10 one can show that the size of a success-
ful deterministic structure is still exponential in the size of P : clearly the depth of the
AND/OR extended forest is still exponential in the size of P (it is double the depth of the
deepest complete completion structure constructed using the nondeterministic algorithm)
and the caching argument still holds.

Thus, satisfiability checking of a unary predicate p w.r.t. a FoLP P can be evaluated
in exponential time in the size of P . This, together with the fact that the same task is
EXPTIME-hard (see D3.2 [51]), implies that the problem is EXPTIME-complete. With
this we close an existing gap regarding the complexity of reasoning with FoLPs and f-
hybrid knowledge bases.

Proposition 3.4.29. Satisfiability checking of a unary predicate p w.r.t. a FoLP P is
EXPTIME-complete.

Finally, this result translates in a similar result concerning f-hybrid knowledge bases. f-
hybrid knowledge bases have been introduced in deliverable D3.2 [51] as a tight combina-
tion between FoLPs and the DL SHOQ. As SHOQ is known to be EXPTIME-complete,
it follows that f-hybrid knowledge bases are EXPTIME-hard. We also know that reasoning
with f-hybrid knowledge bases can be reduced to reasoning with FoLPs. Thus, it can be
deduced that they are EXPTIME-complete.

Proposition 3.4.30. Satisfiability checking of a unary predicate p/concept C w.r.t. an
f-hybrid knowledge base KB is EXPTIME-complete.

3.5 Conclusions: reasoning with FoLPs and beyond

3.5.1 Discussion

We presented an optimal worst case algorithm for reasoning with Forest Logic Programs.
The algorithm exploits the forest model property of the fragment and builds on techniques
introduced in the previous years of the project, like pre-computing all possible building
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blocks of a model in the form of trees of depth 1. However due to the introduction of new
termination techniques, the worst case complexity drops one exponential level compared
to its previous variants: from double exponential time to exponential time.

Thus, while FoLPs can simulate reasoning with the DL SHOQ, and allow for additional
features like a minimal model based semantics and a cleaner syntax, the worst case rea-
soning complexity stays the same. As reasoning with the tight combination of FoLPs and
SHOQ ontologies, f-hybrid knowledge bases, can be reduced to reasoning with FoLPs,
the algorithm can be employed also for reasoning with f-hybrid knowledge bases. It
also establishes that satisfiability checking w.r.t. f-hybrid knowledge bases is EXPTIME-
complete.

While not mentioned explicitly here, the algorithm A2 described in D3.3 [40] also iden-
tifies and eliminates so-called redundant unit completion structures: these are structures
which are strictly less general than others, so they can always be replaced in a model
with other more general structures. Assuming that the new algorithm A3 also employs
this technique of discarding redundant unit completion structures, it addresses computa-
tional redundancy issues across three orthogonal axis: (i) local redundancy: eliminating
redundant unit completion structures eliminates local redundancy, i.e. redundancy among
the successors of a single node, (ii) redundancy along a path: achieved by means of the
redundancy rule, and (iii) redundancy across paths: achieved by means of the caching
rule.

3.5.2 Related Work

Datalog± [15, 16] is an extension of Datalog which can simulate some DLs from the
DL-Lite family [19]. The extension consists in allowing a special type of rules with ex-
istentially quantified variables in the head, called tuple generating dependencies (TGDs).
Note that our free rules are different from TGDs, as they allow for universally quantified
variables which do not appear in the body of the rule to appear in the head.

The formalism is undecidable in the general case. Like in the case of OASP, several
syntactical restrictions have been imposed on the shape of TGDs in order to regain de-
cidability. Two such restrictions are: (1) every rule should have a guard, an atom which
contains all variables in the rule body, giving rise to guarded Datalog±, and (2) every rule
should have a singleton body atom, giving rise to linear Datalog±. The guardedness con-
dition has been relaxed to weakly-guardedness, where the weak guard has to contain only
the variables in the body that appear in so-called affected positions, positions where newly
invented values can appear during reasoning [14]. Reasoning relies on a proof technique
from database theory, the chase algorithm, which repairs databases according to the set of
dependencies.

Some further generalizations to the guarded fragment of Datalog± are so-called sticky
sets of TGDs [17], weakly-sticky sets of TGDS, and sticky-join sets of TGDs [18] which
generalize both sticky sets and linear TGDs. All these fragments are defined by imposing
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restrictions on multiple occurrences of variables in rule bodies. The syntactical restric-
tions on rules bodies are orthogonal to the ones we imposed for achieving decidability
on FoLPs: neither Datalog± rules are enforced to have a tree-shape like FoLPs, nor vari-
ables in FoLP rules have to fulfill the conditions required for the different sets of TGDs
to belong to one of the previously mentioned decidable fragments of Datalog±. TGDs do
not contain negation. However, so-called stratified normal TGDs have been introduced,
which are TGDs whose body atoms can appear in a negated form together with a seman-
tics in terms of canonical models. FoLPs support full negation as failure (under the stable
models semantics).

3.5.3 Future Work

Another interesting fragment of Open Answer Set Programming which has been proved
to be decidable is Conceptual Logic Programs under the Inverted World Assumption.
The fragment has the tree model property and can simulate the description logic SHIQ.
Conceptual Logic Programs (CoLPs) are FoLPs in which constants are disallowed. The
Inverted World Assumption refers to the fact that the signature of the programs is such
that for every binary f , there exists an inverse binary predicate f i; semantically, the as-
sumption refers to the following condition: for every Open Answer Set (U,M), and for
every binary predicate f it holds that: f i(x, y) ∈ M iff f(y, x) ∈ M . IWA is equivalent
to adding f (X ,Y ) ← f i(Y ,X ) and f i(Y ,X ) ← f (X ,Y ) to the original program and
evaluating it under the usual semantics.

In [48] satisfiability checking w.r.t. IWA has been reduced to checking emptiness of a
two-way alternating tree automata. However, there is no practical algorithm for dealing
with such programs. We plan to investigate how the algorithm A3 can be adapted for
reasoning with CoLPs under IWA: the non-trivial part of such an adaptation consists in
dealing with the IWA. A natural step in this direction is to generalize the notion of UCS
to UCS under IWA: a UCS would be still an extended tree with depth 1, but the root can
have an outgoing arc to its predecessor. Matching UCSs consists in this case in a double
match (between 2 pairs of successor nodes). We conjecture that any arbitrary tree model
of a CoLP under IWA can be reduced to an exponential size structure which can then be
unraveled to a finite bounded size model by applying similar transformations to the ones
used for reducing a FoLP model in the completeness proof. However, it is questionable
whether the classical tableau approach still works. In the presence of backwards arcs
in the forest (from nodes to their predecessors), the rank of a node/atom is no longer a
function of predecessor nodes: it might be needed to traverse the whole structure in order
to compute it. Figure 3.16 gives an example where the rank of a node depends on the
content of one of its neighbors: both x · 1 and x · 2 are the successors of x in a tree, while
the arcs depicted in the figure are arcs in the atom dependency graph of the constructed
model. Before fully expanding x · 1 there is no path in G from a predicate with argument
x to a predicate with argument x · 2, and thus the rank of x · 2 is d + 1. However after
fully expanding x · 1, the rank of x · 2 is d.
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depth = d

rank = d

p(x)

q(x1) s(x2)

r(x)

Figure 3.16: Computing the rank of a node in the presence of backward arcs in the tree

One possibility would be to generate a completion structure with size within the computed
bound and check whether the completion structure is clash-free and complete. Formal
proofs for reasoning with this fragment are subject of future work.

Further on, we plan to formally define the fragment of FoLPs under the IWA and to
investigate reasoning with this fragment. Such a fragment would allow the simulation of
the expressive DL SHOIQ.

3.6 Overview of Notions

In this section we provide a list with the main notions related to the algorithms described
in this chapter (which were not previously introduced in Section 3.1) and pointers to the
pages where these notions were formally introduced.

Completion Structure: a representation of a forest model in construction. It contains an
extended forest (the universe of the model), two labeling functions ct (content: points
out which atoms are/are not in the model) and st (status: which atoms/nodes have been
expanded), and an atom dependency graph (p. 43).

Initial Completion Structure for Checking Satisfiability of p w.r.t. P : a completion
structure which imposes a single constraint on the model in construction: that some atom
p(ε) has to be part of the model, where ε is an anonymous individual or one of the con-
stants in the program (p. 44).

Node Saturation: A node is saturated when all unary predicates in the program appear
either in a positive or a negative form in its content and they have all been expanded using
the expansion rules introduced by algorithm A1 and all binary predicates appear either in
a positive or a negative form in the content of each of its successors and they have all been
expanded using the expansion rules introduced by algorithm A1 (p. 45).

Unit Completion Structure (UCS) with root ε: a completion structure in which the
extended forest is an extended tree of depth 1; the root ε of the distinguished tree in the
extended tree is saturated, all other predicates in the contents of nodes are unexpanded (p.
46).

local satisfiability: a unit completion structure with root ε locally satisfies a set of (pos-
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sibly negated) unary predicates S iff S ⊆ ct(ε) (p. 47).

matchability: an unexpanded node is matchable with a unit completion structure UC
iff UC locally satisfies the content of the node and the constraints imposed by the UCS
on nodes which are constants are not in contradiction with the current contents of those
nodes (p. 47).

expandCS(x, UC): the operation which expands an A2-completion structure by adding
a new UCS which matches an unexpanded node in the structure (p. 48).

Match Rule: the rule used by algorithms A2/A3 which applies the expandCS(x, UC)
operation in order to expand an unexpanded node (p. 48).

Blocking Rule: the rule used by all three algorithms to stop the successful expansion of
a branch by reusing some computations performed to expand a node on the same branch
(p. 48).

Redundancy Rule: two rules used by the algorithms A1 and A3 to stop the unsuccessful
expansion of a branch (p. 49, p. 53).

Caching Rule: a new rule introduced by the algorithm A3 to stop successful expansion
of a branch by reusing some computations performed to expand a node on another branch
(p. 54).

Complete Completion Structure: a completion structure which can no longer be ex-
panded (p. 50).

Clash-free Completion Structure: a completion structure which contains no redundancy
nodes (p. 50).



Chapter 4

Integration of Production Rules and
Ontologies via Transaction Logic with
Partially Defined Actions

4.1 Motivation

Production systems (PS) are one of the oldest knowledge representation paradigms that
are still popular today. Production systems are widely used in biomedical information
systems, to enforce constraints on databases, to model business processes, accounting,
etc.

Such systems consist of a set of production rules that rely on forward chaining reasoning
to update the underlying database, called working memory. Traditionally, PS have had
only operational semantics, where satisfaction of rule conditions is checked using pattern
matching, and rule actions produce assertion and deletions of facts from the working
memory. PS syntax and semantics have been standardized as W3C’s Production Rule
Dialect of the Rule Interchange Format (RIF-PRD) [99] . The RIF-PRD specification
has a number of limitations, however. First, it omits certain important primitives that
are found in many commercial production systems such as IBM’s JRules[58]. The FOR-
loop and the while-loop constructs are examples of such an omission. Second, RIF-PRD
still does not integrate with ontologies [6, 54]. Here, by ontology we mean a formal
representation of a domain of interest, expressed in terms of concepts and roles, which
denote classes of objects and binary relations between classes of objects, respectively.

To illustrate the need for ontology integration, consider a set PS that keeps a number of
clinical databases that are compliant with the health insurance regulations. The clinical
record of each patient together with other data must be accessible by all the clinics in
the network. This needs a shared vocabulary that, in this case, is defined in a shared
DL ontology. However, each PS can have extra concepts outside the ontology, which are

81
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meant for local use only.

Example 4.1.1. The following production rules state that (i) if a doctorD requests a DNA
test T to be performed for patient P , then the system records that P is taking the test T ;
and (ii) patients getting a DNA test must not be considered unhealthy.

r1 : Forall D,P, T : if requested(D,P, T ) ∧ dnaT(T ) then Assert(takesT(P, T ))
r2 : For P, T : takesT(P, T ) ∧ dnaT(T ) do Retract(neg healthy(P ))

The DL ontology that defines the shared concepts and implements different constraints is
as follows

flu v neg healthy dnaT v neg virusT ∃takesT.neg virusT v healthy

The DL axioms say that a patient with a flu is not a healthy patient, that DNA tests do
not search for viruses, and that if a person is taking a test not related with any virus
disease, then we can conclude that she is healthy. Note that here we are using strong
negation neg [82], a weaker form of classical negation that does not add expressivity to
the logic, but makes knowledge representation more natural. The Forall construct in r1

should not be confused with the For construct in r2. The former is just a way RIF-PRD
declares variables used in the body of a rule. The latter is a FOR-loop extension found in
commercial systems, but not in RIF-PRD. �

The complexity of the regulations in our example makes it difficult to determine whether
executing a production rule leaves the database in a compliant state. Suppose we have the
following initial database WM0 = {requested(Smith, Laura, pcr), flu(Laura), dnaT(pcr)}.
This example raises several question: (i) how do we interpret the retraction executed
by r2, where P is instantiated with Laura, given that neg healthy(Laura) is inferred by
the ontology, (ii) how to interpret the rule conditions of r1 and r2 given the open world
semantics of DL, and (iii) how do we treat the inconsistency that results after execution
of rule r1 in WM0? (Observe that in the state resulting from execution of r1 in WM0 we
can infer healthy(Laura) and neg healthy(Laura).)

To answer these questions we need to define a precise semantics (both model-theoretic
and computational) to the combination of rules, ontologies, and production systems,

Our contribution in this chapter is three-fold: (i) a new semantics for production systems
augmented with DL ontologies that includes looping-rules, and can handle inconsistency;
(ii) a sound embedding of the combination of PS and rule-based ontologies into Trans-
action Logic with partially defined actions (abbr., T RPAD) [89], which provides a model-
theoretic semantics to the combination; (iii) an extension of T RPAD with default negation
under a variant of the well-founded semantics [96] for T RPAD.

Our formalization is significantly more general than RIF-PRD or other existing formal-
izations of production rules in that it supports wider ontology integration and covers im-
portant extensions that exist in commercial systems such as the aforesaid FOR-loop.
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We opted for T R because it is a purely logical formalism that combines declarative and
procedural knowledge. T RPAD allows actions to be defined as sequences of simpler con-
stituent actions, and its—model-theoretic—semantics is defined over sequences of states.
These two features makes the path from the operational semantics to the model-theoretic
semantics shorter and clearer.

The rest of this chapter is organized as follows. Section 4.2 briefly surveys previous results
on the combination of PS and ontologies, and on the reduction of PS to formalisms with
denotational semantics. Section 4.3 presents the necessary background on first order logic
and description logic. Section 4.4 introduces an operational semantics for production sys-
tems augmented with DL ontologies. Section 4.5 augment T RPAD with default negations,
and provides a well-founded semantics for such extension. Section 4.6 provides a reduc-
tion from the semantics proposed here to T RPAD and presents soundness results for this
reduction. Section 4.7 summarizes the approach. Proofs of the main results and further
details are found in [88].

4.2 Related Work
In this section we compare our approach with other literature on the declarative semantics
for production systems and on the operational and declarative semantics for the combi-
nation of PS and ontologies. In Deliverable D3.3 [40] and in [90, 28] an operational
and model-theoretic semantics to the combination of PS and ontologies is provided. The
model-theoretic semantics is given by an embedding of PS into fix-point logic. However,
they cannot handle looping rules, their semantics cannot handle inconsistencies, their in-
terpretation of retraction of DL facts is not intuitive since a fact can remain true after being
deleted, and their reduction to a declarative formalism is considerably more complex than
the one presented here. In [67, 102], the goal is to devise languages for unifying some
aspects of active rules, logic rules, and production systems. They do not deal with con-
siderably more complex standard languages such as production systems augmented with
ontologies and looping rules. In particular, [67, 102] do not show how to embed produc-
tion systems into those languages, although they provide some examples showing how
typical production rules can be expressed in their language. In [85] the authors only allow
a very restricted type of production systems: stratified PS. Such PS are much weaker that
the ones formalized here, and again, they do not consider ontologies. In addition, they do
not tackle the problem of the integration with ontologies. In [26, 7], the authors reduce
the semantics of PS to logic programming (LP). Their reduction is considerably more
complex and less compact than ours—it results in an infinite number of rules. In addi-
tion, they use stable models semantics which has much higher computational complexity
than the well founded semantics used here. Given the complexity of such a reduction,
the proposed integration with LP ontologies is not ideal, since the ontology needs to be
transformed with state arguments and auxiliary predicates. In addition, neither of them
allow looping rules. Finally, [62] presents a new formalism that combines some aspects
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of logic rules and production rules. However, negation in rule conditions1 and looping
rules are not allowed. Furthermore, their embedding into Horn Logic is less clear and
compact than our embedding in T RPAD.

4.3 Preliminaries

4.3.1 First Order Logic

The alphabet of a first order language L includes a countably infinite disjoint sets of
variables V , constant symbols C, and predicate symbols P . A term is a constant or a
variable. Each predicate symbols has an arity n, which is a non-negative integer. We will
not include function symbols since nether description logics nor production systems use
them.2

Our language, L, includes all the usual first-order operators ∨,∧,¬,∀,∃,→, = plus the
symbol neg , which represents the explicit negation (also sometimes called strong nega-
tion) [82]. The neg symbol applies only to atoms. In the actual use in this paper, ¬ will
appear only in ontologies, while neg will be used both in ontologies and in production
rules. In a certain sense, which will be made clear later, neg f will imply ¬f , but not vice
versa.

Formulas are defined recursively as usual in first-order logic. A literal is either an atomic
formula f , or a formula of the form neg f where f is an atomic formula. Atoms are also
called positive literals. A negative literal is an atom preceded with the symbol neg
(e.g., neg p(X)).

Since later on we will be integrating ontologies with production systems, we will need
to use Herbrand domains and the unique name assumption. Therefore, we will use the
Herbrand semantics from the outset. As is well-known, this semantics is equivalent to
the general one for universal clausal form. The semantics defines semantic structures.
The domain of a Herbrand semantic structure is called the Herbrand universe U ; in our
restricted case it is just the set of all constants C in the language L. The Herbrand base B
is a set of all ground literals in the language, which includes the neg -negated literals of
the form neg f . Note that the Herbrand universe and Herbrand base are infinite, fixed,
and depend only on the language L.

Definition 4.3.1 (Semantic Structure). A semantic structure I = 〈U ,B, σ〉 consists of the
following items:

• A subset B of B.

1 The authors informally claim that negation could be added, but they do not provide formal details
2 Many production systems do use built-in and external functions and so do some DLs. However, this

does not bring any new or interesting issues in our context, so we disregard functions in order to simplify
the exposition.
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• a variable assignment, σ, that maps each variable in V to a domain element in U .

• σ is a variable assignment, i.e., a mapping V −→ U . �

We now define satisfaction of formulas by semantic structures. If φ is a formula of L, I
is a structure for L, then satisfaction of φ in I is denoted I |= φ. Given a structure I, and
a term (i.e., constant or variable) t, we define tI as: tI = σ(t) if t is a variable and tI = t
if t is a constant. Note that this implies the unique name assumption (UNA). That is, if
c1, c2 ∈ C are two distinct constants then that cI1 6= cI2 .

The relation |= is defined recursively as follows:

• If t1 and t2 are terms, then I |= t1 = t2 if and only if tI1 is the same element as tI2 .

• If P is an n-place predicate letter inL and t1, . . . , tn are terms, then I |= P (t1 . . . tn)
(respectively, I |= negP (t1 . . . tn)) if and only if P (tI1 . . . t

I
n) ∈ B (respectively,

negP (tI1 . . . t
I
n) ∈ B).

• I |= ¬φ if and only if it is not the case that I |= φ.

• I |= (φ ∧ ψ) if and only if I |= φ and I |= ψ.

• I |= (φ ∨ ψ) if and only if I |= φ or I |= ψ.

• I |= ∀v : φ if and only if I ′ |= φ for structure I ′ that agrees with I except possibly
on the variable v.

• I |= ∃v : φ if and only if I ′ |= φ for some structure I ′ that agrees with I except
possibly on the variable v.

A formula φ is valid, if I |= φ, for every structure I.

A formula φ is satisfiable if there is a structure I such that I |= φ.

If Γ is a set of sentences and if I |= φ for each sentence φ in Γ, then we say that I is a
model of Γ. So a set of sentences is satisfiable if it has a model.

We say that Γ entails φ, written Γ |= φ, if and only if Γ ∪ {¬φ} is not satisfiable.

4.3.2 Description Logics

In this Section we briefly review the basic notions from Description Logic (DL) that we
will use in this chapter. Details can be found in [6].

Description Logic is a family of knowledge representation formalisms that provide a syn-
tax and a model-theoretic semantics for a compact representation of information. A DL
knowledge base has two parts: the T-box, with terminological knowledge, which consists
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of a number of class definitions, and the A-box, which consists of assertions about actual
individuals.

Concept axioms in the T-box are of the form C v D (meaning the extension of C is a
subset of the extension of D; D is more general than C) or C ≡ D (where C ≡ D is
interpreted as C v D and D v C) with C and D (possibly complex) descriptions. Given
a T-box axiom of the form C v D, the concept C is called the body, and D is called the
head of the axiom.

Descriptions and T-box axioms can be understood as formulas of first-order logic with
one free variable and closed universal formulas respectively. For example, the description
Au¬Bu∃R.C corresponds to the formulaA(x)∧¬B(x)∧∃y.(R(x, y)∧C(y)). Therefore,
the semantics of DL can be given by its translation to FOL. Details can be found in [6].

In Section 4.6, we will use DLs that can be embedded into Logic Programming (LP). In
recent years, the relationship between DLs and Logic Programming (LP) has attracted
much interest and several LP-expressible DLs have been proposed [3, 56, 78, 79, 33, 66,
52]. In particular, [52] defines a class of DLs called Datalog-rewritable DLs. This class
is interesting in our setting because reasoning with DLs in such a class can be reduced
reasoning with Datalog programs.

Definition 4.3.2 (Datalog-rewritable). A DL D is Datalog-rewritable if there is a trans-
formation dtg from D to Datalog programs such that for any knowledge base (T ,A) in
D, where T is a T-box and A is an A-box, the following holds: For any concept or role
name Q, and an individual i in (T ,A),

(T ,A) |= Q(i) iff dtg((T ,A)) |= Q(i)

We say that dtg is modular if

dtg((T ,A)) = dtg(T ) ∪ dtg(A) �

One Datalog-rewritable DL is LDL+ [52]. For concreteness, in Section 4.6 we will work
with this DL, but our results do not depend on a particular choice of a Datalog-rewritable
DL. LDL+ is defined as shown in Figure 4.1, by restricting the shape of the axioms in
the T-box. Further details and a reduction to Datalog can be found in [52].

An LDL+ KB is a pair (T ,A), where T is a finite T-box and A is a finite A-box such
that

• T is a set of terminological axioms of the form C v D, where C is a body concept
and D is a head concept; and role axioms E v F , where E is a body role and F is
a head role.

• A is a set of assertions of the form D(o) and F (o1, o2) where D is a head concept
and F is a head role.
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Body Roles Head Roles
E1, E2 → P (Role name)

E−1 (Inverse)
E1 ◦ E2 (Sequence)
E+

1 (Transitive Closure)
E1 u E1 (Conjunction)
E1 t E2 (Disjunction)
>2 (Top)
{o, o} (Nominals)

F1, F2 → P (Role name)
F−1 (Inverse)
F1 u F2 (Conjunction)
>2 (Top)

Basic Concepts Head concepts
C1, C2 → A (Concept name)

∃E1.C1 (∃ Restriction)
6 nE1.C1 (6 Restriction)
C1 t C2 (Disjunction)
C1 u C2 (Conjunction)
{o} (Nominals)
> (Top)

D → C1 (Basic Concept)
∀E1.C1 (∀ Restriction)

Figure 4.1: LDL+ Syntax

Example 4.3.3. [52] Suppose we have the following knowledge base (T ,A):

T =

{
6 2PapersToRev v OverL
OverL v ∀Superv+.OverL

A =

{
Superv(a, b)
Superv(b, c)

The first two axioms say that someone with more than two papers to review is overloaded
and that an overloaded person causes all the supervised persons to be overloaded as well.
The statements in the A-box defines the supervision hierarchy. �

We conclude this brief introduction of LDL+ with a review of its relationship to OWL 2
fragments.

• OWL 2 EL. This fragment correspond the DL EL++. This fragment and LDL+ do
not subsume each other. Not all EL++ axioms can be expressed in LDL+ but those
that do not contain ⊥, concrete domains, and existential quantification in axioms’
right side. On the other hand, LDL+ has many constructs that EL++ does not
allow: number restrictions, inverse, general sequence of roles, role conjunction,
role disjunction, etc.

• OWL 2 QL. This fragment correspond to the DL-Lite family. Again, this fragment
neither subsumes nor is subsumed byLDL+. DL-Lite axioms that have no negation
and existential quantification on the right side are also axioms in LDL+, but LDL+

has constructs that are not expressible in DL-Lite, such as role sequence.

• OWL 2 RL. This fragment is a strict subset of LDL+.
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4.4 Combining RIF -Production Systems and Ontologies

In this section we propose a new semantics for the combination of production systems and
arbitrary DL ontologies. This approach follows the outline of [90], but includes looping
rules, it can handle inconsistencies produced by the system, and it gives a more intuitive
semantics to the retraction of DL facts.

The alphabet of a language LPS for a production system is defined the same way as in the
case of DL except that now the set of all predicates P is partitioned into two countably
infinite subsets, PPS and PDL. The latter will be used to represent predicates occurring in
the ontology. A term is either a variable or a constant symbol and, to avoid unnecessary
distractions, we will leave out the various additional forms allowed in RIF, such as frames
and the RIF membership and subclass relations (o#t, t##s). However, they can easily be
added without increasing the complexity of the problem. A atomic formula is a statement
of the form p(t1 . . . tn), where p ∈ P . A literal is either an atom, a formula of the form
neg f where f is a PDL-atom, or a formula of the form ¬f where f is a PPS-atom.

4.4.1 Syntax

The alphabet of a language LPS for a production system is defined the same way as in the
case of DL except that now the set of all predicates P is partitioned into two countably
infinite subsets, PPS and PDL. The latter will be used to represent predicates occurring in
the ontology. A term is either a variable or a constant symbol and, to avoid unnecessary
distractions, we will leave out the various additional forms allowed in RIF, such as frames
and the RIF membership and subclass relations (o#t, t##s). However, they can easily
be added without increasing the complexity of the problem.

Definition 4.4.1 (Atomic Formulas). Let p ∈ P be a predicate and t1, . . . , tn be terms. A
RIF atomic formula is a statement of the form p(t1 . . . tn). �

A literal is either an atom, a formula of the form neg f where f is an PDL-atom, or a
formula of the form ¬f where f is an PPS-atom.

Definition 4.4.2 (Condition Formula). A condition formula φ has one of the following
forms:

• a literal l,

• φ1 ∧ φ2, where φ1 and φ2 are condition formulas.

• φ1 ∨ φ2, where φ1 and φ2 are condition formulas. �

Observe that all the rule conditions in our example are condition formulas.

An essential feature of production systems is the ability to perform actions such as inser-
tion and deletion of atoms. We now define the concrete actions for accomplishing that.
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Definition 4.4.3 (Atomic Action). Let p(~c) be a literal. An atomic action is a statement
that has one the following forms:

• assert(l): Adds the literal l to the working memory

• retract(l) :


if p ∈ PPS Removes the atom3l from the working memory
if p ∈ PDL Enforces the literal l to be false in the working

memory �

Beside these elementary actions, RIF also provides actions to change or delete objects
and properties. Such actions can be treated similarly to FOR-rules below or as sequences
of simpler actions, so we leave them out as well.

Definition 4.4.4 (Production System Augmented with Ontology). A production system
augmented with an ontology (abbreviated as just production system, or PS) is a tuple

PS = (T , L, R)

such that

• T is a DL ontology (T-box) whose predicates belong to PDL;

• L is a set of rule labels, and

• R is a set of rules, which are statements of one of the following forms4

IF-THEN Rule: r : Forall ~x : if φr(~x) then ψr(~x) (4.1)
FOR Rule: r : For ~x : φr(~x) do ψr(~x) (4.2)

where

• r ∈ L is the above rule’s label,

• φr is a condition formula in L with free variables ~x,

• ψr(~x) is a sequence of atomic actions with free variables contained in ~x. �

3Negative literals with predicate symbols in PPS cannot occur in the working memories. See Defini-
tion 4.4.5.

4 To avoid a misunderstanding, recall that the Forall construct is just a RIF-PRD syntax for declaring
variables; it does not indicate a loop. In contrast, the For-do construct specifies a loop; it is found only in
commercial PS systems, like JRules.
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4.4.2 Operational Semantics

We now turn to the operational semantics of the combination of PS with ontologies. In
a PS, two different constants represent two different domain elements, which is called
the unique name assumption. In addition, production systems assume that each constant
symbol is also a symbol in the domain of discourse, i.e., they are dealing with Herbrand
domains.

It is also worth noting that the semantics presented in this section does not depend on the
specifics of the DL associated with production systems. For concreteness, one can think
of LDL+.

Definition 4.4.5 (Working Memory). A working memory, WM, for a PS language L is a
disjoint union

WM = WMPS ]WMDL

where WMPS is a set of ground atoms that use predicate symbols from PPS and WMDL

is a set of ground literals that use predicate symbols from PDL. �

Definition 4.4.6 (T -structure). Let T be a DL T-box. A T -structure, I, for a PS language
L has the form

I = (WMPS ]WMDL ] EDL, σ)

where WM = WMPS ]WMDL is a working memory, EDL is a set of PDL-literals, σ is a
variable assignment, and (WMDL ] EDL, σ) is a model of T . �

We say that (WM, σ), where WM is a working memory, is a prestructure.

Example 4.4.7. In Example 4.1.1, the two disjoint sets composing the initial working
memory WM0 are as follows:

WM0PS = {requested(Smith,Laura, pcr)} WM0DL = {flu(Laura), dnaT(pcr)}
In addition, we can build up a T -structure, I, by pairing any arbitrary assignment σ with
WM0 together with {neg healthy(Laura)}. That is, I = (WM0]{neg healthy(Laura)}, σ).
�

Definition 4.4.8 (Satisfaction). A T -structure I = (WMPS ]WMDL ] EDL, σ) satisfies
a literal l, denoted I |= l, iff

• if l is a PPS-atom then lI ∈WMPS

• if l is a PDL-literal then WMDL ] EDL |= lI

If φ is a formula of the form ¬φ1, φ1 ∧ φ2, φ1 ∨ φ2 then we define I |= φ as usual in
FOL. A formula φ holds in a prestructure (WM, σ) relative to an ontology T , denoted
T , (WM, σ) |= φ, iff I |= φ for every T -structure of the form

I = (WM ] EDL, σ)

(That is, WM and σ are fixed but the EDL varies.) �
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A prestructure is T -consistent if there is a T -structure with the same working memory
and variable assignment, i.e., (WM ] EDL, σ) that does not entail f and neg f for any
atom f . Note that in such a T -structure, if neg f is true then ¬f is also. A working
memory is T -consistent if it is part of a T -consistent prestructure.

Definition 4.4.9 (Atomic Transition). Let (WM, σ) be a prestructure, t1, t2 be terms, and
α be an action. We say that there is an α-transition from the prestructure (WM, σ) to the
prestructure (WM′, σ), denoted (WM, σ)

α
� (WM′, σ), iff

• if α = assert(p(t1, t2)) then WM′ = (WM ∪ {p(tσ1 , tσ2 )})− {neg p(tσ1 , tσ2 )}

• if α = retract(p(t1, t2)]) then


if p ∈ PPS WM′ = WM− {p(tσ1 , tσ2 )}
if p ∈ PDL WM′ = (WM∪

{neg p(tσ1 , tσ2 )})− {p(tσ1 , tσ2 )}

where tσ is σ(t) if t is a variable and it is t if t is a constant. �

Definition 4.4.10 (Compound Transition). Let (WM0, σ) be a prestructure and α1 · · ·αn
be atomic actions. We write

(WM0, σ)
α1...αn
� (WMn, σ)

iff there are prestructures (WM1, σ) . . . (WMn−1, σ) such that

(WM0, σ)
α1
� (WM1, σ)

α2
� (WM2, σ)

α3
� . . .

αn−1

� (WMn−1, σ)
αn
� (WMn, σ) �

If, for some σ and n > 1, there is a transition (WM0, σ)
α1...αn
� (WM′, σ) between pre-

structures then we will also write WM0
α1...αn
� WM′.

Since actions may introduce inconsistencies with respect to the ontology, we need to
define the notion of a consistent result of applying an action. Let α be an action and
suppose that

WM
α
�WM′

is a transition among prestructures such that WM is T -consistent and WM′ is not. One
way to define a consistent result of applying an action to WM is to take a maximal subset
of WM′ that belongs to some T -consistent prestructure. However, a maximal subset might
not be unique. A workaround here is to take the intersection of all the possible consistent
results. This approach is called When in Doubt Throw it Out (WIDTIO) [100].

Definition 4.4.11 (Consistent Result). Let WM and WMn be working memories, such that
WM is T -consistent, and α be an action. Suppose that there is a transition of the form

WM
α
� ŴM
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and ŴM is not T -consistent. Let M be the set of all maximal subsets of ŴM that contain
ŴM−WM and are T -consistent. We define the T -consistent result of applying α to WM
as

ŴM
cons

=
⋂

WMmax∈M

WMmax

�

Example 4.4.12. Suppose we execute r1 in WM0. We obtain the inconsistent working
memory WM1 = {takeT(Laura, pcr), flu(Laura), dnaT(pcr), requested(Smith,Laura, pcr)}.
We have two maximal consistent subsets of WM1

• WM′1 = {takeT(Laura, pcr), dnaT(pcr), requested(Smith,Laura, pcr)}

• WM′1 = {takeT(Laura, pcr), flu(Laura), requested(Smith,Laura, pcr)}

Thus, the consistent result is:
WMcons

1 = {takeT(Laura, pcr), requested(Smith,Laura, pcr)} �

Definition 4.4.13 (Consistent Transition). Let (WM0, σ) be a T -consistent prestructure
and α1 . . . αn be a sequence of actions. Suppose that we have the following transitions:

(WM0, σ)
α1
� (WM1, σ)

α2
�, . . . (WMn−1, σ)

αn
� (WMn, σ)

Let WMcons
i (i = 1 . . . n) be the T -consistent results of applying αi to (WMcons

i−1 , σ) (where
WMcons

0 = WM0). We define the corresponding T -consistent transition as

(WM0, σ)
α1
� (WMcons

1 , σ)
α2
�, . . . (WMcons

n−1 , σ)
αn
� (WMcons

n , σ) �

Definition 4.4.14 (Intermediate and Cyclic WM). Let (WM0, σ) be a T -consistent pre-
structure and suppose r is a rule with actions α1 · · ·αn in the head. Suppose there are
working memories WM1 . . .WMn such that

(WM0, σ)
α1
� (WM1, σ)

α2
� . . .

αn−1

� (WMn−1, σ)
αn
� (WMn, σ)

In this case we say that WM0 and WMn are cycle working memories, whereas WM1 . . .WMn−1

are intermediate working memories.5 �

Intuitively, cycle working memories are the initial and the final (resulting) working mem-
ories, whereas intermediate working memories are the intermediate states produced by
the execution of the rule actions.

We say that a transition of the form

(WM0, σ)
α1
� (WM1, σ)

α2
� . . .

αn−1

� (WMn−1, σ)
αn
� (WMn, σ)

5 RIF-PRD calls these cycle states because these are the states where cycles of rule applications begin.
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is non-trivial if WM0 6= WMn.

The following two definitions formalize the conflict resolution strategy for a given rule
r. We say that a rule r is eligible for execution in a working memory WM if r’s condition
holds in WM, and the working memory resulting from applying r is consistent with the
ontology. In addition, if r is an IF-THEN rule we require that r’s action changes WM,
and if r is a FOR rule we require that r’s action is not instantiated twice with the same
assignment.

Definition 4.4.15 (Fireable IF-THEN Rule). Let r be a rule of the form:

r : Forall ~x : if φr(~x) then ψr(~x) (4.3)

We say that r is fireable in a prestructure (WM0, σ) iff

1. (WM0, σ) is T -consistent.

2. T , (WM0, σ) |= φr

3. There is a non-trivial T -consistent transition of the form

(WM0, σ)
α1...αn
� (WMn, σ)

where
α1...αn
� is defined in Definition 4.4.10.

In this case we say that r causes transition from WM0 to WMn and denote it as WM0
r
↪→

WMn. �

Definition 4.4.16 (Fireable FOR Rule). Let r be a rule of the form:

r : For ~x : φr(~x) do ψr(~x) (4.4)

We say that r is fireable in a working memory WM0 iff

• WM0 is T -consistent.

• there are prestructures (WM0, σ0), (WM1, σ0), (WM1, σ1) . . . (WMn, σn−1) such that
there are T -consistent transitions of the form

(WM0, σ0)
α1...αm
� (WM1, σ0)

(WM1, σ1)
α1...αm
� (WM2, σ1)
...

(WMn−1, σn−1)
α1...αm
� (WMn, σn−1)

(4.5)

where the following conditions hold:
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1. Looping: T , (WMi, σi) |= φr for each cycle working memory, WMi (0 6 i 6
n− 1)

2. No repetitions: For each pair of prestructures (WMi, σi), (WMj, σj) (0 6 i <
j 6 n− 1), we have that σi 6= σj

3. Termination: For every consistent transition of the form (WMn, σ)
α1...αm
�

(WMn+1, σ) such that T , (WMn, σ) |= φr, there is a prestructure (WMi, σi)
with (0 6 i 6 n− 1), such that σ = σi.

In this case we say that r causes transition from WM0 to WMn and denote it as WM0
r
↪→

WMn. �

Condition 3 above says that rules are no longer fired once the system reaches a fixpoint.
This guarantees that a PS does not have trivial infinite runs.

Recall that a PS applies rules in three steps: (1) pattern matching, (2) conflict resolution,
(3) rule execution, and then it loops back to (1). So far we have described only the steps
(1) and (3). The next series of definitions describes Step (2) and show how looping is
modeled in the semantics. This semantics does not depend on any particular conflict
resolution strategy so, for concreteness, in Step (2) we will simply randomly choose a
fireable rule from the conflict resolution set.6 Some other works [7, 28] use the same
strategy.

Definition 4.4.17 (Consistent Transition Graph). The transition graph, TPS, of a pro-
duction system is a directed labeled graph, whose set of nodes is the set of all working
memories. There is an edge between two nodes WM and WM′, labeled with α, σ for some
action α and variable assignment σ, iff (WM, σ)

α
� (WM′, σ). We will use PWM to denote

the set of all paths (sequences of WMs) in the graph TPS starting at WM. �

Definition 4.4.18 (Split). Let π = WM0 . . .WMn be a path in PWM0 . A split of π is a pair
of subpaths, π1 and π2, such that π1 = WM0 . . .WMi and π2 = WMi . . .WMn for some
i (1 6 i 6 n). In this case, we write π = π1 ◦ π2. �

Definition 4.4.19 (Run). A path π in PWM0 is a run R for a production system PS iff
there are splits π = π1 ◦ · · · ◦ πn and rules r1 . . . rn such that for each i = 1 . . . n,
WMi,start

ri
↪→ WMi,end, where WMi,start is the first element in πi and WMi,end is its last.

Note that this implies that every πi is a T -consistent transition (see Definition 4.4.13). �

We will refer to the ith cycle working memory in a run as WMi.

4.5 T RPAD and its Semantics

The alphabet of the language LT R of T RPAD is defined the same way as in the case DL
except that now the set of all predicates P is further partitioned into two subsets, Pfluents

6Recall that the conflict resolution set contains all the rules that can be fired on a given working memory.
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and Pactions. The former will be used to represent facts in database states and the latter
for transactions that change those states. Querying a fluent can be viewed as an action
that does not change the underlying database state. We also add new symbols, B and

a ,
where a is an atom whose predicate symbol is in Pactions.
Terms are defined as usual in first order logic. States are referred to with the help of special
constants called state identifiers; these will be usually denoted by boldface lowercase
letters d, d1, d2. The symbol neg will be used to represent the explicit negation and
not will be used for the default negation. These two symbols are applicable to fluents
only. A fluent literal is either an atomic fluent or it has one of the following negated
forms: neg f , not f , not neg f , where f is an atomic fluent. Literals that do not
mention not are said to be not -free.

Note that in the ontologies one can have both neg - and ¬-literals, while T RPAD uses neg -
and not -literals instead. This is because logic programming rules cannot use classical
negation, while ontologies do not use default negation.

Like the original Transaction Logic [9, 10], T RPAD contains logical connectives from the
standard FOL (∧,∨,∀,∃,) plus two additional logical connectives: the serial conjunction,
⊗, and the modal operator ♦ for hypothetical execution. Informally, a serial conjunction
of the form φ ⊗ ψ represents an action composed of an execution of φ followed by an
execution of ψ. A hypothetical formula, ♦φ, represents an action where φ is tested
whether it can be executed at the current state, but no actual state changes take place.
For instance, the first part of the following formula

♦(insert(infection)⊗ bill insurance⊗ has paid)⊗ insert(takesT)

is a hypothetical test to verify that the patient’s insurance company will pay in case of an
infection after the blood test. The actual blood test is only performed if the hypothetical
test succeeds. We will assume that hypothetical formulas contain only serial conjunctions
of literals.

Definition 4.5.1 (T R with Partially Defined Actions). T RPAD consists of serial-Horn
rules, partial action definitions (PADs), and certain statements about states and actions,
which we call premises. The syntax for all these is shown below, where c stands for a
not -free literal, c1, . . . , cn are literals (fluents or actions), f is a not -free fluent literal,
b1, b2 are conjunctions of fluent literals or hypotheticals (not -literals are ok), b3, b4 are
conjunctions of not -free fluent literals, d0, d1 . . . are identifiers, and a is an action atom.

Rules Premises
(i) c← c1 ⊗ · · · ⊗ cn (a serial-Horn rule)
(ii) b1 ⊗ a⊗ b2 → b3 ⊗ a⊗ b4 (a PAD)

(iii) d0 B f (a state-premise)

(iv) d1
a d2 (a run-premise)

The serial-Horn rule (i) is a statement that defines the literal c, which can be viewed as a
calling sequence for a complex transaction and c1⊗· · ·⊗cn can be viewed as a definition
for the actual course of action to be performed by that transaction. If c is a fluent literal
then we require that c1, ..., cn are also fluents. In that case we call c a defined fluent
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and the rule itself a fluent rule. Fluent rules are akin to regular Horn rules in logic
programming. If c is an action, we will say that c is a compound action, as it is defined
by a rule. In contrast, actions such as a in (ii) are called partially defined actions. They
are defined by partial action definitions (PADs) of the form (ii); they cannot appear in
the heads of serial-Horn rules. �

For instance, the serial-Horn rule

r 1← requested(D,P, T )⊗ dnaT(T )⊗ insert(takesT(P, T ))

defines a compound action r 1. This action behaves in the same way as rule r1 in Exam-
ple 4.1.1. The PAD (ii) means that if we know that b1 holds before executing action a
and b2 holds after, we can conclude that b3 must have held before executing a and b4 must
hold as a result of a. For instance, the PAD

healthy(P )⊗ insert(dnaT(T ))→ insert(dnaT(T ))⊗ healthy(P )

states that if a patient is healthy, she remains so after adding a DNA type in the database.
This is a simplified version of an inertial law in T RPAD. Note that the serial conjunction
⊗ binds stronger than the implication, so the above statement should be interpreted as:
(healthy(P )⊗ insert(dnaT(T )))→ (insert(dnaT(T ))⊗ healthy(P )). To sum up, we distinguish
two kinds of actions: partially defined actions (abbr., pda) and compound actions. Par-
tially defined actions cannot be defined by rules—they are defined by PAD statements
only. In contrast, compound actions are defined via serial-Horn rules but not by PADs.
Note that pdas can appear in the bodies of serial-Horn rules that define compound actions
(see r 1 above) and, in this way, T RPAD can create larger action theories by composing
smaller ones in a modular way.

Premises are statements about the initial and the final database states (state premises) and
about possible state transitions caused by partially defined actions (run-premises).

For example, to represent the initial database in our example, we can use the state premises

d0 B dnaT(pcr)
d0 B requested(Smith,Laura, pcr)
d0 B flu(Laura)

The run-premise

d0

insert(takeT(~t))
 d1

says that executing the pda action insert(takeT(~t)) in the state associated with d0 leads to
the state represented by d1.

A transaction is a statement of the form ?- (d0)∃X̄φ, where φ = l1 ⊗ · · · ⊗ lk is a serial
conjunction of literals (both fluent and action literals) and X̄ is a list of all the variables
that occur in φ. Transactions in T R generalize the notion of queries in ordinary logic
programming. For instance,

?- (d0)flu(Laura)⊗ r 1
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is a transaction that first checks if the patient has a flu in the initial state d0; if so, the
compound action r 1 is executed. Note that if the execution of the transaction cannot pro-
ceed the already executed actions are undone and the underlying database state remains
unchanged.

A T RPAD transaction base is a set of serial-Horn rules. A T RPAD action base is a set of
PADs. A T RPAD specification is a tuple (E ,P,S) where E is a T RPAD action base, P is a
T RPAD transaction base, and S is a set of premises.

4.5.0.0.1 Semantics. This semantics uses three truth values, u, t and f, which stand
for true, false, and undefined and are ordered as follows: f < u < t. In addition, we will
use the following operator ∼: ∼ t = f, ∼ f = t, ∼ u = u.

A database state D (or just a state, for short) is a set of ground (i.e., variable-free) fluent
literals.

The semantics is based on the notion of path structures.

Definition 4.5.2 (Three-valued Partial Herbrand Interpretation). A partial Herbrand in-
terpretation is a mapping H : B 7→ {f,u, t} that assigns a truth value, f,u, or t, to every
formula φ in B. �

A central feature in the semantics of T R is the notion of execution paths, since T R
formulas are evaluated over paths and not over states like in temporal logics

Definition 4.5.3 (Three-valued Herbrand Path Structure). A Herbrand path structure is
a mapping I that assigns a partial Herbrand interpretation to every path. That is, for
any path π, I(π) is an interpretation. So, for instance, I(π)(f) is a truth value for any
literal f . This mapping must satisfy the restriction that for each ground base fluent f and
database state D:

I(〈D〉)(f) = t if f ∈ D and I(〈D〉)(f) = f if neg f ∈ D

where 〈D〉 is a path that contains only one state, D.

In addition, I includes a mapping of the form:
∆I : State identifiers −→ Database states

which associates states (i.e., sets of atomic formulas) to state identifiers. We will usually
omit the subscript. �

Intuitively, Herbrand path structures in T R play a role similar to transition functions in
temporal logics by providing a link between states and actions.

An execution path of length k, or a k-path, is a finite sequence of states, π = 〈D1 . . . Dk〉,
where k > 1. A path abstraction is a finite sequence of state identifiers. If 〈d1 . . . dk〉 is
a path abstraction then 〈D1 . . . Dk〉, where Di = ∆(di), is an execution path. We will
also sometimes writeM(〈d1 . . . dk〉) meaningM(〈∆(d1) . . . ∆(dk)〉).
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Definition 4.5.4 (Split). Let π be a path. A split of π is a pair of subpaths, π1 and π2,
such that π1 = 〈D1 ...Di〉 and π2 = 〈Di ...Dk〉 for some i (1 6 i 6 k). In this case, we
write π = π1 ◦ π2. �

In the remainder of this section we will consider ground rules and PADs only. We can
make this assumption without loosing generality because all the variables in a rule are
considered to be universally quantified. In addition, we assume that the language includes
the distinguished propositional constants tπ, and uπ for each T R path π. Observe that
since there is an infinite number of paths, there is an infinite number of such constants.
Informally, tπ (uπ) is a proposition that has the truth value t(respectively u) only on the
path π, and it is false on every other path. That is, I(π′)(tπ) = t (respectively I(π′)(uπ) =
u) if and only if π = π′.

The following definition formalizes the idea that truth of T R formulas is defined on paths.

Definition 4.5.5 (Satisfaction). Let I be a Herbrand path structure, π be a path, f a
ground not -free literal, and G, G1, G2 ground serial goals. We define truth valuations
with respect to the path structure I as follows:

• I(π)(f) was already defined as part of the definition of Herbrand path structures.

• I(π)(φ⊗ ψ) = max{min(I(π1)(φ), I(π2)(ψ) | π = π1 ◦ π2}

• I(π)(G1 ∧G2) = min(I(π)(G1), I(π)(G2))

• I(π)(notφ) =∼ I(π)(φ)7

• I(π)(�φ) =

{
max{I(π′)(φ) | π′ is a path that starts at D, } if π = 〈D〉
f otherwise

• I(π)(f ← G) = t iff I(π)(f) > I(π)(G)

• I(π)(b1 ⊗ α⊗ b2 → b3 ⊗ α⊗ b4) = t iff π has the form 〈D1,D2〉,
I(〈D1,D2〉)(α) = t, and the following holds:

min{min{I(〈D1〉)(f) | f ∈ b1},min{I(〈D2〉)(f) | f ∈ b2}}
6

min{min{I(〈D1〉)(f) | f ∈ b3},min{I(〈D2〉)(f) | f ∈ b4}}

We write I, π |= φ and say that φ is satisfied on path π in the path structure I if I(π)(φ) =
t. �

Definition 4.5.6 (Model). A path structure, I, is a model of a formula φ if I, π |= φ for
every path π. In this case we write I |= φ. A path structure, I, is a model of a set of
formulas if it is a model of every formula in the set. A path structure, I, is a model of a
premise-statement σ iff:

7Recall that ∼ t = f, ∼ f = t, ∼ u = u.



CHAPTER 4. PRODUCTION RULES VIA TRANSACTION LOGIC 99

• σ is a run-premise of the form d1
α d2 and I, 〈d1d2〉 |= α; or

• σ is a state-premise dB f and I, 〈d〉 |= f .

I is a model of a specification (E ,P,S) if I is an interpretation for E and it satisfies every
rule in P and every premise in S . �

Example 4.5.7. Consider again Example 4.1.1. Let us present the specification Λ =
(E ,P,S), that intuitively encodes the ontology and part of the PS. A complete encoding
will be described in Section 4.6. Assume that S contains the premises already introduced
in the previous section. The transaction base P contains the following rules encoding the
ontology

neg virusT(T )← dnaT(T )
neg healthy(P )← flu(P )

healthy(P )← takesT(P, T ),neg virusT(T )

The action base E contains two PADs encoding the (simplified) inertia laws, and the
definition of the action inserttakeT.

dnaT(P )⊗ inserttakeT(P, T )⊗ not inconsistent → inserttakeT(P, T )⊗ dnaT(P )
flu(P )⊗ inserttakeT(P, T )⊗ not inconsistent → inserttakeT(P, T )⊗ flu(P )

inserttakeT(P, T ) → inserttakeT(P, T )⊗ takeT(P, T )

From the premises and the rules in Λ, we can see that any path structure I that models Λ
satisfies

I(d0)(dnaT(pcr)) = t
I(d0)(flu(Laura)) = t I(d0d1)(inserttakeT(Laura, pcr) = t

Now take an interpretation, I1, such that I1(d1)(inconsistent) = f. From the PADs in E
instantiated with pcr, Laura, and Smith, we can conclude that:

I1(d1)(dnaT(pcr)) = t
I1(d1)(flu(Laura)) = t I1(d1)(takeT(Laura, pcr) = t

and from the rules in the ontology it follows that I1(d1)(healthy) = t and
I1(d1)(neg healthy) = t. Thus, d1 is inconsistent in I1. �

In classical logic programming based on three-valued models, given two Herbrand partial
interpretations N1 and N2, we say that

• N1 6c N2 iff all not -free literals that are true in N1 are true in N2 and all not -
literals that are true in N1 are true in N2. This coincides with set-theoretic inclusion
and is called the information ordering.

• N1 �c N2 iff all not -free literals that are true in N1 are true in N2 and all not -
literals that are true in N2 are true in N1. This is called the truth ordering.

Definition 4.5.8 (Order on Path Structures). Let M1 and M2 be two Herbrand path struc-
tures, then:

• Information ordering: M1 6M2 if for every path, π, it holds that
M1(π) 6c M2(π).
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• Truth ordering: M1 �M2 if for every path, π, it holds that
M1(π) �c M2(π). �

These two orderings are considerably different. The truth ordering minimize the amount
of truth, by minimizing the atoms that are true and maximizing the atoms that are false on
each path. In contrast, the information ordering minimizes the amount of information by
minimizing both the atoms that are true and false in each path. For instance, the smallest
model with respect to 6 for the program {α → α} is one where α is undefined on every
path; in contrast, the least model with respect to � is one when α is false on every path.

Example 4.5.9. Consider a path structure I2 for the specification Λ in Example 4.5.7 that
coincides with I1 in the path 〈d0〉 but differs in 〈d1〉 as follows:

I2(d1)(dnaT(pcr)) = u
I2(d1)(flu(Laura)) = u

I2(d1)(inconsistent) = u
I2(d1)(takeT(Laura, pcr) = t

It is not hard to see that I2 is also a model of Λ, and moreover I2 � I1. �

Definition 4.5.10 (Least Model). A model M of a specification (E ,P,S) is minimal with
respect to � iff for any other model, N, of (E ,P,S), if N �M then N = M. The least
model of (E ,P,S), denoted LPM(E ,P,S), is a minimal model that is unique. �

The following definition is key to the notion of well-founded T RPAD models. It is modeled
after [43] with appropriate extensions for PADs.

Definition 4.5.11 (T RPAD-quotient). Let (E ,P,S) be a T RPAD specification, and I a Her-
brand path structure. By T RPAD-quotient of (E ,P,S) modulo I we mean a new specifi-
cation, (E,P,S)

I
, which is obtained from (E ,P,S) by

• Then replacing every literal of the form not b in P ∪ E with

tπ for every path π such that I(π)(not b) = t
uπ for every path π such that I(π)(not b) = u

• And finally removing all the remaining rules and PADs that have a literal of the
form not b in the body such that I(π)(not b) = f for some path π. �

Example 4.5.12. Consider the specification (E ,P,S) consisting in the following PADs
and rules:

(1) PAD : α→ α⊗ neg f1

(2) PAD : c1 ⊗ α⊗ not inconsistent→ α⊗ c1

(3) PAD : c2 ⊗ α⊗ not inconsistent→ α⊗ c2

(4) PAD : β → β ⊗ f1

(5) Fluent rule: f1 ← c1 ∧ c2

(6) Fluent rule: inconsistent← f1 ∧ neg f1

(7) Action rule: γ ← α⊗ not inconsistent⊗ β
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where inconsistent, f1, c1 and c2 are fluents, and α, β, and γ are actions. In plain English,
PAD (1) describes the effect of α on neg f1. PADs (2) and (3) encode the frame axioms
for the fluents c1 and c2 with respect to α with further qualification that they must not
cause inconsistency. PAD (4) describes the effect of β on f1. The fluent rule (5) defines
the fluent f1 in terms of the fluents c1 and c2, and (6) defines the fluent inconsistent. Rule (7)
defines the action γ. Let I be the Herbrand path where everything is undefined in every
path. The quotient (E,P,S)

I
is then as follows:

(1) α→ α⊗ neg f1

(2) c1 ⊗ α⊗ uπ → α⊗ c1 (multiple copies for all possible paths π)
(3) c2 ⊗ α⊗ uπ → α⊗ c2 (again, one per path π)
(4) β → β ⊗ f1

(5) f1 ← c1 ∧ c2

(6) inconsistent← f1 ∧ neg f1

(7) γ ← α⊗ uπ ⊗ β

�

Next, we give a constructive definition of well-founded models for T RPAD specifications
in terms of a consequence operator.

Definition 4.5.13 (T RPAD Immediate Consequence Operator). The consequence operator,
Γ, for a T RPAD specification is defined by analogy with the classical case:

Γ(I) = LPM(
(E ,P,S)

I
)

Suppose I∅ is the path structure that maps each path π to the empty Herbrand inter-
pretation in which all atoms are undefined. That is, for every path π and literal f , we
have I∅(π)(f) = u. The ordinal powers of the consequence operator Γ are then defined
inductively as follows:

• Γ↑0(I∅) = I∅

• Γ↑n(I∅) = Γ(Γ↑n−1(I∅)), if n is a successor ordinal

• Γ↑n(I∅)(π) =
⋃
j6n Γ↑j(I∅)(π), if n is a limit ordinal �

The operator Γ is monotonic with respect to the6-order when (E ,P,S) is fixed. Because
of this, the sequence {Γ↑n(I∅)} has a least fixed point and is computable via transfinite
induction.

Definition 4.5.14 (Well-founded Model). The well-founded model of a T RPAD specifica-
tion (E ,P,S), written WFM((E ,P,S)), is defined as a limit of the sequence {Γ↑n(I∅)}.
�
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Example 4.5.15. Consider the specification,(E ,P,S), in Example 4.5.12. Suppose that
we have the following set of premises in S:

d1 B c1

d1 B c2

d1 B f1

d1
α d2

d2

β
 d3

Then, the least modelM of (E,P,S)
I

has the following properties:

1. M(〈d1d2〉)(α) = t

2. M(〈d2d3〉)(β) = t

3. M(〈d1〉)(c1) = t

4. M(〈d1〉)(c2) = t

5. M(〈d1〉)(f1) = t

6. M(〈d2〉)(neg f1) = t

7. M(〈d1〉)(neg f1) = f

8. M(〈d0d1〉)(α) = f

9. M(〈d2〉)(c1) = u

10. M(〈d2〉)(c2) = u

11. M(〈d2〉)(f1) = u

12. M(〈d2〉)(inconsistent) = u

13. M(〈d1d2d3〉)(γ) = u

Items 1,2,3, 4, and 5 hold due to the premises in S. Item 6 holds because of the effect of
α. Items 7 and 8 are false because they can be safely assumed to be false in the minimal
model. Items 9 and 10 are undefined because the postcondition of α is undefined. Item
11 is undefined because c1 and c2 are undefined. Item 12 is undefined because f1 is
undefined. And item 13 is undefined because part of its definition is undefined. Note that
it is possible for f1 to be undefined and neg f1 to be true in a path. �

Example 4.5.16. Consider the specification in Example 4.5.7 together with the following
rule defining the fluent inconsistent.

inconsistent← healthy(P ), neg healthy(P )
In the specification Λ

I∅
, the sets P, remain the same since they all are not -free. In E , only

the frame axioms change as follows
dnaT(P )⊗ inserttakeT(P, T )⊗ uπ → inserttakeT(P, T )⊗ dnaT(P )
flu(P )⊗ inserttakeT(P, T )⊗ uπ → inserttakeT(P, T )⊗ flu(P )

Since Λ
I∅

is not -free, it has a minimal model [88] Γ↑1(I∅) = I1. It follows from the
construction of I1 that I1(〈d1〉)(inconsistent) = u. It is not hard to see that in the WFM
of Λ, inconsistent is also undefined in I1(〈d1〉). This is because the frame axioms are
preventing the inconsistency from occurring, but it is still detected. Without the rules
encoding the ontology, inconsistent would be false in WFM(〈d1〉). �

Theorem 4.5.17. WFM((E ,P,S)) is the least model of (E ,P,S).



CHAPTER 4. PRODUCTION RULES VIA TRANSACTION LOGIC 103

4.6 Production Systems in T RPAD

In this section we present the reduction of production systems augmented with Datalog-
rewritable ontologies to T RPAD. Given an alphabet LPS for a production system PS, the
corresponding language LT R of the target T RPAD formulation will consist of symbols for
rule labels, constants, and predicates. In addition, LT R has the following symbols:

• the pdas add used and clean used, and for every predicate p ∈ LPS, Ins p, and del p;

• the compound action act;

• the defined fluent inconsistent, and for every rule label r the defined fluent fireable r;

• the fluents inertial and used.

Intuitively, the pdas Ins p, and del p above represent the actions assert and retract. The
pdas add used and clean used, and the fluent used, are used to keep track of the assignments
that has already been used to instantiate a FOR-production rule. The compound action act
represents a generic production rule. The defined fluent fireable r is true if the condition of
the rule r holds and the action produces no inconsistencies. The defined fluent inconsistent
is true, if there is an inconsistency in the state. The fluent inertial is used to distinguish
inertial from non-inertial fluents.

Intuitively, the pdas Ins p and del p above represent the RIF actions assert and retract. The
pdas add used and clean used, and the fluent used, are used to keep track of the assignments
that have already been used to instantiate a For-production rule.

The compound action act represents a generic rule. The defined fluent fireable r is true if
the condition of the rule r holds and the action produces no inconsistencies. The fluent
inertial is used to distinguish inertial from non-inertial fluents.

Let ψ = α1 . . . αn be a sequence of atomic actions. We use ψ̂ to denote the T R -serial
conjunction ψ̂ = α̂1 ⊗ · · · ⊗ α̂n where

α̂i =

{
Ins p(t1 . . . tn) if αi = assert(p(t1 . . . tn))
del p(t1 . . . tn) if αi = retract(p(t1 . . . tn))

Let φ = f1 ∧ · · · ∧ fn ∧ l1 . . . lm be a conjunction of atoms (fi) and negative literals (lj).
Then let φ̂ denote the T R -serial conjunction φ̂ = f1∧· · ·∧fm∧∼ l1∧· · ·∧∼ lm, where

∼ lj =

{
not f(~c) if lj = ¬f(~c) ∧ f ∈ PPS
neg f(~c) if lj = neg f(~c) ∧ f ∈ PDL

In the following, let PS = (T , L, R) be a production system. For simplicity we assume
that conditions in production rules are conjunction of fluent literals. In addition, we as-
sume we have an initial working memory, WM0, that represents the knowledge we have
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about the initial state of the system. A production system coupled with a working memory
is called a configuration.

The reduction, ΛPS, of a configuration (PS,WM0) to T RPAD is a T RPAD knowledge-base
(E ,P,S) composed of the following PADs (E), rules for defined fluents (P) and premises
(S). From now on we assume that the ontology T is Datalog-expressible (e.g., LDL+—
see Section 4.3.2).

1. State identifiers: There is an initial state identifier d0. The rest of the state iden-
tifiers are indexed by sequences of actions that need to be applied to d0 in order
to reach those other states. That is, they have the form d0,α1,...,αn , where n > 0
and each αi is a ground instance of a T RPAD’s partially defined action add used,
clean used, Ins p, or del p, for some p.

2. Ontology T : P contains all the rules from the Datalog rendering of T .

3. Initial Database: The premises below characterize the content of the initial work-
ing memory WM0.

• For each atomic literal p(t1, . . . , tn) in WM0

d0 B p(t1, . . . , tn) ∈ S
d0 B inertial(p(t1, . . . , tn)) ∈ S8

4. Frame Axioms: The following frame axioms encode the laws of inertia. In addi-
tion, they take care of the actual “removal” ofLPS atoms from the working memory,
and the cleaning of the used assignments.

• For each predicate p and action αq that involves assertion or retraction of a
predicate q, where p 6= q:{

(inertial(p( ~X)) ∧ p( ~X)) ⊗ αq(~Y )⊗ not inconsistent→
αq(~Y )⊗ (p( ~X) ∧ inertial(p( ~X)))

}
∈ E

• For each predicate p and action αp on that predicate:{
(inertial(p( ~X)) ∧ p( ~X) ∧ ~X 6= ~Y )⊗ αp(~Y )⊗ not inconsistent→

αp(~Y )⊗ (p( ~X) ∧ inertial(p( ~X)))

}
∈ E

• For each predicate p
(inertial(p( ~X)) ∧ p( ~X))⊗ add used(~Y )→

add used(~Y )⊗ (p( ~X) ∧ inertial(p( ~X)))

(inertial(p( ~X)) ∧ p( ~X) ∧ p 6= used)⊗ clean used→
clean used⊗ (p( ~X) ∧ inertial(p( ~X)))

 ∈ E
8 We could have written this as inertial(p, t1, . . . , tn) to avoid the appearance of being second order or

that the use of function symbols here is essential.
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5. RIF Actions: The following rules encode the RIF actions assert and retract in
T RPAD:

• Insert: For each predicate p ∈ LPS (whether in PDL or PPS):{
Ins p(t1, . . . , tn)→ Ins p(t1, . . . , tn)⊗

(p(t1, . . . , tn) ∧ inertial(p(t1, . . . , tn)))

}
∈ E

• Retract: For each predicate p ∈ LPS ,

if p ∈ PDL then
{

del p(t1, . . . , tn)→ del p(t1, . . . , tn)⊗
(neg p(t1 . . . tn) ∧ inertial(neg p(t1 . . . tn)))

}
∈ E

Recall that the effect of the pda del p for PS atoms is given by the interaction
with the frame axioms. For instance, if applying deldnaT (pcr) in d1 results in
a state d2, it holds that d2 is equal to d1 except for dnaT(pcr), which is not
carried to d2 by the frame axioms. This is equivalent to remove dnaT(pcr)
from d2.

6. Production rules: The following rules encode the production rules.

• For each IF-THEN-rule of the form “r : Forall ~x : if φr(~x) then ψr(~x)”

r ← fireable r( ~X)⊗ ψ̂r( ~X) ∈ P

• For each FOR-rule of the form “r : For ~x : φr(~x) do ψr(~x)”

r ← fireable r( ~X)⊗ ψ̂i( ~X)⊗ add used( ~X)⊗ loop r
loop r ← r

loop r ← (not ∃ ~X : fireable r( ~X))⊗ clean used

 ∈ P

where not ∃ ~X : φ̂( ~X) above is a shorthand for not p′ such that p′ is a new predicate
defined as p′ ← φ̂( ~X).

7. Auxiliary Actions and Premises:

• Run-Premises: Then for each pda α and a sequence ξ of actions Ins, del,
add used, or clean used, the set of premises S contains the following run-premise:

dξ
a dξ,a

For example, d0,Ins p(c)
Insq(d)
 d0,Ins p(c),Insq(d).
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• Inconsistency: For each predicate p ∈ LPS , P contains a rule of the form:

inconsistent← p( ~X), neg p( ~X)

• Adding used assignments:{
add used(~Y )→ add used(~Y )⊗ used( ~X)

}
∈ E

• Fireability. The following rules are in P:
If r is an
IF-THEN rule

{
fireable r( ~X)← φ̂r( ~X) ∧

∨
p∈P inertial(p(Y )) ∧

(♦ψ̂r( ~X)⊗ not inconsistent ∧ not inertial(p(Y )))

If r is a
FOR rule

{
fireable r( ~X)← φ̂r( ~X) ∧ not used( ~X)) ∧ (♦ψ̂r( ~X)⊗
not inconsistent)

Observe that in the definition of fireable r for IF-THEN rules, we also require
that the effect of the action must produce a change, in particular in the rule
above we require that it must retract some inertial fact. We omit the analogous
definition requiring that the change consists of inserting a new inertial fact.

• Random choice of action: Suppose {r1 . . . rn} = L

act← r1
...
act← rn

 ∈ P

To run k rules of the production system we use the transaction:

?- (d0) act⊗ · · · ⊗ act︸ ︷︷ ︸
k

Theorem 4.6.1 (Soundness). Let (E ,P,S) be the T RPAD embedding of a PS configura-
tion. Suppose

E ,P,S, d0 . . . dk |= act⊗ · · · ⊗ act︸ ︷︷ ︸
m

Then there are working memories WM1 . . .WMm, and RIF rules r1 . . . rm such that

WM0
r1
↪→WM1
...

WMm−1
rm
↪→WMm

4.7 Summary

In this chapter we described a new semantics for the combination of production systems
with arbitrary DL ontologies. Unlike previous approaches [90, 28, 26, 7, 67, 102], the
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semantics presented here supports extensions, like the FOR-loops or while-loops, that
are not included in RIF-PRD, but are found in commercial production systems such as
IBM’s JRules[58]. In addition, our approach can handle inconsistencies produced by the
interaction of rule actions and the ontology.

We also defined a sound embedding of such semantics, restricted to rule-based DL ontolo-
gies, into Transaction Logic with partial action definitions (T RPAD). This reduction gives
a declarative semantics to the combination, and is considerably simpler and compact that
other approaches, including [90, 67, 102, 26, 62].

To model production systems in T RPAD, we extended T RPAD with default negation and
defined the well-founded semantics [96] for it. It is worth noting that this T RPAD embed-
ding can be used as an implementation vehicle for the combination of PS and rule-based
ontologies.



Chapter 5

Generalized Ontology-based Production
Systems

5.1 Introduction

The goal of this chapter is twofold. On the one hand, we want to provide a very general
framework for the combination of ontologies and production rules. On the other hand, we
want to define specific systems combining production rules and ontologies and to define
effective algorithms for the static analysis of such systems.

To reach the first of the above goals, in the first part of this chapter we define generalized
ontology-based production systems (GOPSs), which formalize a very general and power-
ful combination of ontologies and production systems. We show that GOPSs capture and
generalize many existing formal notions of production systems. We introduce a powerful
verification query language for GOPSs, which is able to express the most relevant for-
mal properties of production systems previously considered in the literature. We establish
a general sufficient condition for the decidability of answering verification queries over
GOPSs.

Then, we turn our attention to the second of the above goals. Specifically,we define Lite-
GOPSs, a particular class of GOPSs based on the use of a light-weight ontology language
(DL-LiteA), a light-weight ontology query language (EQL-Lite(UCQ)), and a tractable
semantics for updates over Description Logic ontologies. We show decidability of all the
above verification tasks over Lite-GOPSs, and prove tractability of some of such tasks.

108
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5.1.1 Motivation and contribution

5.1.1.1 Motivation

The integration of ontologies and production rules is a challenging task. As illustrated by
the survey presented in Chapter 4, many approaches have (either directly or indirectly)
dealt with this problem in the recent literature [85, 27, 7, 62, 91, 29]. However, known
approaches suffer from the following limitations: (i) there is no unifying approach that is
able to capture all the above proposals within a coherent formal setting; (ii) no approach
seems to be flexible enough to allow for the combination of arbitrary ontologies with
production rules; (iii) there are very few results concerning the computational properties
of such extended forms of production systems (an exception is [29]).

The goal of this chapter is to identify and explore a very general way of combining on-
tologies and production rules. We argue that there are at least two strong motivations for
pursuing such a goal.

On the one hand, the existence of a framework which is general enough to capture the
main existing proposals for the combination of ontologies and production rules makes it
possible to easily and effectively study and compare the different proposals in a coherent
formal setting.

On the other hand, this general framework makes it possible to identify and study de-
cidability and complexity of reasoning in classes of systems combining ontologies and
production rules. In particular, in this chapter we are interested in identifying classes of
systems combining ontologies and production rules which allow for decidable static anal-
ysis of such systems. Indeed, as in other fields like databases, information systems, and
software engineering, the availability of effective methods for static analysis would be an
invaluable tool for the design and optimization of production systems.

5.1.1.2 Contribution

Our approach is based on a very abstract vision of an ontology, whose roots lie in the
principles of knowledge representation [70]: we see the ontology as a knowledge base
defined through a functional specification. More precisely, the ontology is equipped with
a query language and an update language. Such languages are provided with a semantics
given by a function ASK and a function TELL, respectively. The function ASK provides
the semantics of queries posed to an ontology; the function TELL provides the semantics
of updates over an ontology.

According to this view of an ontology, the integration of ontologies with production rules
is very simple and natural. Roughly speaking, production rules are “if condition then
action” statements. Now, the functional specification of an ontology makes it very simple
to define a combination of ontologies and production systems. This combination is based
on the following, almost straightforward, considerations:
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1. when combining ontologies and production rules, it is natural to use ontology query
languages to express rule conditions and ontology update languages to express rule
actions;

2. to interpret the meaning of such conditions and of such actions, it is natural to use
the semantics of ontology queries and ontology updates, respectively.

Thus, production rules are executed on an ontology: the condition language corresponds
to the ontology query language, while the action language corresponds to the ontology
update language. The production system uses the ontology as a working memory, and the
semantics of the system is then given by the usual operational semantics of production
rules, using the ASK and TELL functions to interpret conditions and actions, respec-
tively.

Hence, this approach to the integration of ontologies and production rules is very natural.
However, to effectively exploit such an approach, we have to face a big issue: in fact, very
few ontology languages are equipped with a satisfactory query language and/or a satis-
factory update language.1 In particular, few results are available in the field of updating
ontologies, in particular Description Logic (DL) ontologies.

So, this approach might seem just elegant but of no use: fortunately, this is not true, for
at least two reasons. First of all, the functional view of ontologies makes it clear that the
real technical obstacles towards the combination of ontologies and production systems
are only due to the ontology component, in the sense that such obstacles are due to the
fact that the specifications of ontologies are often still incomplete (they lack a proper
query functionality and/or a proper update functionality). Moreover, some recent results
allow us to identify ontology specifications that actually match the requirements for a
meaningful combination with production rules. In fact, many expressive (and decidable)
query languages have been defined for DL ontologies (e.g., [94, 20, 46]), and some recent
approaches have proposed interesting semantics for updates over DL ontologies, as well
as algorithms for effectively computing such updates (e.g., [30, 23, 68, 74]).

Concerning production rules, essentially we stick to the RIF-PRD specification [31],
which has already been introduced in Chapter 4.

We formalize the above vision of the combination of ontologies and production systems
as follows.

• We define generalized ontology-based production systems (GOPSs), which formal-
ize a very general and powerful combination of ontologies and production systems
based on the functional specification of ontologies.

1Here, by satisfactory language we mean that both syntax (i.e., the expressiveness) and semantics of
the language should be adequate. For instance, we argue that a semantics for the update action of inserting
an axiom which corresponds to the simple syntactic addition of the axiom to the DL ontology is to be
considered as unsatisfactory, since it is not coherent with the semantics of the ontology itself.
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• We introduce a powerful verification query language for GOPSs, which is able
to express the most relevant formal properties of production systems previously
considered in the literature.

• We study reasoning over GOPSs and establish a general sufficient condition for the
decidability of answering verification queries over GOPSs.

• Next, we turn our attention to specific ontology languages. More specifically,
we define Lite-GOPSs, a particular class of GOPSs based on the use of a light-
weight ontology language (DL-LiteA), a light-weight ontology query language
(EQL-Lite(UCQ)), and a tractable semantics for updates over Description Logic
ontologies.

• We show decidability of all the above verification tasks over Lite-GOPSs, and prove
tractability of some of such tasks.

With respect to the approach presented in Chapter 4, we highlight two main differences.
First, the present approach has a more general flavour, since any decription logic ontol-
ogy can be combined with production rules, while the approach of Chapter 4 is tailored
for Datalog-rewritable ontologies. Second, and most important, the two approaches are
based on different principles. In the approach of Chapter 4, the problem of defining a
language for expressing conditions and effects of production rules and evaluating such
conditions and effects on the ontology is solved within the approach itself. Conversely,
in our approach, we start from the postulate that production rule conditions are ontology
queries and production rule effects are ontology updates, therefore we are not allowed to
define them: we must resort to (and reuse) semantics for ontology queries and updates
to define the meaning of such conditions and effects. In other words, according to our
view, an ontology comes equipped with its own languages and semantics for queries and
updates, and the most natural and intuitive combination of the ontology with production
rules is the one that uses the equipped languages and semantics for queries and updates
over the ontology.

Notice also that, differently from both the approach described in Chapter 4 and analogous
existing approaches (e.g., [27, 7, 91, 29]), we do not aim at reconstructing the whole pro-
duction system into a logic: that is, our approach does not provide a declarative semantics
for production systems through a logical representation of such systems. Nevertheless,
we make use of logic in the verification of formal properties of production systems. In
fact, as will be clear in Section 5.1.4, we will use model checking for the static analysis
of production systems.

5.1.1.3 Structure of the chapter

The chapter is structured as follows. In the first part, we define generalized ontology-
based production systems (GOPSs) and study such systems in their generality, without
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making any assumption on the ontology languages used to specify the ontology compo-
nent of the GOPSs. In particular:

• In Section 5.1.2, we briefly introduce production systems and Description Logic
(DL) ontologies.

• In Section 5.1.3, we formally define syntax and semantics of generalized ontology-
based production system (GOPS).

• In Section 5.1.4, we define the verification query language which allows for ana-
lyzing the formal properties of GOPSs.

• In Section 5.1.5 we use the above verification query language to express the most
relevant formal properties of GOPSs.

• In Section 5.1.6 we study reasoning over GOPSs. In particular, we provide suffi-
cient conditions for the decidability of the problem of answering verification queries
over GOPSs.

In the second part of the paper, we study a specific class of GOPSs, which we call Lite-
GOPSs, based on a specific ontology language (DL-LiteA), a specific ontology query
language (EQL-Lite(UCQ)) and a specific ontology update language (UL-Lite). In par-
ticular:

• in Section 5.1.7 we introduce the ontology query language EQL-Lite(UCQ).

• In Section 5.1.8 we present a recent semantics for ontology updates over DL on-
tologies and the ontology update language UL-Lite.

• In Section 5.1.9 we define the class of Lite-GOPSs, based on the choice of the
above languages to specify the ontology component of a GOPS; moreover, we study
reasoning over Lite-GOPSs, and present some decidability and complexity results
for the problem of answering verification queries over Lite-GOPSs.

• Finally, in Section 5.1.10 we draw some conclusions and directions for further
work.

5.1.2 Preliminaries

In this section we recall production systems, Description Logic ontologies, and the de-
scription logic DL-LiteA.
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5.1.2.1 Production Systems

In the following, we briefly informally recall the notions of production system and pro-
duction rule given in the RIF-PRD specification (for more details see [31]).

A production rule system (or production system) is a pair 〈F0, P 〉 where F0 is a state of a
fact base and P is a set of production rules. A state of a fact base is simply a set of facts
(ground atomic formulas). A production rule is an expression of the form

FORALL ~x : IF φ(~x) THEN α1(~x), . . . , αn(~x)

such that:

• φ(~x) is a first-order formula, called condition, with free variables ~x;

• every αi(~x) is such that for every ground substitution 〈~x,~c〉, i.e., a substitution of
the rule variables with constants, αi(~c) is an action, i.e., an expression of the form
Assert(f) or Retract(f), where f is a fact.

A rule instance is the variable-free rule obtained applying a ground substitution to a pro-
duction rule. A priority is associated to every rule instance.

The semantics of production systems is expressed in terms of a transition system. Such a
notion is based on the semantics of execution of a production rule over a fact base and on
the notion of conflict resolution strategy.

Given a production rule p of the above form, a ground substitution 〈~x,~c〉, and a state of
the fact base F , the rule instance p(~c) matches F if the formula φ(~c) is satisfied by F .

The set of rule instances matching a state F of a fact base is called the conflict set of F .

The execution of p(~c) over F is a state of the fact base F ′ obtained from F by applying the
sequence of fact addition (Assert) and fact deletion (Retract) actions corresponding
to α1(~c), . . . , αn(~c).

A conflict resolution strategy is a function that, given a conflict set and information on the
previous history of the system, picks one rule instance among the ones in the conflict set.

The operational semantics of a production system is given by a transition system: roughly,
every state2 of such a transition system represents a state of the fact base plus the infor-
mation needed by the conflict resolution strategy, and there is a transition from one state
s to another state s′ (labeled by the sequence of actions of p(~c)) if the rule p(~c) is the one
picked by the conflict resolution strategy in s and s′ is the state resulting by the execution
of rule p(~c) in s: in particular, the state F ′ of the fact base of s′ is the state of the fact base
resulting from the execution of rule p(~c) on the state F of the fact base of s. For more
details on the semantics, we refer the reader to [31].

2This description is relative to the so-called cyclic states of the transition system: actually, there is
another kind of states, the transitional states, in the transition system.
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As above explained, the conflict resolution strategy is a central aspect of the semantics
of production systems. The RIF-PRD specification formalizes a particular conflict reso-
lution strategy, whose principles are the same as the conflict resolution principles of real
prodution rule systems: the so-called rif:forwardChaining strategy.

The rif:forwardChaining strategy can be described as follows. Given a conflict set:

1. (refraction step) if a rule instance has been executed in a given state of the system, it
is no longer eligible for execution as long as it satisfies the states of facts associated
to all the subsequent system states; this property is called refraction. Therefore, all
the refracted rule instances are removed from further consideration;

2. (priority step) the remaining rule instances are ordered by decreasing priority, and
only the rule instances with the highest priority are kept for further consideration;

3. (recency step) the rule instances are ordered by the number of consecutive system
states in which they have been in the conflict set, and only the most recent rule
instances are kept for further consideration;

4. (tie-break step) any remaining tie is broken is some way, and a single rule instance
is kept for firing.

5.1.2.2 Description Logic ontologies

Description Logics (DLs) [5] allow for expressing knowledge in terms of atomic concepts,
i.e., unary predicates, and atomic roles, i.e., binary predicates. General concepts and roles
are built through the constructs allowed in the DL: such constructs are usually express-
ible in first-order logic (FOL). A DL ontology is formed by a set of assertions, typically
divided into a TBox, expressing intensional knowledge, and an ABox, expressing exten-
sional knowledge. Again, usually such assertions can be expressed as FOL sentences (i.e.,
closed FOL formulas). Thus, in most cases DL ontologies can be seen as FOL theories
(of specific forms). The only notable exceptions are those DLs that include some form of
second-order constructs, such as transitive closure or fixpoints [5].

In the following, we will speak about a specification language for ontologies, about
queries to an ontology, and about updates to an ontology. There are several approaches
that define and study query languages over DL ontologies (e.g. [72, 22, 21, 76]) and
updates over DL ontologies (e.g., [73, 30, 23, 68]).

5.1.2.3 The description logic DL-LiteA

The description logic DL-LiteA [84] is a member of the DL-Lite family of tractable De-
scription Logics. Such a family of DLs is characterized by the nice computational prop-
erties of all the main DL reasoning tasks, in particular query answering [21].
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DL-LiteA distinguishes concepts from value-domains, which denote sets of (data) val-
ues, and roles from attributes, which denote binary relations between objects and values.
Concepts, roles, attributes, and value-domains in this DL are formed according to the
following syntax:

B −→ A | ∃Q | δ(U) E −→ ρ(U)
C −→ B | ¬B F −→>D | T1 | · · · | Tn
Q −→ P | P− V −→ U | ¬U
R −→ Q | ¬Q

In such rules,A, P , andU respectively denote an atomic concept (i.e., a concept name), an
atomic role (i.e., a role name), and an attribute name, P− denotes the inverse of an atomic
role, whereas B and Q are called basic concept and basic role, respectively. Furthermore,
δ(U) denotes the domain of U , i.e., the set of objects that U relates to values; ρ(U)
denotes the range of U , i.e., the set of values that U relates to objects; >D is the universal
value-domain; T1, . . . , Tn are n pairwise disjoint unbounded value-domains.

A DL-LiteA ontology is a pair O = 〈T ,A〉, where T is the TBox and A the ABox. A
DL-LiteA TBox T is a finite set of assertions of the form

B v C Q v R E v F U v V (funct Q) (funct U)

From left to right, the first four assertions respectively denote inclusions between con-
cepts, roles, value-domains, and attributes. In turn, the last two assertions denote func-
tionality on roles and on attributes. In fact, in DL-LiteA TBoxes we further impose that
roles and attributes occurring in functionality assertions cannot be specialized (i.e., they
cannot occur in the right-hand side of inclusions). Let B1 and B2 be basic concepts, and
let Q1 and Q2 be basic roles. We call positive inclusions (PIs) assertions of the form
B1 v B2, and of the form Q1 v Q2, whereas we call negative inclusions (NIs) assertions
of the form B1 v ¬B2 and Q1 v ¬Q2.

A DL-LiteA ABox A is a finite set of membership assertions of the forms A(a), P (a, b),
and U(a, v), where A, P , and U are as above, a and b belong to ΓO, the subset of ΓC con-
taining object constants, and v belongs to ΓV , the subset of ΓC containing value constants,
where {ΓO,ΓV } is a partition of ΓC .

The semantics of a DL-LiteA ontology is given in terms of first-order logic (FOL) inter-
pretations I = (∆I , ·I). ∆I is a non-empty domain such that ∆I = ∆V ∪ ∆IO, where
∆IO is the domain used to interpret object constants in ΓO, and ∆V is the fixed domain
(disjoint from ∆IO) used to interpret data values. ·I is an interpretation function defined
as follows:

AI ⊆ ∆IO P I ⊆ ∆IO ×∆IO
(δ(U))I = { o | ∃v. (o, v) ∈ UI } (P−)I = { (o, o′) | (o′, o) ∈ P I }
(∃Q)I = { o | ∃o′. (o, o′) ∈ QI } (¬Q)I = (∆IO ×∆IO)−QI
(¬B)I = ∆IO −BI UI ⊆ ∆IO ×∆V

>ID = ∆V (¬U)I = (∆IO ×∆V )− UI
(ρ(U))I = { v | ∃o. (o, v) ∈ UI }



CHAPTER 5. GENERALIZED ONTOLOGY-BASED PRODUCTION SYSTEMS 116

Notice that each (Ti)
I and each (v)I are the same in every interpretation. An interpre-

tation I satisfies a concept (resp., role) inclusion assertion B v C (resp., Q v R) if
BI ⊆ CI (resp., QI ⊆ RI). Furthermore, a role functionality assertion (funct Q) is
satisfied by I if, for each o, o′, o′′ ∈ ∆IO, we have that (o, o′) ∈ QI and (o, o′′) ∈ QI im-
plies o′ = o′′. The semantics for attribute and value-domain inclusion assertions, and for
functionality assertions over attributes can be defined analogously. As for the semantics
of ABox assertions, we say that I satisfies the ABox assertions A(a), P (a, b) and U(a, v)
if aI ∈ AI , (aI , bI) ∈ P I and (aI , vI) ∈ UI , respectively. Furthermore, in DL-LiteA the
Unique Name Assumption (UNA) is adopted, i.e., in every interpretation I, and for every
pair c1, c2 ∈ ΓC , if c1 6= c2 then cI1 6= cI2 .

We denote with Mod(O) the set of models of an ontologyO, i.e., the set of FOL interpre-
tations that satisfy both TBox and ABox assertions in O. As usual, an ontology O entails
a FOL sentence φ, denoted O |= φ, if φI is true in every I ∈ Mod(O).

An atomic concept A in T is unsatisfiable if T |= A v ¬A, i.e., if the interpretation of A
is empty in every model of T . Analogously, we say that an atomic role P is unsatisfiable
in T if T |= P v ¬P , and a concept attribute U is unsatisfiable in T if T |= U v ¬U .

5.1.3 Generalized Ontology-Based Production Systems

In this section we define syntax and semantics of generalized ontology-based production
systems (GOPSs).

5.1.3.1 Syntax

We start from the following pairwise disjoint alphabets: an alphabet of predicates Pred , an
alphabet of constants Const , an alphabet of variables Var and an alphabet of production
rule identifiers RuleID .

Our notion of production system builds on three languages over the above alphabets Pred ,
Const and Var :

• an ontology specification language OL which specifies the syntax of the ontology;

• an ontology query language QL which defines the queries over the ontology;

• an ontology update language UL which defines the updates over the ontology.

An ontology is a set of formulas from OL. An ontology query is a formula of QL. An
ontology update is a formula of UL.

An ontology query with no occurrences of free variables is called a Boolean ontology
query. An ontology update with no occurrences of free variables is called a ground ontol-
ogy update.
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We denote by φ(~x) a formula φ containing the free variables ~x (~x is a tuple of variable
symbols).

Given an n-tuple of variables ~x, a ground substitution of ~x is a pair 〈~x,~c〉, where ~c is an
n-tuple of constants from Const . Given a formula with n free variables φ(~x), and an n-
tuple of constants ~c, the formula φ(~c) obtained from φ by applying the ground substitution
〈~x,~c〉, i.e., by replacing the variables in ~x with the corresponding constants in ~c, is called
a grounding of φ(~x).

Definition 5.1.1. A Generalized Ontology-Based Production System (GOPS) G is a pair
〈Oin ,P〉 where:

• Oin is an ontology;

• P is a set of production rules. A production rule is an expression of the form

FORALL ~x : IF φ(~x) THEN α1(~x), . . . , αn(~x) (5.1)

such that:

– φ(~x) is an ontology query overO with free variables ~x. The variables in ~x are
symbols from Var and are called the variables of the production rule;

– every αi(~x) is such that every grounding αi(~c) of αi(~x) is an ontology update.

Every production rule has an associated rule identifier, i.e., a symbol from RuleID
which is associated with no other production rule.

A ground production rule is a production rule without variables, i.e., an expression of the
form

IF φ THEN α1, . . . , αn (5.2)

where φ is an ontology query without free variables and every αi is an ontology update.

Given a production rule with identifier p of the form (5.1), an instance of rule p is a
ground production rule, with identifier p(~c), obtained from (5.1) by applying a ground
substitution 〈~x,~c〉, i.e., p(~c) is a ground production rule of the form

IF φ(~c) THEN α1(~c), . . . , αn(~c)

5.1.3.2 Semantics

The semantics of GOPSs is based on three functions: (i) the function ASK , which pro-
vides the semantics of ontology queries; (ii) the function TELL, which provides the se-
mantics of ontology updates; (iii) the function Φ, which governs the execution of produc-
tion rules. These functions are introduced in the following.
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5.1.3.2.1 Ontology queries The semantics of ontology queries is defined by the func-
tion ASK (O, φ(~x)). For every ontology O and for every ontology query φ(~x) with free
variables ~x, ASK (O, φ(~x)) is a set of ground substitutions for ~x.

Notice that, if φ has no free variables, i.e., φ is a Boolean query, then ASK (O, φ) is
either the set of ground substitutions containing the empty ground substitution {∅} (which
means that the query φ is entailed byO) or the empty set of ground substitutions ∅ (which
means that φ is not entailed by O).

5.1.3.2.2 Ontology updates The semantics of ontology updates is defined by the par-
tial function TELL(O, α). More precisely, given an ontology O and an ontology update
α, TELL(O, α) is either undefined or is equal to one ontology O′.
Intuitively, the case when TELL(O, α) is undefined encodes those situations in which
it is impossible (according to the intended semantics of ontology updates) to update the
ontology O according to the update action α.

5.1.3.2.3 Production rules Given a ground production rule pg of the form (5.2) and
an ontology O, we say that pg is fireable in O if the following conditions hold:

1. ASK (φ,O) 6= ∅;

2. there exists a sequence of ontologies O0, . . . ,On such that O0 = O and, for every
i such that 0 6 i 6 n − 1, TELL(Oi, αi) is defined and is equal to the ontology
Oi+1.

Given a GOPS G and an ontology O, we denote by CS (O,G) the conflict set for O and
G, i.e., the set of instances pg of the production rules from P such that pg is fireable in O.

5.1.3.2.4 GOPS A GOPS graph GG = 〈N,Sin , E, Le〉 is a directed graph where: N
is the set of nodes S, called GOPS states, which are pairs of the form 〈id,O〉 where id
is the state identifier and O is an ontology; Sin is a node of N , called the initial state of
GG; E is the set of edges, i.e., pairs of GOPS states; and Le is function which labels the
edges with rule instance identifiers.

A GOPS path is a path of a GOPS graph.

A (partial) conflict resolution function is a function Φ over paths of a GOPS graph. Specif-
ically, let G be a GOPS and let π be a GOPS path. Let Se = 〈id,O〉 be the ending state
of π. Then, the value of Φ(G, π) is ∅ if CS (O,G) = ∅; otherwise, the value of Φ(G, π) is
a non-empty set of ground production rules Pg such that Pg ⊆ CS (O,G). If the value of
the function Φ is always either the empty set or a singleton set (i.e., Φ selects at most one
rule among the ones in CS (O,G)), then we call Φ a total conflict resolution function.
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Informally, a partial conflict resolution function selects a subset of the rule instances in
the conflict resolution set CS (O,G). The intuitive meaning of such a function is that it
chooses a subset of the rules in the conflict set: any of the rules in such a subset could
be chosen for execution. On the other hand, a total conflict resolution function actually
resolves the conflict among the rules, since it just selects one rule. While real production
systems only adopt total conflict resolution functions, we introduce partial conflict reso-
lution functions in our framework because this allows us to formally study the properties
of families of conflict resolution stategies. For instance, the rif:forwardChaining

strategy described in Section 5.1.2.1 can be seen as a partial conflict resolution function,
since it does not actually specify the final tie-break step. So, studying GOPS under this
partial conflict resolution function makes it possible to verify the formal properties of the
rif:forwardChaining strategy independently of the particular implementation of the
tie-break step.

Notice also that the conflict resolution function does not only depend on the current state
of the ontology (i.e., the ontology labeling the final state of the GOPS path), but depends
on a GOPS path, which represents the whole “history” of the GOPS evolution. This
reflects the conflict resolution strategies adopted in real systems: e.g., the above described
rif:forwardChaining strategy depends not only on the current state of the fact base,
but also on the previous states of the transition system.

The semantics of a GOPS G is defined by the notion of transition system.

Definition 5.1.2. Given a GOPS G = 〈Oin ,P〉, the transition system of G, denoted by
TS (G), is the GOPS graph 〈N,Sin , E, Le〉 defined inductively as follows:

1. the initial state Sin is the state 〈SGin ,Oin〉;

2. for every state S of the form 〈id,O〉 belonging to N , let π(S) be the path of
TS (G) starting in SGin and ending at S. If pg is the identifier of a rule instance
such that pg ∈ Φ(G, π(S)) then 〈S, 〈pg(id),O′〉〉 ∈ N with O′ = EXEC (pg ,O),
〈S, 〈pg(id),O′〉〉 ∈ E, and Le(〈S, 〈pg(id),O′〉〉 = pg .

Informally, TS (G) is the GOPS graph built starting from the initial state and adding, for
every state S, an edge (transition) and a new state for every rule instance selected by
the conflict resolution function Φ((G, π(S)): the new state is the state obtained by the
execution of the rule instance on state S.

We call run of G any path of TS (G) starting at the state whose identifier is SGin and such
that the path either is infinite or ends at a sink node (i.e., a node which does not have
any outcoming edge). Of course, if Φ is a total conflict resolution function, then TS (G)
contains only one run.

Intuitively, the transition system TS (G) represents all the possible runs of G, i.e., all
the possible sequences of execution of production rule instances starting from the initial
ontology.

Of course, the transition system may be infinite, since there may be infinite runs of G.
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5.1.4 Verification query language

In this section we define the verification query language V(QL). The language V(QL) is
an extension of µ-calculus [36] where state formulas are formulas of the ontology query
languageQL. This language builds from an analogous previous proposal [24] in the field
of artifact-centric services.

To specify dynamic properties we will use µ-calculus [36] which is one of the most pow-
erful temporal logics for which model checking has been investigated, and indeed is able
to express both linear time logics, as LTL, and branching time logics such as CTL or
CTL* [25]. In particular, we need to introduce a variant of µ-calculus that conforms with
the basic assumption of our formalism: the use of ontologies and ontology queries to
describe the properties of a state.

To define verification queries, we need a further alphabet, the alphabet of predicate vari-
ables PV , which is pairwise disjoint with all the alphabets introduced in Section 5.1.3.

Definition 5.1.3. A verification query is specified by the following abstract syntax:

ψ ::= φ | ¬ψ | ψ1 ∧ ψ2 | [p]ψ | 〈p〉ψ | µX.ψ | νX.ψ

where φ is a Boolean ontology query (i.e., a formula from QL without free variables), X
is a predicate variable symbol from PV , and p is: (i) a rule instance identifier; or (ii) a
rule identifier; or (iii) the symbol −.

The verification query language V(QL) is the language of verification queries.

The symbols µ and ν can be considered as quantifiers, and we make use of the notions
of scope, bound and free occurrences of variables, closed formulas, etc. The definitions
of these notions are the same as in first-order logic, treating µ and ν as quantifiers. For
formulas of the form µX.ψ and νX.ψ, we require the syntactic monotonicity of ψ wrt X:
Every occurrence of the variable X in ψ must be within the scope of an even number of
negation signs. In µ-calculus, given the requirement of syntactic monotonicity, the least
fixpoint µX.ψ and the greatest fixpoint νX.ψ always exist.

Let GG = 〈N,Sin , E, Le〉 be a GOPS graph. A valuation on GG is a mapping from the
predicate variables appearing in ψ to subsets of N .

We assign meaning to V(QL) formulas by an evaluation function EvalGG(·), which maps
V(QL) formulas to subsets of N .

In the following, id represents a rule identifier, and, as explained in Section 5.1.3, the
symbol id(~c) represents the identifier of an instance of the rule id .

Definition 5.1.4. The evaluation function EvalGG(·) for a GOPS graph GG =
〈N,Sin , E, Le〉 is defined inductively as follows:
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EvalGG(φ) = {s = 〈sid,O〉 | s ∈ N and ASK (φ,O) 6= ∅}
EvalGG(X) = N ′ ⊆ N
EvalGG(¬ψ) = N − EvalGG(ψ)
EvalGG(ψ1 ∧ ψ2) = EvalGG(ψ1) ∩ EvalGG(ψ2)
EvalGG(〈id(~c)〉ψ) = {s ∈ N | ∃s′. 〈s, s′〉 ∈ E and Le(s, s′) = id(~c) and s′ ∈ EvalGG(ψ)}
EvalGG([id(~c)]ψ) = {s ∈ N | ∀s′. (〈s, s′〉 ∈ E and Le(s, s′) = id(~c)) implies s′ ∈ EvalGG(ψ)}
EvalGG(〈id〉ψ) = {s ∈ N | ∃s′,~c. 〈s, s′〉 ∈ E and Le(s, s′) = id(~c) and s′ ∈ EvalGG(ψ)}
EvalGG([id ]ψ) = {s ∈ N | ∀s′,~c. (〈s, s′〉 ∈ E and Le(s, s′) = id(~c)) implies s′ ∈ EvalGG(ψ)}
EvalGG(〈−〉ψ) = {s ∈ N | ∃s′. 〈s, s′〉 ∈ E and s′ ∈ EvalGG(ψ)}
EvalGG([−]ψ) = {s ∈ N | ∀s′. 〈s, s′〉 ∈ E implies s′ ∈ EvalGG(ψ)}
EvalGG(µX.ψ) =

⋂
{N ′ ⊆ N | EvalGG[X|N ′](ψ) ⊆ N ′ }

EvalGG(νX.ψ) =
⋃
{N ′ ⊆ N | N ′ ⊆ EvalGG[X|N ′](ψ)}

where EvalGG[X|N ′](ψ) represents the value EvalGG(()ψ) when every occurrence of the
predicate variable X is evaluated as the set of states N ′.

Intuitively, the evaluation function EvalGG(·) assigns to the various constructs of µ-
calculus the following meanings:

• The boolean connectives have the expected meaning.

• The evaluation of 〈id(~c)〉ψ includes the states s ∈ N such that at state s there is an
execution of the rule instance id(~c) that leads to a state s′ included in the evaluation
of ψ. Thus, the intuitive meaning of 〈id(~c)〉ψ is “there exists an execution of rule
instance id(~c) that leads to a state where ψ holds”.

• The evaluation of [id(~c)]ψ includes the states s ∈ N such that each execution of the
rule instance id(~c) at state s leads to some state s′ included in the evaluation of ψ.
Thus, the intuitive meaning of the operator [id(~c)] is “every execution of the rule
instance id(~c) leads to a state where ψ holds”.3

• The evaluation of 〈id〉ψ includes the states s ∈ N such that at state s there is
an execution of any instance of the rule id that leads to a state s′ included in the
evaluation of ψ. Thus, the intuitive meaning of 〈id〉ψ is “there exists an execution
of an instance of rule id that leads to a state where ψ holds”.

• The evaluation of [id ]ψ includes the states s ∈ N such that each execution of any
instance of the rule id at state s leads to some state s′ included in the evaluation of
ψ. Thus, the intuitive meaning of the operator [id ] is “every execution of an instance
of rule id leads to a state where ψ holds”.

3Notice that the present framework does not actually allow for nondeterministic execution of rule in-
stances: i.e., the execution of a rule instance in a state always produces one successor state. Consequently,
no transition system of a GOPS may contain two outcoming edges labeled by the same rule instance identi-
fier, and therefore the formula [id(~c)]ψ appears of no use. However, the semantics of the verification query
language is defined over generic GOPS graphs, in which the formula [id(~c)]ψ might make sense.
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• The evaluation of 〈−〉ψ includes the states s ∈ N such that at state s there is
an execution of an arbitrary rule instance that leads to a state s′ included in the
evaluation of ψ. Thus, the intuitive meaning of 〈−〉ψ is “there exists an execution
of a rule instance that leads to a state where ψ holds”.

• The evaluation of [−]ψ includes the states s ∈ N such that each execution of any
arbitrary rule instance at state s leads to some state s′ included in the evaluation
of ψ. Thus, the intuitive meaning of the operator [−] is “every execution of rule
instances leads to a state where ψ holds”.

• The evaluation of µX.ψ is the smallest subset N ′ of N such that, assigning to X
the evaluation N ′, the resulting evaluation of ψ is contained in N ′.

• Similarly, the evaluation of νX.ψ is the greatest subset N ′ ofN such that, assigning
to X the evaluation N ′, the resulting evaluation of ψ contains N ′.

The reasoning problem we are interested in is model checking. Let GG = 〈N,Sin , E, Le〉
be a GOPS graph, let s ∈ N be one of its states, and let ψ be a verification query. The
related model checking problem is to verify whether s ∈ EvalGG(ψ).

In particular, in the following we focus on the Boolean problem of verifying whether the
initial state Sin is in the evaluation of a verificaton query ψ. Thus, for every verification
query ψ and for every GOPS graph GG = 〈N,Sin , E, Le〉, we define Entailed(ψ,GG)
as true if Sin ∈ EvalGG(ψ), and false otherwise.

It is immediate to verify that model checking of verification queries is decidable if an-
swering ontology queries is decidable. In particular, the following property holds.

Theorem 5.1.5. Checking a verification query ψ over a finite GOPS graph GG =
〈N,Sin , E, Le〉 can be done in time

O((|GG| · |ψ|)k)

where |GG| = |N |+ |E|, i.e., the number of states plus the number of transitions of GG,
|ψ| is the size of formula ψ (in fact, considering propositional formulas as atomic), and k
is the number of nested fixpoints, i.e., fixpoints whose variables are one within the scope
of the other, using an oracle for deciding ASK (φ,O) 6= ∅ for every verification query φ
and ontology O.

Proof. We can use the standard µ-calculus model checking algorithm [36], with the
proviso that atomic formulas are now ontology queries φ, therefore for evaluating an
atomic formula Q in a state 〈id,O〉 we use an oracle that decides whether ASK (φ,O) 6=
∅. �

Finally, we introduce a notion of bisimilarity for GOPS graph which will be very impor-
tant for establishing decidability results on answering verification queries over GOPSs.
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Let S1 = 〈id1,O1〉, S2 = 〈id2,O2〉 be two GOPS states. We say that S1 and S2 are locally
bisimilar if, for every ontology query φ, ASK (φ,O1) = ASK (φ,O2).

Given two GOPS graphsGG1 = 〈N1, S
in
1 , E1, L

e
1〉, GG2 = 〈N2, S

in
2 , E2, L

e
2〉, we say that

GG1 andGG2 are bisimilar if there exists a function β from the states ofGG1 to the states
of GG2 such that β(Sin

1 ) = Sin
2 and, for every state S of GG1, the following conditions

hold:

1. S and β(S) are locally bisimilar;

2. for each state S ′ such that 〈S, S ′〉 is an edge of GG1, 〈β(S), β(S ′)〉 is an edge of
GG2, and Le1(〈S, S ′〉) = Le2(〈β(S), β(S ′)〉);

3. for each state S ′′ such that 〈β(S), S ′′〉 is an edge of GG2, there exists a state S ′

of GG1 such that 〈S, S ′〉 is an edge of GG1, S ′′ = β(S ′), and Le1(〈S, S ′〉) =
Le2(〈β(S), β(S ′)〉).

Theorem 5.1.6. If GG1 and GG2 are bisimilar GOPS graphs, then for every verification
query ψ, Entailed(ψ,GG1) = Entailed(ψ,GG2).

Proof. The proof is analogous to the standard proof of bisimulation invariance of µ-
calculus, see, e.g., [11]. �

Given a GOPS G and a verification query ψ, we say that ψ is entailed by
G if Entailed(ψ,TS (G)) = true. Moreover, we define AnsGOPS (ψ,G) as
Entailed(ψ,TS (G)). The problem of answering a verification query ψ over a GOPS
G amounts to establishing whether AnsGOPS (ψ,G) = true.

5.1.5 Formal properties of GOPS

In this section we show that the verification query language defined in Section 5.1.4 is a
very powerful tool for the static analysis of GOPSs. In particular, using the verification
query language V(QL), we provide a formalization of some interesting and complex
formal properties of GOPSs.

In the following, we refer to a GOPS G and use the symbol IG to denote the set of pro-
duction rule identifiers of the GOPS G.

Moreover, without loss of generality, we assume that the language allows for expressing
a Boolean ontology query which holds in every ontology, and we denote by TRUE such
a query (and denote by FALSE the formula ¬TRUE ). In fact, even in the case when
the ontology query language does not allow for such a tautological query, it is possible to
easily modify the specification of the GOPS G in a way such that there exists a Boolean
ontology query that holds in every state of the transition system of G: this kind of “locally
tautological” ontology query for G is enough for our purposes.
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The following list shows the formalization in terms of V(QL) queries of a set of interest-
ing properties of a GOPS G:

• Every run terminates in a state where the ontology query φ holds if and only if
Entailed(ψ,TS (G)) = true, where ψ is the formula

ψ = µX.(([−]FALSE ∧ φ) ∨ (〈−〉TRUE ∧ [−]X))

• Every run is finite if and only if Entailed(ψ,TS (G)) = true, where ψ is the formula

ψ = µX.[−]X

• An ontology query φ eventually holds forever in some run if and only if
Entailed(ψ,TS (G)) = true, where ψ is the formula

ψ = µX.((νY.φ ∧ 〈−〉Y ) ∨ 〈−〉X)

• An ontology query φ eventually holds forever in every run if and only if
Entailed(ψ,TS (G)) = true, where ψ is the formula

ψ = µX.((νY.φ ∧ [−]Y ) ∨ (〈−〉TRUE ∧ [−]X))

• The production rule id is applied in every run if and only if Entailed(ψ,TS (G)) =
true, where ψ is the formula

ψ = µX.(〈id〉.TRUE ∨ (〈−〉TRUE ∧ [−]X))

• Every production rule is applied in every run if and only if Entailed(ψ,TS (G)) =
true, where ψ is the formula

ψ =
∧

id∈IG

µX.(〈id〉.TRUE ∨ (〈−〉TRUE ∧ [−]X))

• Rule id is never applied if and only if Entailed(ψid
1 ,TS (G)) = true, where ψid

1 is
the formula

ψid
1 = µX.([−].FALSE ∨ ([id ]FALSE ∧ [−]X))

• Rule id is applied at most once in every run if and only if Entailed(ψid
2 ,TS (G)) =

true, where ψid
2 is the formula

ψid
2 = µY.((ψid

1 ) ∨ (([id ](ψid
1 ) ∧

∧
id ′∈IG−{id}

[id ′]Y ))

and ψid
1 is the formula defined in the previous point.
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• Every rule is applied at most once in every run if and only if Entailed(ψ,TS (G)) =
true, where ψ is the formula

ψ =
∧

id∈IG

(ψid
2 )

and ψid
2 is the formula defined in the previous point.

5.1.6 Reasoning over GOPSs

In this section we study reasoning over GOPSs. In particular, we focus on the reasoning
task of answering verification queries over GOPSs.

We start from the following, trivial, undecidability result.

Theorem 5.1.7. If either the function ASK is undecidable or the function TELL is un-
decidable,4 then answering verification queries over GOPSs is undecidable.

As a consequence of the above result, we have that, for instance, we must carefully choose
the ontology query language that must be coupled with a DL ontology language: in fact,
all the typical relational database query languages are actually undecidable over DL on-
tologies, and even fragments of such languages are undecidable for many DL ontologies
(see e.g. [92]). Indeed, the language of unions of conjunctive queries (a subset of FOL
queries) is one of the most expressive languages which is decidable over (almost all) DL
ontologies (see e.g. [75]). Analogous considerations hold in principle for updates over DL
ontologies, even though research in this field is at an earlier stage than research in query
answering, and a significant classification of decidable and undecidable update languages
and update semantics for DLs is not available yet.

We now turn our attention to decidable classes of GOPS. Our aim is to provide sufficient
conditions for the decidability of answering verification queries over GOPSs.

Our analysis starts from the fact that, according to Theorem 5.1.5, answering verification
queries over a GOPS is decidable if the transition system TS (G) of G can be built in a
finite amount of time. This is not the case, of course, when TS (G) is infinite: however,
it might still be possible to construct in a finite amount of time a GOPS graph GG that is
bisimilar to TS (G). This implies decidability of our reasoning task, since, due to Theorem
5.1.6, we can evaluate verification queries using GG instead of TS (G).

In the following, we thus look for sufficient conditions (on the specification of G) for the
construction of a GOPS graph that is bisimilar to TS (G).

4More precisely, when we say that the function ASK is undecidable, we mean that the problem of
establishing whether ASK (φ,O) 6= ∅ for a Boolean ontology query φ is undecidable; also, when we say
that TELL is undecidable we mean that the following problem is undecidable: given two ontologies O,O′
and an ontology update α, establish whether O′ = TELL(O, α).
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We start with some auxiliary definitions.

Let GO be the set of all GOPS, let GP be the set of GOPS paths, let OO be the set of all
ontologies, and let D be an arbitrary set. A finite transformation of a conflict resolution
function Φ is a pair of functions 〈τπ, τΦ〉 where τπ : GP → D, τΦ : GO×D → OO, such
that, for every GOPS G: (i) for every path π ∈ TS (G), Φ(G, π) = τΦ(G, τπ(π)); (ii) the
set {d | d = τπ(π) and π is a path of TS (G)} is finite.

The idea behind a finite transformation of a conflict resolution function is that it is possi-
ble to formulate the conflict resolution function without using all the information on the
previous history of the system (represented by the whole GOPS path ending in the current
state), but using only an approximation of such information, such that the number of pos-
sible instances of such an approximation which is relevant for a given transition system
is finite. Notice that the number of possible GOPS paths is infinite, and that in general a
conflict resolution function may admit no finite transformations.

This idea of finite transformation is crucial to prove a general result on the finite repre-
sentability of the transition system of a GOPS, and hence a general decidability result on
answering verification queries over GOPSs.

Given a GOPS G and a finite transformation T = 〈τπ, τΦ〉 for Φ, the T -core of G, denoted
by T-core(G), is the GOPS graph obtained from TS (G) by collapsing every pair of states
S, S ′ such S and S ′ are locally bisimilar and τπ(πS) = τπ(πS′), where πS and πS′ are the
paths of TS (G) ending in S and S ′, respectively.

Lemma 5.1.8. Given a GOPS G and a finite transformation T = 〈τπ, τΦ〉 for Φ, the
T -core of TS (G) is a finite GOPS graph.

The following lemma states that a T -core of G constitutes a correct representation of
TS (G) with respect to the verification query language V(QL).

Lemma 5.1.9. For every GOPS G and finite transformation T for Φ, TS (G) and
T-core(G) are bisimilar.

Proof (sketch). From the definition of finite transformation, it follows that the outcoming
edges of two states s, s′ such that τπ(πs) = τπ(πs′) are the same, and since s and s′

are locally bisimilar, every pair of corresponding successor states of s and s′ are locally
bisimilar as well. �

Theorem 5.1.10. Suppose 〈τπ, τΦ〉 is a finite transformation for Φ such that both τπ and
τΦ are decidable. Then, answering verification queries over a GOPS G is decidable.

Proof (sketch). First, we prove that the hypotheses and Lemma 5.1.8 imply that the T -
core of G can be computed in a finite amount of time. Then, by Lemma 5.1.9 and since
the evaluation of a verification query over a finite GOPS graph is decidable, the thesis
follows. �
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We now prove that the conflict resolution function corresponding to the
rif:forwardChaining strategy (without the definition of a tie-break rule) ad-
mits a finite transformation, under the condition that the number of different states of the
ontology is finite.

Given an ontology O, we define the update-closure of O as the set C inductively defined
as follows: (i) O ∈ C; (ii) if O′ ∈ C and the formula φ is an ontology update using the
constants occurring in O, then TELL(O′, φ) ∈ C.

We say that updates have a finite evolution if, for every ontologyO, the update-closure of
O contains a finite number of locally-bisimilar equivalence classes.

Theorem 5.1.11. Suppose Φ corresponds to the rif:forwardChaining conflict res-
olution strategy, and suppose that ASK is decidable, TELL is decidable, and updates
have a finite evolution. Then, answering verification queries over GOPSs is decidable.

Proof (sketch). The definition of the conflict resolution strategy
rif:forwardChaining implies that the corresponding conflict resolution func-
tion Φ actually uses a small amount of the information on the previous history of the
system. This property, together with the hypothesis, allows for defining a function τπ and
a function τΦ which satisfy the hypotheses of Theorem 5.1.10. Consequently, the thesis
follows. �

We conclude by considering the case when the ontology is a relational database without
integrity constraints. More precisely, we call DB-GOPSs the GOPSs defined based on the
following assumptions:

• the ontology language is the language of ground atoms: that is, ontologies corre-
spond to databases (sets of facts);

• the ontology update language consists of assert and retract actions of single ground
atoms;

• the ontology query language consists of domain-independent FOL queries (i.e., a
subclass of SQL queries);

• the ASK function evaluates queries according to the standard semantics of domain-
independent FOL queries in relational databases (i.e., a database is considered as an
interpretation over which the FOL queries are evaluated according to the standard
FOL semantics);

• the TELL function corresponds to the syntactic additions and deletions of facts in
the database.

Now, it is immediate to verify that, in DB-GOPSs, updates have a finite evolution. There-
fore, as a corollary of Theorem 5.1.11, we get the following property.

Corollary 5.1.12. Answer verification queries over DB-GOPSs under the
rif:forwardChaining conflict resolution strategy is decidable.
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5.1.7 The EQL-Lite ontology query language

In this section we briefly recall the ontology query languages EQL and EQL-Lite(UCQ),
originally presented in [20]. Such languages are based on the addition of an epistemic
operator to the first-order logic query language. The semantics of EQL queries and
EQL-Lite(UCQ) queries are defined with respect to a DL ontology.

5.1.7.1 The ontology query language EQL

We interpret DL ontologies on interpretations sharing the same infinite countable domain
∆, and we assume that our language includes an infinitely countable set of disjoint con-
stants corresponding to elements of ∆, also known as standard names [71]. This allows
us to blur the distinction between such constants (which are syntactic objects) and the
elements of ∆ that they denote (which are semantic objects).

As a query language, we make use of a variant of the well-known first-order modal logic
of knowledge/belief [70, 87, 71, 55], here called EQL . The language EQL is a first-
order modal language with equality and with a single modal operator K, constructed
from concepts (i.e., unary predicates) and roles (i.e., binary predicates) and the constants
introduced above (i.e., the standard names corresponding to ∆). In EQL , the modal
operator is used to formalize the epistemic state of the DL ontology, according to the
minimal knowledge semantics (see later). Informally, the formula Kφ should be read as
“φ is known to hold (by the ontology)”.

In the following, we use c to denote a constant, ~c to denote a tuple of constants, x to
denote a variable, ~x to denote a tuple of variables, φ, ψ to denote arbitrary formulas, and
ψ[x|c] to denote a formula where each x is replaced by c.

A world is a FOL interpretation over ∆. An epistemic interpretation is a pair E,w, where
E is a (possibly infinite) set of worlds, and w is a world in E. We inductively define when
a sentence (i.e., a closed formula) φ is true in an interpretation E,w (or, is true in w and
E), written E,w |= φ, as follows:

E,w |= c1 = c2 iff c1 = c2

E,w |= P (~c) iff w |= P (~c)
E,w |= φ1 ∧ φ2 iff E,w |= φ1 and E,w |= φ2

E,w |= ¬φ iff E,w 6|= φ
E,w |= ∃x.ψ iff E,w |= ψ[x|c] for some constant c
E,w |= Kψ iff E,w′ |= ψ for every w′ ∈ E

Therefore, an epistemic interpretation corresponds to a Kripke structure satisying the ax-
ioms of modal logic S5.

Formulas without occurrences of K are said to be objective, since they talk about what is
true. Observe that, to check whether E,w |= φ, where φ is an objective formula, we have
to look at w but not at E: we only need the FOL interpretation w. All assertions in the
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DL ontology are indeed objective sentences. Instead, formulas where each occurrence of
predicates and of the equality is in the scope of the K operator are said to be subjective,
since they talk about what is known to be true. Also, observe that, for a subjective sentence
φ, in order to establish whether E,w |= φ we do not have to look at w but only at
E. We use such formulas to query what the ontology knows. In other words, through
subjective sentences we do not query information about the world represented by the
ontology; instead, we query the epistemic state of the ontology itself. Obviously, there
are formulas that are neither objective nor subjective. For example ∃x.P (x) is an objective
sentence, K(∃x.P (x) ∧ ¬KP (x)) is a subjective sentence, while ∃x.P (x) ∧ ¬KP (x) is
neither objective nor subjective.

Among the various epistemic interpretations, only the ones that represent a minimal epis-
temic state of the DL ontology, i.e., the state in which the ontology has minimal knowl-
edge, are considered. Formally: let O be a DL ontology (TBox and ABox), and let
Mod(O) be the set of all FOL-interpretations that are models of O. Then a O-EQL-
interpretation is an epistemic interpretation E,w for which E = Mod(O).

A sentence φ is EQL-logically implied by O, written O |=EQL φ, if for every O-EQL-
interpretation E,w we have E,w |= φ. Observe that for objective formulas such a defini-
tion becomes the standard one, namely w |= φ for all w ∈ Mod(O), denoted by O |= φ.

We are now ready to define EQL -queries: An EQL-query is simply an EQL -formula,
possibly an open one.

Let φ be an EQL -query with free variables ~x, where the arity of ~x is n > 0, and is
called the arity of φ. We denote such a query by φ[~x]. We will use the notation φ[~c]
to denote φ[~x|~c] (i.e., the formula obtained from φ by substituting each free occurrence
of the variable xi in ~x with the constant ci in ~c, where obviously ~x and ~c must have the
same arity). Since we are dealing with all the models of the ontology, as usual, query
answering should return those tuples of constants that make the query true in every model
of the ontology: the so-called certain answers. Formally, the certain answers to a query
φ(~x) over an ontology O are the set

ansEQL(φ,O) = {~c ∈ ∆× · · · ×∆ | O |=EQL φ[~c]}

Example 5.1.13. Consider the DL ontology O constituted by the following TBox T and
ABox A:

T = {Male v ¬Female }
A = { Female(mary),Female(ann),Female(jane),

Male(bob),Male(john),Male(paul),
PARENT(bob,mary),PARENT(bob, ann),
PARENT(john, paul),PARENT(mary, jane) }

Suppose we want to know the set of males that do not have female children. This corre-
sponds to the following FOL query φ1:

φ1[x] = Male(x) ∧ ¬∃y.PARENT(x, y) ∧ Female(y)
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It is easy to verify that the set of certain answers to φ1 over O is empty. In particular,
neither john nor paul are certain answers to the above query, since (due to the open-
world semantics of DLs) there are models of O in which the interpretation of PARENT
contains pairs of elements of the form (john, x) or (paul, x) and the interpretation of
Female contains the element x.

Suppose now that we want to know who are the known males that are not known to be
parents of a female. This can be expressed by the following EQL-query φ2:

φ2[x] = KMale(x) ∧ ¬K(∃y.PARENT(x, y) ∧ Female(y))

It is immediate to verify that the certain answers to φ2 over O are john and paul, since
they are the only known males that are not in the answer to the query ∃y.PARENT(x, y)∧
Female(y).

Suppose now that we want to know who are the single children according to what is
known, i.e., the known children who have no known sibling. This can be expressed by the
following EQL-query φ3:

φ3[x] = ∃y.(KPARENT(y, x)) ∧
∀z.(KPARENT(y, z))→ z = x

It is immediate to verify that the certain answers to φ3 over O are paul and jane.

Notice that, in an EQL -query, we can apply a form of closed world reasoning: for exam-
ple, in query φ2 above, the evaluation of ¬K(∃y.PARENT(x, y)∧Female(y)) corresponds
to the evaluation of ¬∃y.PARENT(x, y) ∧ Female(y) under the closed world assumption.

5.1.7.2 The ontology query language EQL-Lite(UCQ)

We introduce now the query language EQL-Lite(UCQ). Such a language is a particularly
well-behaved fragment of EQL , and is based on the language of unions of conjunctive
queries (UCQ) over a DL signature.

Informally, EQL-Lite(UCQ) is the FOL query language with equality whose atoms are
epistemic formulas of the form Kq, where q is a UCQ. Formally, an EQL-Lite(UCQ)
query is a possibly open EQL -formula built according to the following syntax:

φ ::= Kq | x1 = x2 | φ1 ∧ φ2 | ¬φ | ∃x.φ

where q is a UCQ. We call epistemic atoms the formulas Kq occurring in an
EQL-Lite(UCQ) query.

Observe that in EQL-Lite(UCQ) we do not allow the K operator to occur outside of the
epistemic atoms Kq. Indeed, allowing for occurrences of the K outside such atoms does
not actually increase the expressive power of EQL-Lite(UCQ), as shown in [20].
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EQL-Lite(UCQ) queries enjoy a very interesting computational property: one can decou-
ple the reasoning needed for answering the epistemic atoms from the reasoning needed
for answering the whole query. Formally, let O be a DL ontology, and φ[~x] be an
EQL-Lite(UCQ) query overO, whose epistemic atoms are Kq1, . . . ,Kqm. We denote by
q
FOL

[~x] the FOL query obtained from φ by replacing each epistemic atom Kqi by a new
predicate RKqi whose arity is the number of free variables in qi. Also, we denote by Iφ,O
the FOL interpretation for the predicates RKqi defined as follows: (i) the interpretation
domain is ∆Iφ,O = ∆; (ii) the extension of the predicatesRKqi isRIφ,OKqi

= ansEQL(qi,O).
Finally, we denote by Eval(q

FOL
[~x], Iφ,O) = {~c ∈ ∆ × · · · × ∆ | Iφ,O |= q

FOL
[~c]} the

result of evaluating q
FOL

over Iφ,O.

The following property has been stated in [20]. If O is a DL ontology, φ an
EQL-Lite(UCQ) query over O, and q

FOL
and Iq,O the FOL query and the FOL inter-

pretation defined above, then ansEQL(φ,O) = Eval(q
FOL
, Iφ,O). This property tells us

that, in order to compute the certain answers of an EQL-Lite(UCQ) query φ, we can com-
pute the certain answers of queries qi of the embedded query languageQ occurring in the
epistemic atoms of φ, and then evaluate the query φ as a FOL query, where we consider
such certain answers as the extensions of the epistemic atoms.

The theorem above suggests a procedure to compute certain answers in EQL-Lite(UCQ).
However, for such a procedure to be effective, we need to address two issues: (i) the ex-
tension of the predicates RKqi in the FOL interpretation Iφ,O needs to be finite, otherwise
Iφ,O would be infinite and the evaluation of q

FOL
impossible in practice; (ii) since ∆ itself

is infinite, the evaluation of q
FOL

must not directly deal with ∆.

We start by looking at the second issue first. Such an issue has a long tradition in rela-
tional databases where indeed one allows only for FOL queries that are “domain indepen-
dent” [2]. In our context, a FOL query φ is domain independent if for each pair of FOL
interpretations I1 and I2, respectively over domains ∆I1 ⊆ ∆ and ∆I2 ⊆ ∆, for which
RI1Kqi = RI2Kqi for all atomic relations RKqi , we have that Eval(φ, I1) = Eval(φ, I2). We
say that an EQL-Lite(UCQ) query φ is domain independent if its corresponding query
q
FOL

is so. Domain independent FOL queries correspond to relational algebra queries
(i.e., SQL queries) and several syntactic sufficient conditions have been devised in order
to guarantee domain independence, see e.g., [2]. Such syntactic conditions can be directly
translated into syntactic conditions on EQL-Lite(UCQ) queries.

As for the other issue, let O be a DL ontology and let q be a UCQ. We say that q is O-
range-restricted if ansEQL(q,O) is a finite set of tuples. By extension, an EQL-Lite(UCQ)
query is O-range-restricted if each of its epistemic atoms involves a O-range-restricted
query. It can be shown that, ifO is a DL ontology and q is aO-range-restricted query, then
ansEQL(q,O) ⊆ adom(O)× · · · × adom(O), where adom(O) is the set of all constants
explicitly appearing in O.

Example 5.1.14. Queries φ2 and φ3 in Example 5.1.13 are EQL-Lite(UCQ) queries. It is
easy to verify that both such queries are domain independent, and that both areO-range-
restricted for the ontology O given in Example 5.1.13. In fact φ2 and φ3 are O-range-
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restricted for ontologies O expressed (in practice) in any standard DL (indeed, the set
ansEQL(PARENT(x, y),O) may never be infinite).

5.1.7.3 Answering EQL-Lite(UCQ) queries over DL-LiteA ontologies

Finally, we recall the complexity of answering EQL-Lite(UCQ) queries over ontologies
of a specific DL, DL-LiteA, introduced in Section 5.1.2.

It is known [20] that the problem of answering EQL-Lite(UCQ) queries over DL-LiteA
ontologies is decidable and is even tractable with respect to data complexity, i.e., with
respect to the size of the ABox of the ontology.

First, it is easy to see that for every DL-LiteA ontology O, and for every UCQ q, q is O-
range-restricted. So, range-restrictedness is guaranteed in DL-LiteA for EQL-Lite(UCQ)
queries.

The following property, shown in [20], states that query answering in DL-LiteA is tractable
with respect to data complexity.

Theorem 5.1.15. Answering domain independent EQL-Lite(UCQ) queries in DL-Lite is
in PTIME (in particular, in AC 0) with respect to data complexity.

5.1.8 Instance-level DL ontology update semantics

In this section we recall the semantics for the evolution of DL knowledge bases presented
in [68].

This approach has three key aspects. First, it concerns the so-called instance-level updates
to DL ontologies [30]. In fact, this approach only considers update operations correspond-
ing to the assertion or retraction of sets of ABox assertions, i.e., only the extensional com-
ponent (ABox) of the DL ontology is updated, while the intensional component (TBox)
is unchanged. Second, it proposes a semantics for ontology updates which is closed with
respect to the DL language. In other words, given a DL Ł and an Ł ontologyO, the result
of any update operation can always be expressed in terms of a DL ontology O′ in the
language Ł. Finally, the proposed semantics has nice computational properties.

In the rest of this section, Ł is a DL, and every ABox A is a set of ground atoms (also
called atomic ABox assertions). Moreover, we assume that the initial ontology O =
〈T,A〉 is a satisfiable Ł ontology (according to the semantics of Ł). In other words, we
do not consider the evolution of unsatisfiable ontologies. In addition, F is a finite set of
atomic ABox assertions in Ł. Finally, we denote by clT (A) the T -closure of A, i.e., the
set of atomic ABox assertions that are entailed by 〈T ,A〉 according to the semantics of
Ł.
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5.1.8.1 WIDTIO-based semantics for instance-level ontology update

First, we specify when a set of ABox assertions “realizes” the insertion or deletion of a
set of ABox assertions with respect to O.

Let A′ be an ABox. Then, A′ accomplishes the insertion of F into 〈T ,A〉 if A′ is T -
consistent, and 〈T ,A′〉 |= F (i.e., F ⊆ clT (A′)). Similarly, A′ accomplishes the deletion
of F from 〈T ,A〉 if A′ is T -consistent, and 〈T ,A′〉 6|= F (i.e., F 6⊆ clT (A′)).

Obviously, we are interested in ontologies which accomplish the evolution of an ontology
with a minimal change. In order to formalize the notion of minimal change, we first need
to provide some definitions.

Let A1 and A2 be two ABoxes. Then, we say that A1 has fewer deletions than A2 with
respect to 〈T ,A〉 if clT (A) − clT (A1) ⊂ clT (A) − clT (A2). Similarly, we say that A1

and A2 have the same deletions with respect to 〈T ,A〉 if clT (A)− clT (A1) = clT (A)−
clT (A2). Finally, we say that A1 has fewer insertions than A2 with respect to 〈T ,A〉 if
clT (A1)− clT (A) ⊂ clT (A2)− clT (A).

Let A1 and A2 be two ABoxes. Then, A1 has fewer changes than A2 with respect to
〈T ,A〉 if A1 has fewer deletions than A2 with respect to 〈T ,A〉, or A1 and A2 have the
same deletions with respect to 〈T ,A〉, and A! has fewer insertions than A2 with respect
to 〈T ,A〉.
Now that we have defined the relation of fewer changes between two ontologies w.r.t.
another one, we can define the notion of an ontology which accomplishes the insertion
(resp. deletion) of a set of facts into (resp. from) another ontology minimally.

LetA′ be an ABox. ThenA′ accomplishes the insertion (deletion) of F into (from) 〈T ,A〉
minimally if A′ accomplishes the insertion (deletion) of F into (from) 〈T ,A〉, and there
is noA′′ that accomplishes the insertion (deletion) of F into (from) 〈T ,A〉, and has fewer
changes than A′ with respect to 〈T ,A〉.
With these notions in place, we can now define the evolution operator.

Definition 5.1.16. Let U = {A1, . . . ,An} be the set of all ABoxes accomplishing the
insertion (deletion) of F into (from) 〈T ,A〉 minimally, and let A′ be an ABox. Then,
〈T ,A′〉 is the result of changing 〈T ,A〉 with the insertion (deletion) of F if (1) U is
empty, and 〈T , clT (A′)〉 = 〈T , clT (A)〉, or (2) U is nonempty, and 〈T , clT (A′)〉 =
〈T ,

⋂
16i6n clT (Ai)〉.

It is immediate to verify that, up to logical equivalence, the result of changing 〈T ,A〉
with the insertion or the deletion of F is unique. The result of changingO = 〈T ,A〉 with
the insertion of F according to the above semantics will be denoted by LS-assert(O, F ).
Moreover, the result of changing O = 〈T ,A〉 with the deletion of F according to the
above semantics will be denoted by LS-retract(O, F ).

Notice that, in the case where F is T -inconsistent, the result of changing 〈T ,A〉 with
both the insertion and the deletion of F is logically equivalent to 〈T ,A〉 itself.
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It can be shown [38, 68] that: (i) an ABoxA′ accomplishes the deletion of F from 〈T ,A〉
minimally if and only if clT (A′) is a maximal T -closed subset of clT (A) such that F 6⊆
clT (A′); (ii) A′ accomplishes the insertion of F from 〈T ,A〉 minimally if and only if
clT (A′) = A′′ ∪ clT (F ), where A′′ is a maximal T -closed subset of clT (A) such that
A′′ ∪ F is T -consistent.

From now on, we call UL-Lite the instance-level ontology update language which consists
of every formula of the form Assert(F ) or Retract(F ), where F is a finite set of atomic
ABox assertions (i.e., a conjunction of ground atoms).

5.1.8.2 Computing ontology updates in DL-LiteA

In the following we consider the computational properties of the above update operators
in the DL DL-LiteA [84].

As already mentioned in Section 5.1.2, a DL-LiteA ABox is a set of ground atoms. There-
fore, in DL-LiteA the above ontology updates described above correspond to the assertion
and retraction of ABoxes.

The following theorem immediately derives from the results presented in [68].

Theorem 5.1.17. Let O = 〈T ,A〉 be a DL-LiteA ontology, and let A′ be a DL-LiteA
ABox. Then:

1. LS-assert(O,A′) can be computed in PTIME.

2. LS-retract(O,A′) can be computed in PTIME.

Also, [68] presents polynomial algorithms for computing the results of the above form of
ontology updates in DL-LiteA.

We point out that the above theorem is a very interesting result, since it states that comput-
ing updates according to the semantics above illustrated can be done in polynomial time,
although such a notion of updates does not boil down to purely syntactic insertion/deletion
operations.

5.1.9 Lite-GOPS: a tractable combination of DL ontologies and PSs

After introducing the ontology query language EQL-Lite(UCQ) and the ontology update
language UL-Lite, we are ready to present a subclass of GOPSs which enjoys nice com-
putational properties.

5.1.9.1 Lite-GOPS

Lite-GOPSs are a particular form of GOPSs based on DL-LiteA ontologies,
EQL-Lite(UCQ) ontology queries, UL-Lite ontology updates under the semantics defined
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in Section 5.1.8.

A Lite-GOPS is a GOPS as in Definition 5.1.2 under the following assumptions:

• the ontology language OL is DL-LiteA;

• the ontology query language QL is EQL-Lite(UCQ);

• the ontology update language UL is UL-Lite;

• the function ASK which provides the semantics for ontology queries corresponds
to the semantics for EQL queries described in Section 5.1.7. More precisely, for
every DL-LiteA ontologyO, and for every EQL-Lite(UCQ) query φ, ASK (φ,O) =
ansEQL(φ,O);

• the function TELL which provides the semantics for ontology updates corresponds
to the semantics for ontology update described in Section 5.1.8. More precisely:

– for every ontology update α of the form Assert(Γ), TELL(O, α) =
LS-assert(O, α);

– for every ontology update α of the form Retract(Γ), TELL(O, α) =
LS-retract(O, α);

• the conflict resolution strategy Φ admits a finite transformation.

5.1.9.2 Reasoning in Lite-GOPSs

In this section we show that answering verification queries over Lite-GOPSs is decidable.

We also identify some subclasses of queries of the verification query language which can
be answered in polynomial time when evaluated over Lite-GOPSs.

First, it is immediate to verify that the chosen semantics of ontology updates and the
adoption of the DL-LiteA language imply the following property.

Lemma 5.1.18. Updates have a finite evolution in Lite-GOPSs.

We are now ready to prove the following decidability result.

Theorem 5.1.19. Answering verification queries over Lite-GOPSs is decidable.

Proof. The proof immediately follows from Lemma 5.1.18, Theorem 5.1.15, Theorem
5.1.17 and Theorem 5.1.11. �

Then, we study the complexity of reasoning over Lite-GOPSs under the
rif:forwardChaining conflict resolution strategy.

We call data complexity of answering verification queries over a Lite-GOPS G =
〈Oin ,P〉, whereOin is a DL-LiteA ontology 〈T ,A〉, the complexity of the above problem
measured with respect to the size of the ABox A.
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Theorem 5.1.20. Answering verification queries over Lite-GOPSs under the
rif:forwardChaining conflict resolution strategy is in EXPTIME with respect to data
complexity.

Proof (sketch). The thesis follows from Theorem 5.1.5, Theorem 5.1.15 and Theorem
5.1.17. �

We now prove a tractability result for reasoning over Lite-GOPSs. In particular, we prove
that reasoning over GOPSs is tractable for verification queries without fixpoints,

In the following, we say that a verification query is simple if it does not contain fixpoint
operators.

Theorem 5.1.21. Answering simple verification queries over Lite-GOPSs is in PTIME
with respect to data complexity.

Proof (sketch). The key property is that it is sufficient to build a small (polynomial) part of
the transition system. In particular, if k is the size of the simple verification query (actually
k should represent the maximum nesting level of the modalities), then it is sufficient to
build the paths of the transition system that start at the initial state and have a length
less than or equal to k. Now, the number of outcoming edges from a state for the same
production rule p is polynomial with respect to data complexity, since there is only a
polynomial number of ground substitutions for the free variables of p, consequently the
number of outcoming edges from a state is polynomial. This in turn implies that the
number of the above paths of length 6 k is polynomial with respect to data complexity
(since k does not depend on the size of the ABox), therefore this portion of the transition
system can be built in polynomial time. Thus, from Theorem 5.1.5 it follows that the
evaluation of the query over such a polynomial model is polynomial with respect to data
complexity, which implies the thesis. �

5.1.10 Summary

In this chapter we have presented generalized ontology-based production systems
(GOPSs), which constitute a very general framework for the combination of ontologies
and production rules. The GOPS approach is based on a functional specification of ontolo-
gies, which views ontologies as knowledge bases which can be accessed through a query
service and an update service. In this way, the semantics of the execution of production
rules over ontologies is straightforward, and fully relies on the semantics of queries and
updates over ontologies.

Then, we have defined an expressive language for formalizing verification tasks over
GOPS specifications, and have shown that typical static analysis tasks can easily be ex-
pressed through such a language.

Moreover, we have studied the computational properties of reasoning in the framework of
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GOPSs, providing very general sufficient conditions for undecidability and decidability
of reasoning.

Finally, we have analyzed a specific combination of ontologies and production rules,
called Lite-GOPSs. We have established decidability and complexity results for reasoning
in such a class of GOPS. In particular, we have shown that Lite-GOPSs enjoy very nice
computational properties, thus they constitute a very good trade-off between the complex-
ity of reasoning and the expressive power of the ontology component of the GOPSs.

This approach can be further extended in several directions. First of all, in a way anal-
ogous to Lite-GOPSs, other notable specific combinations of ontologies and production
rules can be defined and studied within the GOPS framework. Then, it would be very in-
teresting to further extend the GOPS framework, by adding other form of production rules
beyond those considered in the RIF-PRD specification (as the one taken into account in
Chapter 4). Finally, it would also be interesting to extend this approach to more powerful
verification languages. For instance, it would be very easy to extend V(QL) to allow for
the presence of free variables.



Chapter 6

Discussion Regarding Convergence

While the previous chapters of this deliverable presented results on optimizing, refining,
and improving combinations of logical rules and ontologies and combinations of produc-
tion rules and ontologies, in this chapter we discuss some issues related to the theoretical
convergence of all three knowledge representation paradigms: logical rules, production
rules, and ontologies.

We start with the observation that all combinations explored in the project had ontologies
as a component. There has also been extensive work devoted to the issue of rewriting on-
tologies to logical rules: this makes it possible to see logical programming formalisms as
tight combinations between themselves and such rule-based/translatable ontologies. As
such, when talking about combinations of all three paradigms, the onus lies on combin-
ing logical rules with production rules. There has already been some work in this area,
in particular the integration via T RPAD described in chapter 4. Since it is a trivial task
to accommodate logical rules within T RPAD, the Integration via Transaction Logic with
Partially Defined Actions is de facto an approach which integrates production rules, log-
ical rules, and ontologies. As concerns practical integration, ontoprise worked on a first
version of converging the logical programming approach ObjectLogic with ideas coming
from the area of production rules. The work is related to the requirements resulting from
the AUDI Business Orchestration Use Case and is described within the ONTORULE de-
liverable D4.3 [93].

Here we present some alternative ideas about how one can bring together production rules
and logical rules, and ultimately integrate them with ontologies.

ACTHEX [8] is an extension of HEX programs [34] with action atoms: unlike dl-atoms in
dl-programs [33], which only send and receive inputs to/from ontologies, action atoms are
associated to functions capable of actually changing the state of external environments.
Such atoms can appear (only) in heads of rules and as such they can be part of answer
sets. An action atom is of the form #g [Y1, . . . Yn] {o, r} [w : l] where Y1, . . . , Yn is a list
of terms (called input list), and #g is an action predicate name. We assume that #g
has fixed length in(#g) = n for its input list. o ∈ {b, c, cp} is called the action option.

138
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Depending on the value of o, the action atom is called brave, cautious, preferred cautious,
respectively. r, w and l range over positive integers and variables, and are called action
precedence, action weight and action level respectively.

Action atoms are executed according to execution schedules. Every answer set is associ-
ated with one or more execution schedules, where an execution schedule is an ordered list
containing all action atoms in that particular answer set. The order of execution within
a schedule depends on the actions precedence attribute. Action atoms allow to specify
whether they have to be executed bravely, cautiously or preferred cautiously, respectively,
meaning that the atom can get executed if it appears in at least one, all, or all best cost
answer sets.

A potential usage of ACTHEX programs is for updating knowledge bases by asserting or
removing facts to these. [8] describes how the abstract action constructs assert(kb, f) and
retract(kb, f), whose effect is to add or remove a statement f from a given knowledge
base kb, can be grounded to ACTHEX programs, by introducing two action predicates
#assertk and #retractk, for k > 0. An atom #assertk[kb, a1, . . . , ak]{o, p}, (resp.
#retractk[kb, a1, . . . , ak]{o, p}) adds to (resp. removes from) the knowledge base kb the
assertion a1| . . . |ak, for ai|aj , being the string concatenation of ai and aj . Further on, in
order to be able to simulate a sequence of updates, the action atom #execute[kb]{o, p}
is introduced, where kb is an ACTHEX program, and o, and p are as in the definition of
action atoms: the execution of such an atom consists in evaluating kb and executing the
resulting execution schedule.

Notice that when an ACTHEX program is such that every open answer set contains one and
only one execute action atom, as described above, this atom has the highest priority (i.e.
it is the last in every execution schedule) and the kbwhich is supposed to be updated is the
extensional part of the original ACTHEX program, the effect is to have a stateful update
formalism. Intuitively, this is exactly the device needed for simulating the operational se-
mantics of a production rule system. Rules with update action atoms in the heads act like
production rules, the extensional part of an ACTHEX program can be seen as a working
memory, while the ‘execute’ atom triggers a new firing step in the execution. The logic
programming nature of ACTHEX, together with the presence of action precedences and
priorities, makes it easy to encode declaratively different conflict resolution strategies.

Let’s consider a scenario where: (1) all production rules have equal (or no) priorities, (2)
they always add or remove a single atom to the working memory, and (3) the conflict
resolution strategy is to randomly pick for execution one of the firable rules. Assume
production rules are labeled with natural numbers from 1 to n. The scenario could be
encoded in ACTHEX as follows (P is the name of the resulted ACTHEX program):

• Selection of one and only one production rule to fire:

– for every production rule (i) : if p then remove/add q, add the following rule
to P :
ci ← p (ci holds in an answer set iff rule i is firable);
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– for every production rule (i) : if p then remove/add q, add the following rule
to P :
di ← ci , not d1 , . . . , not di−1 , not di+1 , . . . , not dn (di holds in an answer
set iff rule i is firable, and is selected for execution; at most one di holds in
every answer set);

• specification of the production rules using action atoms: for every production rule
(i) : if p then remove/add q, add the following rule to the ACTHEX program:

retract/assert [WM , “p”, “.”]{b, 1} ← di (if production rule i is firable and se-
lected for execution, i.e. di holds, the action atom retract/assert[WM, “p”, “.”]
will be part of the answer set with precedence 1 and mode of execution brave; note
that, due to the switch implemented by di-s, at most one such atom will be part of
any answer set);

• check whether the execution terminates (no rule is firable) and if not, trigger the
next execution step:

terminates ← not c1 , . . . not cn (the production rule is firable)

#execute[P ]{b, 2} ← not terminates (if terminates is false, i.e. some produc-
tion rules fires, execute[P ] will be part of the answer set with precedence 2, i.e. it
will be executed after any update action retract/assert[WM, “p”, “.”]).

The encoding described above is quite rudimentary, as a production rule could fire in-
finitely often, in case its prerequisite is met and the update caused by the rule does not
change its firability. Assume we want the system to have the following property: a rule
fires only if it causes change to the WM (the atom which it adds/removes is not/is part
of the WM). In order to access the WM (which we assume it is stored in a different file
than P ), we can use an external atom. External atoms are a feature of HEX programs
[34]: the generic form of such an atom is &g[Y1, . . . , Yn](X1, . . . , Xm), where Y1, . . . , Yn
and X1, . . . , Xm are two lists of terms (called input and output lists, respectively), and
&g ∈ G is an external predicate name. We assume that &g has fixed lengths in(&g) = n
and out(&g) = m for input and output lists, respectively. One can use such an atom
to query the working memory: &check(WM, p(X1, . . . , Xq)) is evaluated as true if the
fact ‘p(X1, . . . , Xq).

′ is part of WM, and false, otherwise. The rules encoding firability of
production rules have to be changed:

• for every production rule (i) : if p then remove q:

ci ← p,&check(WM , q) (rule i is firable if its prerequisite p is fulfilled and q is
part of the WM).

• for every production rule (i) : if p then add q:

ci ← p,&check(WM , q) (rule i is firable if its prerequisite p is fulfilled and q is
not part of the WM).
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Note that external atoms can serve as a loosely-coupled interface to DL ontologies. Such
atoms are generalizations of dl-atoms: they can be used for querying arbitrary DL ontolo-
gies. Thus, the formalism offers a smooth integration of all three worlds: production rules,
logical rules, and ontologies (where the ontologies do not have to be Datalog rewritable).
An implementation of ACTHEX programs has been realized and is available1 as an ex-
tension to the dlvhex system2. As concerns the update actions, the KBModaddon library
implements a generalization of such update action atoms. The downside with using AC-
THEX for encoding production rule systems is that there is no guarantee that such pro-
grams which have recursive evaluation calls using the action predicate execute terminate.
As such, it is not possible, in the general case, to check static properties of production rule
systems like termination, or whether a certain fact holds in some execution/all executions,
etc. Finding appropriate restrictions for termination is subject of future work.

Alternatively, one can use a logic programming based formalism which can simulate a
forward notion of time and for which decidability of different reasoning tasks together
with algorithms which implement such tasks are well-investigated. Such a formalism is
FDNC [35, 98].

FDNC is a decidable extension of Answer Set Programming with function symbols. De-
cidability is achieved, similarly to FoLPs, by ensuring that the language has the forest
model property: the fragment allows only for unary and binary predicates and the syn-
tax of the rules is restricted. However, the shape of FDNC programs is such that they
are amenable to bottom-up reasoning (as opposed to FoLPs for which we have top-down
tableau-like reasoning procedure). As such, FoLPs can simulate forward branching time
and they are a good device encoding for action languages, planning problems, etc. In
order to offer a richer representation device for such problems, the syntax of FDNC has
been relaxed to allow for higher-arity predicates: some syntactical restrictions regarding
the usage of variables have been imposed in order to maintain decidability. The new frag-
ment is called higher-arity FDNC. Standard reasoning tasks like deciding consistency
of a program, cautious/brave entailments of atoms, etc. are proved to be decidable and
algorithms for checking each of these tasks are provided.

In [35] a translation of the action language K to FDNC is provided. Using a similar
translation, one could encode hypothetical runs of production rule systems. An advantage
of this approach is that the existent reasoning support for FDNC allows for checking
static properties of such encoded systems. However, due to the pure declarative nature of
FDNC, one cannot materialize the results of execution runs. Also, the lack of external
atoms makes it impossible to have a loosely-coupled interaction with external information
sources like ontologies. However, as previously mentioned, Datalog-rewritable ontologies
can always be tightly-coupled with such a translation, due to their inherent property:
rewritability. It remains to be explored how and if FDNC could be extended with external
atoms which would allow sending inputs, querying, and modifying external sources.

1http://www.kr.tuwien.ac.at/research/systems/dlvhex/actionplugin.html
2http://www.kr.tuwien.ac.at/research/systems/dlvhex/
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Another logic programming based formalism which can simulate a forward time dimen-
sion is Splittable Temporal Logic Programs (STLP) [12] which are a fragment of Tempo-
ral Equilibrium Logic, an extension of ASP with modal temporal operators. An algorithm
for reasoning with such programs is provided in [12]: temporal equilibrium models are
captured by an LTL formula by using two well-known techniques for reasoning with
ASPs: splitting and loop formulas. The algorithm has been implemented using an LTL
model checker, SPOT [13]. Similar considerations as for FDNC apply for encodings of
production rule systems using STLP.



Chapter 7

Conclusions

In this deliverable we took further the work on execution performed during Year 2 of the
project and improved it by :

1. exploring a more expressive language, in the area of Datalog rewritable Description
Logics: Horn-SHIQ is a fragment of the DL SHIQ with features identified to be
desirable in the analysis of case studies like existentials on the right-hand side of the
axioms and inverse properties. A new algorithm for reasoning with the fragment
has been devised and a prototype reasoner, KAOS, which can answer conjunctive
queries over Horn-SHIQ ontologies, has been developed;

2. devising an optimized (as compared to last year) and worst-case optimal algorithm
for reasoning with Forest Logic Programs: the algorithm runs in exponential time,
one exponential level than the previous algorithm and it shows that FoLPs are EX-
PTIME-complete.

3. introducing a richer combination of Production Rule Systems and ontologies which
allow for FOR-loops as typical in commercial systems, and whose semantics deals
with inconsistency. The combination is given a model theoretic semantics by em-
bedding it into T RPAD for rule-based ontologies. Finally, T RPAD was extended with
default negation under the well-founded semantics.

4. defining a general framework for combining Production Rule Systems with ontolo-
gies: Generalized Ontology-based Production Systems (GOPSs), together with a
powerful query verification language for verifying static properties of such systems.
A specific type of GOPSs, Lite-GOPSs are identified, which use DL−LiteA as an
ontology language, EQL−Lite(UCQ) as a verification language, and an ontology
update language UL − Lite, and for which verification tasks are decidable, and in
particular cases, even tractable.

We also explored how logical rules, production rules, and ontologies can be brought to-
gether by considering ways of embedding production rule systems in logic programming
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based formalisms: a practical approach, ACTHEX, that extends ASP with external atoms
and executable action atoms (atoms which change the state of external environments) has
been considered, as well as a pure declarative decidable extension of ASP with function
symbols: FDNC. Both approaches offer some desirable features for such an embedding,
but not in totality: more work is needed in the case of each formalism in order to be able
to use them for achieving full convergence of the three paradigms.
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[98] M. Šimkus and T. Eiter. FDNC: Decidable Non-monotonic Disjunctive Logic Pro-
grams with Function Symbols. In Proc. 14th Int. Conf. on Logic for Programming,
Artificial Intelligence and Reasoning (LPAR 2007), 2007.

[99] W3C, 2010. Available from http://www.w3.org/TR/rif-prd/.

[100] Marianne Winslett. Updating logical databases. Cambridge University Press, New
York, NY, USA, 1990.

[101] Guohui Xiao and Thomas Eiter. Inline evaluation of hybrid knowledge bases -
phd description. In Sebastian Rudolph and Claudio Gutierrez, editors, RR, volume
6902 of Lecture Notes in Computer Science, pages 300–305. Springer, 2011.

[102] Carlo Zaniolo. A unified semantics for active and deductive databases. In Workshop
on Rules In Database Systems (RIDS-93), pages 271–287. Springer Verlag, 1993.

http://www.w3.org/TR/rif-prd/


Glossary

ABox Synonym of Assertion Box, 3, 84, 113

Answer Set Programming Answer Set Programming (ASP) is a form of declarative
programming oriented towards difficult search problems. It is based on the sta-
ble model (answer set) semantics of logic programming. In ASP, search problems
are reduced to computing stable models, and answer set solvers are used to perform
search., 35

Closed-World-Assumption In the Closed World Assumption one considers all facts
about a universe of discourse to be known., 129

Conjunctive query The conjunctive queries are the fragment of first-order logic given
by the set of formulae that can be constructed from atomic formulae using conjunc-
tion and existential quantification, but not using disjunction, negation, or universal
quantification., 1

Datalog Datalog is a query and rule language for deductive databases that syntactically
is a subset of Prolog., 3

Decidability A decision problem, i.e., a yes-or-no question with a potentially infinite
input domain, is decidable if there is an algorithm that computes the correct answer
for every finite input within a finite amount of time., 35

Description Logics Description Logics (DLs) are a family of knowledge representation
languages. The modeling primitives in most DLs are classes, which represent sets
of objects, properties, which are relations between classes, and individuals. Con-
stants may be defined using logical axioms. The language constructs available for
writing such axioms depends on the DL at hand. Typical language constructs in-
clude class intersection, union, and complement, as well as universal and existential
property restrictions., 82, 107

DL-Programs DL-Programs is a loosely coupled approach of integration of Ontology
and Rules., 3
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DReW DReW (Datalog ReWriter) is a solver which can either be used as a prototype DL
reasoner over LDL+ ontologies or as a prototype reasoner for DL-Programs over
LDL+ ontologies under well-founded semantics, 3

F-hybrid Knowledge Bases f-hybrid knowledge bases is a tightly-coupling formalism
for integrating rules and ontologies that combines knowledge bases expressed in
the Description Logic SHOQ with Forest Logic Programs., 35

Forest Logic Programs Forest Logic Programs (FoLPs) is a decidable subset of OASP
which has the forest-model property., 35

Herbrand Universe The Herbrand universe of a first order language is the set of all
ground terms. If the language has no constants, then the language is extended by
adding an arbitrary new constant., 35

Open Answet Set Programming Open Answer Set Programming (OASP) is an exten-
sion of (unsafe) function-free Answer Set Programming with open domains: while
the syntax is unchanged, and the semantics is still stable-model based, programs are
interpreted w.r.t. open domains, i.e., non-empty arbitrary domains which extend the
Herbrand universe. OASP is undecidable., 35

Open-World-Assumption In the Open World Assuption one considers that not all facts
are known., 81

Production Rule Systems A production system (or production rule system) is a com-
puter program typically used to provide some form of artificial intelligence, which
consists primarily of a set of rules about behavior. These rules, termed productions,
are a basic representation found useful in automated planning, expert systems and
action selection. A production system provides the mechanism necessary to execute
productions in order to achieve some goal for the system., 80, 107

RIF PRD RIF PRD is the RIF dialect intended for XML serialization of production rule
languages, 80

Satisfiability checking for FoLPs Satisfiability checking in the context of reasoning
with Forest Logic Programs is a reasoning task which consists in checking that
a unary predicate is satisfiable, i.e. there exists an open answer set which contains
a fact pertaining to that predicate., 36

Stable Model Semantics The concept of a stable model, or answer set, is used to define
a declarative semantics for logic programs with negation as failure. This is one
of several standard approaches to the meaning of negation in logic programming,
along with program completion and the well-founded semantics. The stable model
semantics is the basis of answer set programming., 35
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Transaction Logic Transaction logic is an extension of predicate logic with both declar-
ative and procedural semantics that describe state changes in logic programming
over dynamic databases., 2

Transaction Logic with Partially Defined Actions Transaction Logic with Partially
Defined Actions is an extension of Transaction Logic where a theory consists of
serial-Horn rules, partial action definitions, and certain statements about states and
actions, called premises., 2

Universe of discourse The universe of discourse refers to the set of all things under con-
sideration in the context; in a FOL context, it is the set of things covered by universal
quantification., 1
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