
Ontologies meet Business Rules

ONTOR UL E

EU-IST Integrated Project (IP) 2009-231875 ONTORULE

ONTORULE: ONTOlogies meet business RULEs

D3.3 Complexity and Optimization
of Combinations of Rules and

Ontologies

Cristina Feier (TUWIEN)

with contributions from:

Hassan Aït-Kaci (IBM), Jürgen Angele (Ontoprise), Jos de Bruijn (FUB), Hugues

Citeau (IBM), Thomas Eiter (TUWIEN), Adil El Ghali (IBM), Volha Kerhet

(FUB), Eva Kiss (Ontoprise), Roman Korf (Ontoprise), Thomas Krekeler

(Ontoprise), Thomas Krennwallner (TUWIEN), Stijn Heymans (TUWIEN),

Alessandro Mosca (FUB), Martín Rezk (FUB), Guohui Xiao (TUWIEN)

Abstract.
Deliverable D3.3 Complexity and optimization of combinations of rules and ontologies. Will
include the selection of promising combinations, and the complexity analysis of these selected
combinations, as well as theoretical optimizations for processing.
Keyword list: combinations of rules and ontologies, Datalog rewritable DL, LDL+, Forest Logic
Programs, Production Rules, fixpoint logics, OWL, XPR〈OWL〉

Work package number and name
Deliverable nature
Dissemination level
Contractual date of delivery
Actual date of delivery

WP3 Inference and Execution
Report
Public/PU
M24
January 27, 2011

ONTORULE Consortium

This document is part of a research project partially funded by the IST Programme of the Commission of the European
Communities as project number 2009-231875 .

ILOG, an IBM Company
9, rue de Verdun
94253 Gentilly Cedex
France
Tel: +33 1 49 08 29 81
Fax: +33 1 49 08 35 10
Contact person: Mr. Christian de Sainte Marie
E-mail: csma@fr.ibm.com

PNA Training B.V.
Geerstraat 105
6411 NP Heerlen
The Netherlands
Tel: +31 455600 222
Fax: +31 455600 062
Contact person: Prof. Sjir Nijssen
E-mail: sjir.nijssen@pna-training.nl

Ontoprise GmbH
An der RaumFabrik 29
76227 Karlsruhe
Germany
Tel: +49 721 50980910
Fax: +49 721 50980911
Contact person: Mr. Jürgen Angele
E-mail: angele@ontoprise.de

Université de Paris 13
LIPN
99, avenue J.B. Clément
F-93430 Villetaneuse
France
Tel: +33 1 4940 4089
Fax: +33 1 4826 0712
Contact person: Prof. Adeline Narazenko
E-mail: adeline.narazenko@lipn.univ-paris13.fr

Free University of Bozen-Bolzano
Faculty of Computer Science
Piazza Domenicani 3
I-39100 Bozen-Bolzano BZ, Italy
Italy
Tel: +39 0471 016 127
Fax: +39 0471 016 009
Contact person: Mr. Enrico Franconi
E-mail: franconi@inf.unibz.it

Fundación CTIC
Edificio Centros tecnológicos
33203 cabueñes - Gijón
Asturias
Spain
Tel: +34 984 29 12 12
Fax: +34 984 39 06 12
Contact person: Mr. Antonio Campos
E-mail: antonio.campos@fundacionctic.org

Technische Universität Wien
Institut für Informationssysteme
AB Wissensbasierte Systeme (184/3)
Favoritenstrasse 9-11
A-1040 Vienna
Austria
Tel: +43 1 58801 18460
Fax: +43 1 58801 18493
Contact person: Prof. Thomas Eiter
E-mail: eiter@kr.tuwien.ac.at

Audi
Auto Union Strasse
D-85045 Ingolstadt
Germany
Tel: +49 841 89 39765
Contact person: Mr. Thomas Syldatke
E-mail: thomas.syldatke@audi.de

ArcelorMittal
Marques de Suances
33400 - Avilés
Spain
Tel: +34 98 5126 404
Fax: +34 98 5126 375
Contact person: Mr. Nicolas de Abajo
E-mail: nicolas.abajo@arcelormittal.com

Executive Summary

This document presents further developments on the theoretical and practical approaches
to combining logical rules and ontologies, as well as on the approaches to combining pro-
duction rules and ontologies, introduced in deliverable D3.2 [35]. The work is structured
along two orthogonal axes: the first axis is about investigating combinations of logi-
cal rules and Description Logics vs. investigating combinations of production rules and
Description Logics, while the second axis is about loosely-coupled vs. tightly-coupled
approaches. By loosely-coupled approaches we understand approaches where the inter-
action between the rules and ontology is based on a loose interface between the compo-
nents (using, for example, the entailment procedure for a Description Logic) whereas by
tightly-coupled approaches we understand approaches which treat the ontology and the
rule component as one whole and define models that take into account both the ontology
axioms as well as the rules.

As the name of the deliverable suggests, the focus is on optimizations and establishing
complexity results. In the area of integrating logical rules and ontologies, we took over the
two most relevant approaches identified in deliverable D3.2 and investigated them further
(see Chapter 2). These two approaches are the loosely-coupled approach dl-programs
and the tightly-coupled approach f-hybrid knowledge bases. In the case of dl-programs,
we define a class of so-called DATALOG-rewritable Description Logics and show how
reasoning with dl-programs over such DLs under well-founded semantics can be reduced
to DATALOG¬ by means of an efficient transformation. Thus, we obtained a tractable
method to deal with such dl-programs. We also define constructively such a logic, LDL+,
and provide an implementation for reasoning with dl-programs over LDL+ ontologies,
which uses the previously mentioned transformation.

f-hybrid knowledge bases achieve a tight combination of Forest Logic Progams (FoLPs)
and SHOQ ontologies, by translation of the SHOQ ontologies to FoLPs. As such, we
devised an algorithm which employs a knowledge pre-compilation technique for reason-
ing with the “unifying” formalism Forest Logic Programs: the algorithm has the same
worst-case running time as the original algorithm, but based on empirical results concern-
ing the usage of such techniques for other non-tractable formalisms we have reasons to
believe that it would bring a great improvement when reasoning with such programs. It
can also be seen as a starting point for heuristic reasoning with FoLPs/f-hybrid knowledge
bases.

i

The work done by ontoprise in the period M13-M24 is closely related with the theoretical
work on DATALOG-rewritable DLs: ontoprise has implemented the OWL2 RL profile (see
chapter 3). The OWL 2 RL profile defines a syntactic subset of OWL 2 which is aimed
at applications that require scalable reasoning without sacrificing too much expressive
power. The RL acronym stands for the fact that reasoning in this profile can be imple-
mented using a standard Rule Language. Ontoprise has used for this implementation the
ontoprise product suite, specifically OntoBroker 6.1 with ObjectLogic as ontology and
rule language. The axiomatization of OWL 2 RL in ObjectLogic is presented in this de-
liverable, while deliverable D3.6 Efficient processing of expressive combinations contains
a demonstrator and a tutorial to illustrate the usage of the OWL in ObjectLogic constructs
and the reasoning with the RL profile.

In deliverable D3.2 first steps for embedding production systems in logics have been
made: in particular, it has been shown how to embed propositional and first-order produc-
tion systems in µ-calculus and fixpoint logic, respectively. In this deliverable we took that
work further by formalizing combinations of production rules and ontologies (see chapter
4). Both a loosely-coupled approach, and a tightly-coupled approach are considered. The
loosely-coupled approach is based on first-order logic (both conditions and actions are
defined using capabilities of FOL), with a special regard for DL ontologies. The tightly-
coupled approach extends the FPL embedding presented in deliverable D3.2 to cover the
semantics of the combination.

Chapter 5 describes the issues encountered by IBM when implementing XPR〈OWL〉, an
execution engine for production rules over ontologies. The implemented approach is a
loosely-coupling one that consists of implementing a new PR engine that delegates all
ontological processing to an OWL engine. The prototype implementation, based on Jena
[20] (see Deliverable D3.6 [40] for the details of the implementation), was driven by
two aims: (a) bring the theoretical framework and the implementation in line as much as
possible, and (b) make sure that the implementation respects the OWL semantics, while
preserving the peculiarities of the PR engine.

Table of Contents

1 Introduction 1

2 Theoretical Foundations 4

2.1 Introduction . 4

2.2 Tractable Reasoning with DL-Programs over Datalog-rewritable Descrip-
tion Logics . 6

2.2.1 Introduction . 6

2.2.2 Preliminaries . 7

2.2.2.1 DATALOG and DATALOG¬ 7

2.2.2.2 Description Logics . 8

2.2.2.3 DL-Programs under Well-Founded Semantics 10

2.2.3 Reducing DL-Programs to DATALOG¬ 11

2.2.4 The Description Logic LDL+ 14

2.2.4.1 Basic Definitions . 14

2.2.4.2 Immediate Consequence Operator 16

2.2.5 LDL+ is DATALOG-rewritable 20

2.2.6 The OWL 2 Profiles . 25

2.2.7 Implementation and Evaluation 28

2.2.7.1 Implementation . 28

2.2.7.2 Evaluation . 29

2.2.8 Conclusion . 32

2.3 Optimizations for Tableaux Algorithms for F-Hybrid Knowledge Bases . 33

2.3.1 Preliminaries . 34

2.3.2 Forest Logic Programs . 36

iii

2.3.3 An Algorithm for Forest Logic Programs 38

2.3.4 Expansion Rules . 40

2.3.5 Applicability Rules . 42

2.3.5.1 Termination, Soundness, Completeness 43

2.4 Optimized Reasoning with FoLPs . 44

2.4.1 Optimized Reasoning with FoLPs 44

2.4.1.1 Unit Completion Structures 44

2.4.1.2 Redundant Unit Completion Structures 47

2.4.1.3 Reasoning with FoLPs Using Unit Completion Structures 48

2.4.1.4 Termination, Soundness, Completeness 50

2.4.2 Discussion . 51

3 OWL 2 RL in Object Logic 53

3.1 Introduction . 53

3.2 Preliminaries . 54

3.2.1 OWL 2 . 54

3.2.1.1 OWL 2 Syntax . 54

3.2.1.2 OWL 2 RL Profile . 56

3.2.2 OntoBroker . 57

3.2.3 ObjectLogic . 58

3.3 Requirements . 59

3.3.1 Property Hierarchies and Chains 59

3.3.2 Algebraic Properties . 60

3.3.3 Cardinality Restrictions . 60

3.3.4 Equality . 60

3.4 Implementation . 62

3.4.1 Syntax . 62

3.4.2 Semantics . 63

3.4.2.1 owl:Thing . 64

3.4.2.2 Equality . 64

3.4.2.3 Equivalent Classes . 65

3.4.2.4 Disjoint Classes . 66

3.4.2.5 OneOf Class Description 66

3.4.2.6 HasValue Class Description 66

3.4.2.7 SomeValuesFrom Class Description 67

3.4.2.8 AllValuesFrom Class Description 68

3.4.2.9 MaxCardinality Class Descriptions 68

3.4.2.10 Union of Classes . 69

3.4.2.11 Intersection of Classes 69

3.4.2.12 Complement of a Class 70

3.4.2.13 Algebraic and Inverse Properties 70

3.4.2.14 Functional and Inverse Functional Properties 71

3.4.2.15 Equivalent and Disjoint Properties 72

3.4.2.16 Property Chains . 72

3.4.2.17 Keys . 73

3.4.3 Tests . 73

3.4.3.1 Semantic Tests . 73

3.4.3.2 Tests with Optimization Switches 74

3.5 Conclusions . 75

3.6 OWL 2 RL in ObjectLogic Syntax Reference 76

4 PRs and Ontologies 81

4.1 Loose Coupling of Production Rules and Ontologies 81

4.1.1 Preliminaries . 83

4.1.1.1 First-Order Logic . 83

4.1.1.2 Description Logics . 84

4.1.1.3 Production Rules . 85

4.1.2 Semantics of Production Rules over First-Order Knowledge Bases 86

4.1.2.1 Conditions . 86

4.1.2.2 Actions . 89

4.1.2.3 Formula-Based Approach 90

4.1.2.4 Model-Based Approach 91

4.1.3 Peculiarities of Semantics of Production Rules
over Description Logic Knowledge Bases 93

4.1.3.1 Conditions . 94

4.1.3.2 Actions . 96

4.2 Tightly Coupling Production Rules and Ontologies 103

4.2.1 Augmenting production systems with ontologies 104

4.2.2 Axiomatization . 107

4.3 Conclusions . 112

5 Production Rules over OWL Ontologies 114

5.1 Introduction . 114

5.2 Theoretical framework . 115

5.2.1 Conditions . 115

5.2.2 Actions . 116

5.2.3 OWL . 117

5.3 Issues . 118

5.3.1 Condition Part . 119

5.3.1.1 Matching Sets . 119

5.3.1.2 Counting of property values 121

5.3.1.3 User predicates in condition 122

5.3.1.4 Connectives in conditions 123

5.3.1.5 A note on iterations 124

5.3.2 Action Part . 125

5.3.2.1 Retracting individuals 125

5.3.2.2 Inconsistency . 126

5.4 Practical impacts on the rule engine . 127

5.4.1 Impact on the working memory 127

5.4.2 Impact on pattern matching . 128

5.4.3 Impact on navigation . 128

5.4.4 Understanding production rule semantics for assertions 129

5.4.5 Pre-requisites for assertions . 130

5.4.6 Impact on assertions . 130

5.4.7 Strong typing versus dynamic classification 132

5.5 Discussion . 134

TABLE OF CONTENTS vii

5.6 Conclusion . 135

A Tree-shaped queries 138

B Analysis of Issues in Use Cases 141

B.1 Introduction . 141

B.2 Analysis of the “Steel Industry Use Case" 141

B.2.1 Analysis of Steel Industry Use Case Ontology 141

B.2.2 Analysis of Steel Industry Use Case Rules 142

B.3 Analysis of the Automotive Use Case 143

Glossary 150

Chapter 1

Introduction

In this deliverable we present the progress on the theoretical work going on in the On-
torule project in the last year concerning combinations of logical/production rules and
ontologies, as well as theoretical aspects concerning the implementations of such combi-
nations. The first two chapters of the deliverable deal with combinations of logical rules
and ontologies: Chapter 2, for the theoretical part, and Chapter 3, for the practical part.
The next two chapters deal with combinations of production rules and ontologies: Chapter
4, for the theoretical part, and Chapter 5, for the practical part.

In Chapter 2, we selected two of the approaches introduced in deliverable D3.2 [35]
and developed them further. The first approach is the loosely-coupled formalism of
dl-programs under well-founded semantics (see Section 2.2). dl-programs support a
loosely-coupled integration of rules and ontologies, and provide an expressive combina-
tion framework based on the interaction of rules with a DL knowledge base (KB) via so-
called dl-atoms. In order to achieve tractability when reasoning with dl-programs, a class
of tractable Description Logics has been identified: the so-called DATALOG-rewritable
DLs. It has also been shown how reasoning with dl-programs over such DLs under well-
founded semantics can be reduced to DATALOG¬ by means of an efficient transformation.
This class is defined via a semantic property: there has to exist a certain transformation
that translates DL KBs to DATALOG programs, such that ground entailment from a DL
KB carries over to calculating the unique minimal model of the DATALOG program. Be-
sides this non-constructive class, we also present a (syntactically defined) DL which has
this property: LDL+. LDL+has no negation (hence the +) and distinguishes between ex-
pressions on the left- and right-hand side of axioms. LDL+ offers expressive concept-and
role expressions on the left-hand side of axioms (hence the L in LDL+), e.g., qualified
number restrictions and transitive closure of roles. Finally, a reasoner for dl-programs,
DReW, has been developed.

The second approach is the tightly-coupled formalism of f-hybrid knowledge bases. F-
hybrid knowledge bases are combinations of SHOQ ontologies and Forest Logic Pro-
grams. The latter are a decidable subset of Open Answer Set Programming which makes

1

CHAPTER 1. INTRODUCTION 2

use only of unary and binary predicates and has the forest-model property: if a unary
predicate is satisfiable then there is a model that can be seen as a labeled forest, every
node of the forest being an element of the domain, and every predicate p in the label of
a node x suggesting the presence of p(x) in the model. Satisfiability checking of unary
predicates/concepts in f-hybrid knowledge bases is reduced to satisfiability checking of
unary predicates w.r.t. FoLPs by a translation of SHOQ ontologies to FoLPs.

In Section 2.3 we use the tableau algorithm for reasoning with FoLPs described in deliv-
erable D3.2 [35] for computing tree-shaped structures of depth 1 which can be possible
building blocks of any forest model for a particular FoLP. We call this building blocks
unit completion structures. A new tableau algorithm is described which tries to build up a
(forest) model by simply matching and appending such unit completion structures. Some
structures are strict “supersets” of others, making it harder to be matched with other struc-
tures. We identify these redundant structures and discard them. The new algorithm runs
as the original one in the worst case in double exponential time. The high complexity is
determined by the depth of the explored forests. However it can serve as the basis for an
heuristic-based implementation: in practice, it is highly improbable that a unary predicate
is satisfied only by a forest model of considerable size. As such, we can set a limit on the
depth of the explored forest: if no model is found within that limit, one can conclude with
a high probability that the predicate is unsatisfiable.

Chapter 3 describes the ontoprise contribution to the OntoRule Deliverable 3.3. This con-
sists in providing an implementation of OWL 2 RL in ObjectLogic. ObjectLogic rules are
conjunctions of literals in the rule head and arbitrary predicate logic formulas in the rule
body. In OntoBroker the rules are transformed in an extended form of datalog programs
using the Lloyd-Topor [42] transformation and evaluated during query time. Functions
and negations are supported as well. OntoBroker supports multiple query languages. The
primary query language and the native format of OntoBroker is ObjectLogic. Other sup-
ported languages are a subset of SPARQL and SQL. Disjunctive queries or queries which
contain builtins, temporary facts, etc. are only supported by ObjectLogic.

The next chapter of the deliverable, chapter 4 moves to the area of combining production
rules and ontologies. While deliverable D3.2 [35] presented an embedding of proposi-
tional and FOL based production rules in µ-calculus and fixpoint logic, this chapter takes
this work further by presenting different embeddings of production rules and ontologies.
Section 4.1 describes a loosely-coupled approach, where the semantics of the produc-
tion rules and the ontologies are decoupled: the interaction between the two semantics
is based on entailment, while Section 4.2 describes a tightly-coupled approach based on
fixpoint logic. A new semantics for production systems augmented with DL ontologies
is provided and several issues that arise when combining production rules (PR) with de-
scription logics (DL) ontologies are addressed.

Based on the theoretical framework for satisfaction of conditions and execution of actions
introduced in [35], some issues resulting from the combination of PRs and ontologies have
been identified and studied. The deep analysis of these issues allowed us to enhance the

CHAPTER 1. INTRODUCTION 3

implementation of XPR〈OWL〉 an execution engine for production rule over ontologies,
and gave us a better comprehension of the impact of replacing object model with OWL in a
PR engine, as well as the limitations of the loosely-coupled approach. Chapter 5 describes
these issues encountered by IBM when implementing XPR〈OWL〉.
Finally, Appendix B reports on the analysis of the use cases performed in the context of
Ontorule Task 3.2. Task 3.2 involves monitoring of the issues arising in combinations
of rules and ontologies in the case studies. Additionally, the survey will be updated if
necessary in subsequent deliverables in WP3.

Chapter 2

Theoretical Foundations for Complexity
and Optimizations for Combining Logic
Programs and Ontologies

2.1 Introduction

In this chapter, we present developments on two approaches for combining rules and
ontologies introduced in Deliverable D3.2: dl-programs and f-hybrid knowledge bases.

dl-programs are a loosely-coupled formalism for integrating Logic Programming rules
and DL ontologies: the main mechanism of interaction between the two components is
a special type of atoms which appear in the LP rules called dl-atoms. Such dl-atoms
query the DL KB by checking for entailment of ground atoms or axioms w.r.t. the KB; as
knowledge deduced by the rules can be streamed up to the DL KB in turn, a bi-directional
flow of information is possible. The answer set semantics of dl-programs in [15], based on
[24], is highly expressive, but on the other hand already intractable on the rule side; hence,
towards scalable reasoning with negation, D3.2 presented a well-founded semantics for dl-
programs, based on [23]. Given that the queries in dl-atoms are tractable, such programs
can be evaluated in polynomial time (as usual, under data complexity).

Tractability of queries in dl-atoms is in line with recent tractable DLs such as the DL-Lite
families [11], EL++ [5, 6], and Description Logic Programs [27], that strive for scalabil-
ity. In fact, they gave rise to three families of languages that resulted in the OWL 2 Profiles
of the emerging Web Ontology Language OWL 2 [44]. However, even when loosely cou-
pling such a tractable DL with rules via dl-programs under well-founded semantics, one
still needs a dedicated algorithm that uses native DL reasoners to perform the external
queries, thus causing a significant overhead. We overcome this, by identifying a class
of Description Logics, so-called DATALOG-rewritable DLs, for which reasoning with dl-
programs can be reduced to pure Logic Programming, i.e., to DATALOG¬ (DATALOG with

4

CHAPTER 2. THEORETICAL FOUNDATIONS 5

negation under well-founded semantics). This class is defined via a semantic property:
there has to be a certain transformation that translates DL KBs to DATALOG programs,
such that ground entailment from a DL KB can be reduced to calculating the unique mini-
mal model of the DATALOG program. Besides this non-constructive class, we also present
a (syntactically defined) DL which has this property: the novel DL LDL+.

We also developed a reasoner, DReW, which uses the DATALOG-rewriting technique.
DReW can answer conjunctive queries over LDL+ ontologies, as well as reason on dl-
programs over LDL+ ontologies under well-founded semantics. The preliminary but en-
couraging experimental results show that DReW can efficiently handle large knowledge
bases.

One of the missing features in LDL+ is the exists restriction on axiom right-hand sides.
However, DLs allowing this are not straight DATALOG-rewritable, as this feature can en-
force the introduction of new domain elements (beyond the Herbrand domain). One may
handle this using function symbols in the logic program or so-called open domains [34].
The latter is the principle behind Open Answer Set Programming (OASP) . In deliverable
D3.2 we provided a tableau-based algorithm for satisfiability checking w.r.t. forest logic
programs (FoLP), a decidable fragment of OASP, which has the forest model property.
The fragment underpins a tightly-coupled approach for combining rules and ontologies,
the so-called f-hybrid knowledge bases: an f-hybrid knowledge base consists in a SHOQ
knowledge base together with a colection of FoLP rules. Reasoning with respect to f-
hybrid knowledge bases can be reduced to reasoning with FoLPs as by translation of
SHOQ KBs to FoLPs.

In this chapter we describe a new algorithm for reasoning with FoLPs which is based on
a knowledge pre-compilation technique. So-called unit completion structures, which are
possible building blocks of a forest model, in the form of trees of depth 1, are computed
in an initial step of the algorithm. This is done by using the original algorithm. Repeated
computations are avoided by using these structures in a pattern-matching style when con-
structing a model. From the pool of unit completion structures we also identify structures
which can be seen as redundant and discard them. The new algorithm does not improve
on the worst-case running time of the algorithm, as this is determined by the depth of
the forests we have to explore. However as discussed in section 2.4.2, we expect it will
perform considerably better than the original algorithm in returning positive answers to
satisfiability checking queries. This opens the way for using heuristics like establishing
a limit on the depth of the explored structures: in practice it is highly improbable that if
there is a solution, it can be found only in an open answer set of a considerable size (depth
of the corresponding extended forest).

CHAPTER 2. THEORETICAL FOUNDATIONS 6

2.2 Tractable Reasoning with DL-Programs over Datalog-
rewritable Description Logics

2.2.1 Introduction

In this section we define a class of DATALOG-rewritable DLs (Section 2.2.3), and show
how reasoning with dl-programs over such DLs under well-founded semantics can be re-
duced to DATALOG¬ by means of an efficient transformation. Noticeably, for dl-programs
without negation, the result is a standard DATALOG program; moreover, the transforma-
tion preserves stratified negation.

LDL+ is defined as a particular DATALOG-rewritable DL (Section 2.2.4). This DL has no
negation (hence the +) and distinguishes between expressions on the left- and right-hand
side of axioms. LDL+ offers expressive concept-and role expressions on the left-hand
side of axioms (hence the L in LDL+), e.g., qualified number restrictions and transitive
closure of roles. The DATALOG-rewritability of LDL+ (Section 2.2.5) is interesting in it-
self, showing how to do reasoning in DLs with expressive constructs efficiently via Logic
Programming. As a side result, we obtain that reasoning in LDL+ is tractable, consid-
ering both data and combined complexity; more precisely, we show that it is PTIME-
complete in both settings. Despite its low complexity, LDL+ is still expressive enough
to represent many constructs useful in ontology applications [6] such as role equivalences
and transitive roles.

In Section 2.2.6 we review the different OWL 2 Profiles and relate them to LDL+. While
LDL+ misses some constructs, e.g., the exists restriction on axiom right-hand sides as in
EL++ and DL-Lite, or negation as in the DL-Lite families, it adds others, e.g., expres-
sive role constructs and transitive closure (which is not expressible in first-order logic).
Furthermore, we show that LDL+ encompasses Description Logic Programs without a
complexity increase.

Section 2.2.7 describes our new reasoner DReW (DATALOG ReWriter)1, which rewrites
LDL+ ontologies (dl-programs over LDL+ ontologies) to DATALOG (DATALOG¬) pro-
grams, and calls an underlying rule-based reasoner, currently DLV, to perform the actual
reasoning. For LDL+ ontologies, DReW does instance checking as well as answering
of conjunctive queries (CQs). For dl-programs over LDL+ ontologies, DReW computes
the well-founded model.

DReW has been evaluated along two axes: as a pure DL reasoner and as a reasoner for
dl-programs. Several real-word ontologies fall to a large extent in the LDL+ fragment.
This enables us to compare CQs over the LUBM [28] benchmark with Pellet, KAON2 and
RacerPro. For dl-programs, we compare DReW with DLVHEX over LUBM ontologies
with dl-rules. The preliminary but encouraging experimental results show that DReW
can efficiently handle large knowledge bases.

1http://www.kr.tuwien.ac.at/research/systems/drew

http://www.kr.tuwien.ac.at/research/systems/drew

CHAPTER 2. THEORETICAL FOUNDATIONS 7

2.2.2 Preliminaries

2.2.2.1 DATALOG and DATALOG¬

Constants, variables, terms, and atoms are defined as usual. We assume that a binary
inequality predicate 6= is available; atoms not using 6= are normal. A DATALOG¬ rule r
has the form

h ← b1 , . . . , bk , not c1 , . . . , not cm (2.1)

where the body b1, . . . , bk, c1, . . . , cm are atoms and h is a normal atom.

We call H(r) = {h} the head, B+(r) = {b1, . . . , bk} the positive body, B−(r) =
{c1, . . . , cm} the negative body, and then B(r) = {b1, . . . , bk, not c1, . . . , not cm} =
B+(r) ∪ not B−(r) the body. If B−(r) = ∅, then r is a DATALOG rule. A finite set
of DATALOG¬ (DATALOG) rules is a DATALOG¬ (DATALOG) program. Ground terms,
atoms, and programs are defined as usual. A fact is a rule (2.1) with k = m = 0.

The Herbrand DomainHP of a program P is the set of constants from P . The Herbrand
Base BP of P is the set of normal ground atoms with predicates and constants from P .
An interpretation of P is any set I ⊆ BP . For a ground normal atom a, we write I |= a if
a ∈ I; for a ground atom c1 6= c2, we write I |= c1 6= c2 if c1 and c2 are different; for a
ground negation as failure atom l = not a, we write I |= l if I 6|= a. For a set of ground
(negation as failure) atoms α, I |= α if I |= l for all l ∈ α. A ground rule r : h ← α is
satisfied w.r.t. I , denoted I |= r, if I |= h whenever I |= α.

An interpretation I of a ground program P is a model of P , if I |= r for every r ∈ P ; in
addition, I is minimal, if P has no model J ⊂ I . For a non-ground P , I is a (minimal)
model of P iff it is a (minimal) model of gr(P), the grounding of P with the constants of
P defined as usual. Each DATALOG program P has some minimal model, which in fact
is unique; we denote it with MM (P). We write P |= a if MM (P) |= a.

We recall the well-founded semantics [23] for DATALOG¬. Let I be an interpretation for
a DATALOG¬ program P . The GL-reduct [24] P I of a program P is the set of DATALOG

rules h ← b1 , . . . , bk such that r : h ← b1 , . . . , bk , not c1 , . . . , not cm ∈ gr(P) and
I 6|= ci, for all i, 1 6 i 6 m.

Using the γ operator [10], one can define the well-founded semantics as follows. Let
γP (I) = MM (P I) and γ2

P (I) = γP (γP (I)), i.e., applying the γ operator twice; as γP is
anti-monotone, γ2

P is monotone. The set of well-founded atoms of P , denoted WFS (P),
is exactly the least fixed point of γ2

P . We denote with P |=wf a that a ∈WFS (P).

For a DATALOG (DATALOG¬) program P and an atom a, deciding P |=a (P |=wf a) is data
complete (P is fixed except for facts) for PTIME and (combined) complete (P is arbitrary)
for EXPTIME [12].

Example 2.2.1. Let P be the program with rules

CHAPTER 2. THEORETICAL FOUNDATIONS 8

r1 : good(X)←super(X, Y), not over(Y)

r2 : over(X)←not good(X)

r3 : super(a, b)←
r4 : super(b, c)←
r5 : over(b)←
r6 : over(c)←

where r1 indicates that if X is supervising Y and Y is not overloaded, then X is a good
manager and r2 indicates that if X is not a good manager, then X is overloaded. The
facts r3-r6 define a supervising hierarchy and indicate that b and c are overloaded. We
then have that P |=wf over(a).

2.2.2.2 Description Logics

For space constraints, we assume the reader is familiar with DLs and adopt the usual
conventions, see [8]. We highlight some points below.

A DL knowledge base (KB) Σ = 〈T ,A〉 consists of a finite set T (called TBox) of ter-
minological and role axioms α v β, where α and β are concept (respectively role) ex-
pressions, and a finite set A (called ABox) of assertions A(o1) and R(o1, o2) where A is a
concept name, R is a role name, and o1, o2 are individuals (i.e., constants). We also view
Σ as the set T ∪ A.

For particular classes of DL KBs Σ, we assume that (1) Σ is defined over a (finite) set Po

of concept and role names; we call the constants appearing in Σ the Herbrand domain of
Σ, denoted with ∆H(Σ); (2) Σ can be extended with arbitrary assertions, i.e., for any ABox
A′ (over Po), Σ ∪ A′ is an admissible DL KB, and (3) Σ defines a ground entailment
relation |= such that Σ |= Q(e) is defined for dl-queries Q(e), e ground terms, which
indicates that all models of Σ satisfy Q(e). Here, a dl-query Q(t) is either of the form
(a) C(t), where C is a concept and t is a term; or (b) R(t1, t2), where R is a role and t1,
t2 are terms.

DLs are build up using concept- and role expressions — the semantics of which is given as
usual by an interpretation I = (∆I , ·I) with a non-empty domain ∆I and an interpretation
function ·I for concept- and role names as well as individuals. We assume that the unique
names assumption holds such that oI = o for individuals and in particular {o}I = {oI}
for nominals appearing in the KB. Note that OWL does not have the unique names as-
sumption [52], and thus different individuals can point to the same resource. However,
Logic Programming semantics gives a Herbrand interpretation to constants, i.e., constants
are interpreted as themselves, and for consistency we assume that also DL nominals are
interpreted this way. The semantics of concept and role expressions is defined as usual,
see, e.g., [8], in particular >I = ∆I and (>2)I = ∆I ×∆I for the dedicate symbols >

CHAPTER 2. THEORETICAL FOUNDATIONS 9

and >2. DL KBs usually consist of a TBox with terminological and role axioms C v D
where C and D are either concept- or role expressions and an ABox consisting of asser-
tions A(o) or R(o1, o2) where A is a concept name and R a role name. In the presence of
nominals, we can restrict ourselves to TBoxes, as ABox assertionsA(o) andR(o1, o2) can
be rewritten as axioms {o} v A and {(o1, o2)} v R. In the following, we will assume
the DL at hand contains nominals such that we do not have to consider the ABox.

An interpretation I satisfies an axiom C v D if CI ⊆ DI and it is a model of a KB Σ,
denoted I |= Σ, if it satisfies every axiom in Σ. A concept C is satisfiable w.r.t. Σ if there
is a model I of Σ such that CI 6= ∅.
For a domain ∆ and a KB Σ, we will w.l.o.g denote interpretations (∆, ·I) as sets consist-
ing of {A(x)|x ∈ AI} ∪ {P (x, y)|(x, y) ∈ P I} ∪ {{o}(o)} for concepts names A, role
names P , and individuals o in Σ (and thus no {o}(i) is present for o 6= i).

Instead of x ∈ CI , we will write I |= C(x) and instead of (x, y) ∈ EI , we will write
I |= E(x, y) for such sets I and concept (role) expressions C (E). The latter can be
easily defined according to the usual DLs definition of interpretations of concept (role)
expressions. For example, {A(x), B(x)} |= (A u B)(x). Note that {o}(o) is present in
each such interpretation for each individual o appearing in Σ. We furthermore assume
that each such interpretation contains >(x) for every x ∈ ∆ as well as >2(x, y) for all
x, y ∈ ∆. If an interpretation I is assumed to be of the above form we will call it a
set-interpretation. Recall, however, that they are just notational variants of interpretations
and are thus in one-to-one correspondence.

Finally, the main reasoning service we are interested in this report is a particular type of
subsumption checking: ground atom entailment, entailment for short. For a ground atom
C(a) where a is an individual, C a concept expression, and Σ a KB, we are interested
whether for all models I of Σ, aI = a ∈ CI , denoted Σ |= C(a).2

Exemplary DLs are SHOIN (D) and SROIQ(D) which provide the logical underpin-
nings of the Web ontology languages OWL DL and OWL 2 (see [37, 38, 44] for further
background). In what follows we assume that the reader is familiar with standard DL
syntax and semantics.

Example 2.2.2. Take the DL KB Σ:

(> 2 PaptoRev .>) v Over
Over v ∀Super+.Over

{(a, b)} t {(b, c)} v Super

where Super+ is the transitive closure of the role Super . The first two axioms indicate
that someone who has more than two papers to review is overloaded, and that an over-
loaded person causes all the supervised persons to be overloaded as well (otherwise the
manager delegates badly). The final axiom — equivalent to the assertions Super(a, b)
and Super(b, c) — defines the supervision hierarchy.

2When C is a concept name, ground entailment is also known as instance checking.

CHAPTER 2. THEORETICAL FOUNDATIONS 10

2.2.2.3 DL-Programs under Well-Founded Semantics

We introduce dl-programs under well-founded semantics [16].

Informally, a dl-program consists of a DL KB Σ over Po and a DATALOG¬ program P
over a set of predicates Pp distinct from Po , which may contain queries to Σ. Roughly,
such queries ask whether a certain ground atom logically follows from Σ. Note that the
Herbrand domains of Σ and P are not necessarily distinct.

Syntax. A dl-atom a(t) has the form

DL[S1] p1, . . . , Sm] pm; Q](t) m > 0, (2.2)

where each Si is either a concept or a role name from Po , pi is a unary, resp. binary,
predicate symbol from Pp , and Q(t) is a dl-query. We call the list S1] p1, . . . , Sm] pm
the input signature and p1, . . . , pm the input predicate symbols. Intuitively,] increases
Si by the extension of pi prior to the evaluation of query Q(t).3

A dl-rule r has the form (2.1), where any atom bi, cj may be a dl-atom. A dl-program
KB = (Σ ,P) consists of a DL KB Σ and a finite set of dl-rules P . We say KB is over
DL, if Σ is in the DL DL.

Semantics. We define the Herbrand base BKB of a dl-program (Σ, P) as the set of ground
atoms with predicate symbols from P (i.e., from Pp) and constants from the Herbrand
domains of Σ and P . The ground program gr(P) is the ground of P over BKB. An
interpretation of KB is any subset I ⊆ BKB . It satisfies a ground atom a under Σ,
denoted I |=Σ a,

– in case a is a non-dl-atom, iff I |= a, and
– in case a is a dl-atom of form (2.2), iff Σ ∪ τ I(a) |= Q(c),

where τ I(a), the extension of a under I , is τ I(a) =
⋃m
i=1 Ai(I) with Ai(I) = {Si(e) |

pi(e) ∈ I}. Satisfaction of ground dl-rules r under Σ is then as usual (see DATALOG¬)
and denoted with I |=Σ r. I is a model of KB , denoted I |= KB , iff I |=Σ r for all
r ∈ gr(P).

We define the well-founded semantics for dl-programs as in [16] using the γ2 operator.
For I and (Σ, P), let KB I = (Σ , sP I

Σ), the reduct of KB wrt. I , be the dl-program where
sP I

Σ results from gr(P) by deleting (1) every dl-rule r where I |=Σ a for some a ∈ B−(r),
and (2) from the remaining dl-rules r the negative body B−(r). Note that sP I

Σ may still
contain positive dl-atoms. As shown in [16], KB I has a single minimal model, denoted
MM (KB I).

Now the operator γKB on interpretations I of KB is defined by γKB(I) = MM (KB I).
As γKB is anti-monotone, γ2

KB(I) = γKB(γKB(I)) is monotone and has a least fixpoint.
This fixpoint is the set of well-founded atoms of KB , denoted WFS (KB); we denote with
KB |=wf a that a ∈WFS (KB).

3Other modifiers, like −∪, −∩, may be expressed by] in strong enough DLs and similarly for subsumption
expressions C v D. However, DATALOG-rewritability precludes such constructs.

CHAPTER 2. THEORETICAL FOUNDATIONS 11

Example 2.2.3. Take (Σ, P) where Σ as in Example 2.2.2 and P :

r1 : good(X) ← DL[; Super](X ,Y),
not DL[PaptoRev] paper; Over](Y);

r2 : over(X) ← not good(X);
r3 : paper(b, p1) ← ;
r4 : paper(b, p2) ← .

Note that the first dl-atom has no input signature. Intuitively, r1 indicates that if X is
supervising Y and Y is not overloaded, then X is a good manager and r2 indicates that
if X is a not a good manager then X is overloaded. Then, KB |=wf over(a).

Deciding (Σ, P) |=wf a is combined complete for EXPTIME (PTIMENEXP) for Σ in
SHIF(D) (SHOIN (D)) and data complete for PTIMENP for Σ in SHIF(D) and
SHOIN (D)[16]; here data complete means that only the constants in Σ and P , the
ABox A, and the facts in P may vary.

2.2.3 Reducing DL-Programs to DATALOG¬

Let KB = (Σ ,P) be a dl-program and let a be a ground atom from BKB . We define a
class of DLs, so-called DATALOG-rewritable DLs, such that reasoning w.r.t. dl-programs
over such DLs becomes reducible to DATALOG¬. In particular, we show that for such
DATALOG-rewritable DLs, we can reduce a dl-program KB = (Σ ,P) to a DATALOG¬

program Ψ(KB) such that KB |=wf a iff Ψ(KB) |=wf a.

We abstractly define which DLs we consider DATALOG-rewritable.

Definition 2.2.4. A DL DL is DATALOG-rewritable if there exists a transformation ΦDL
from DL KBs to DATALOG programs such that, for any DL KB Σ,

(i) Σ |= Q(o) iff ΦDL(Σ) |= Q(o) for any concept or role name Q from Σ, and individ-
uals o from Σ;

(ii) ΦDL is modular, i.e., for Σ = 〈T ,A〉 where T is a TBox andA an ABox, ΦDL(Σ) =
ΦDL(T) ∪ A;

In other words, a ground atom a is entailed by the DL KB L iff a ∈ MM (ΦDL(Σ)), the
unique minimal model of the DATALOG program ΦDL(Σ). Furthermore, we refer to a
polynomial DATALOG-rewritable DL DL, if ΦDL(Σ) for a DL KB Σ is computable in
polynomial time.

We assume w.l.o.g. that both P and ΦDL(Σ) are safe — each variable appears in a positive
normal atom in the body — for (Σ, P).

Let ΛP
∆
= {λ | DL[λ;Q] occurs in P}, i.e., the input signatures appearing in P . The

translation of (Σ, P) to a DATALOG¬ program is then built up of the following four com-
ponents:

CHAPTER 2. THEORETICAL FOUNDATIONS 12

• ΣΛP
∆
= ∪λ∈ΛPΣλ where Σλ is Σ with all concept and role names subscripted with

λ. Intuitively, each input signature of a dl-atom in P will influence Σ differently.
As we want to cater for these influences in one program, we have to differentiate
between the KBs with different inputs.

• A DATALOG program ρ(ΛP) containing for each λ = S1] p1, . . . , Sm] pm ∈ ΛP

the rules Siλ(Xi) ← pi(Xi), 1 6 i 6 m, where the arity of Xi matches the one of
Si. Intuitively, we add the extension of pi to the appropriate concept or role.

• A set TP of DATALOG rules >(a)← and >2 (a, b)← for all a, b in the Herbrand
domain of P to ensure their introduction in Σ.

• Finally, P ord results from replacing each dl-atom DL[λ;Q](t) in P with a new
atom Qλ(t).

The transformation of the dl-program KB is then defined as

Ψ(KB)
∆
= ΦDL(ΣΛP

) ∪ Pord ∪ ρ(ΛP) ∪ TP (2.3)

Example 2.2.5. Let KB = (Σ ,P) where Σ = { C v D } and

P
∆
= { p(a)← ; s(a)← ; s(b)← ;

q ← DL[C] s ; D](a), not DL[C] p; D](b) }.

Then ΛP = {λ1
∆
= C] s, λ2

∆
= C] p}, such that ρ(ΛP) consists of Cλ1 (X) ← s(X)

and Cλ2 (X)← p(X). The component P ord consists of q ← Dλ1 (a), not Dλ2 (b) and the
original facts.

Note that Ψ(KB) is a DATALOG program, if KB is negation-free, and a stratified DATALOG¬

program, if KB is stratified (cf. [15]); thus, beneficial for evaluation, acyclic negation is
fully preserved.

Proposition 2.2.6. Let KB be a dl-program over a polynomial DATALOG-rewritable DL.
Then, Ψ(KB) is constructible in polynomial time.

Proof. This immediately follows from the defition of Ψ(KB). �

In order to show that KB |=wf a iff Ψ(KB) |=wf a for an atom a ∈ BKB , we use the
following intermediate lemmas, similarly as for the proof of Theorem 5.12 in [16].

For a dl-program KB = (Σ ,P) over a DATALOG-rewritable DL and an interpretation I
over BKB , we define an interpretation for Ψ(KB):

IΨ ∆
= I ∪

⋃
λ∈ΛP

MM (Φ(Σλ ∪ S(λ, I)))

where
S(λ, I)

∆
= {{c} v Sλ | S] p ∈ λ, p(c) ∈ I}

CHAPTER 2. THEORETICAL FOUNDATIONS 13

In other words for an interpretation I of the KB KB , we define an interpretation IΨ of
Ψ(KB) that corresponds to it, i.e., it contains I and the minimal models of the positive
programs consisting of the translation of the KB as well as the facts that follow from the
particular extensions of the input predicates w.r.t. I .

We further define some shortcuts: G(I)
∆
= γKB(I) and GΨ(I) = γΨ(KB)(I).

Lemma 2.2.7. Let KB = (Σ ,P) be a dl-program over a DATALOG-rewritable DL,
DL[λ;Q](c) a ground dl-atom from gr(P), and I an interpretation for KB . Then,
I |=Σ DL[λ;Q](c) iff IΨ |= Qλ(c).

Proof.

I |=Σ DL[λ;Q](c)

iff [Σλ is an equivalent rewriting of Σ; take λ′ = S1λ] p1, . . . , Smλ] pm
for λ = S1] p1, . . . , Sm] pm ∈ ΛP]
I |=Σλ DL[λ′;Qλ](c)

iff [Def. of |=Σλ and with Ai(I) = {Siλ(ci) | pi(ci) ∈ I}]
Σλ ∪

⋃
iAi(I) |= Qλ(c)

iff [Rewriting ABox
⋃
iAi(I) as axioms]

Σλ ∪ {{ci} v Siλ | pi(ci) ∈ I} |= Qλ(c)

iff [Def. 2.2.4]
Qλ(c) ∈ MM (Φ(Σλ ∪ {{ci} v Siλ | pi(ci) ∈ I}))

iff [using that the Σλ disjoint on the concept- and role names, that Φ is
preserving, and that Qλ is a concept- or role name]
Qλ(c) ∈

⋃
λ∈ΛP

MM (Φ(Σλ ∪ S(λ, I)))

iff [Qλ is concept or role name]
Qλ(c) ∈ I ∪

⋃
λ∈ΛP

MM (Φ(Σλ ∪ S(λ, I)))

iff [Def. of IΨ]
Qλ(c) ∈ IΨ

Lemma 2.2.8. Let KB = (Σ ,P) be a dl-program over a DATALOG-rewritable DL, and
I an interpretation for KB . Then, G(I)Ψ = GΨ(IΨ).

Proof. This follows from Lemma 2.2.7 and the observation that sP I
Σ and (P ord)

IΨ

have
the same rules where the (positive) dl-atoms DL[λ;Q](c) in sP I

Σ are replaced with Qλ(c)

in (P ord)
IΨ

.

Lemma 2.2.9. Let KB = (Σ ,P) be a dl-program over a DATALOG-rewritable DL, and
I an interpretation for KB . Then, LFP(G2)Ψ = LFP((GΨ)2).

CHAPTER 2. THEORETICAL FOUNDATIONS 14

Proof. The proof technique is similar as the one used in Proposition B.3 in [16], using
Lemmas 2.2.7 and 2.2.8.

The following result allows us to reduce reasoning with dl-programs to DATALOG¬ under
well-founded semantics.

Theorem 2.2.1. Let KB be a dl-program over a DATALOG-rewritable DL and a be a
ground atom from BKB . Then,

KB |=wf a iff Ψ(KB) |=wf a.

Proof. We show both directions.
(⇒). Assume KB |=wf a. Then, by definition of the well-founded semantics for dl-
programs, a ∈ LFP(γ2

KB) = LFP(G2). Since for any interpretation I ⊆ BKB , I ⊆ IΨ,
we have that a ∈ LFP(G2)Ψ. By Lemma 2.2.9, we have that a ∈ LFP((GΨ)2) =
LFP((γΨ(KB))

2) , and thus Ψ(KB) |=wf a.
(⇐). Since a is a ground atom from BKB and thus constructed with a predicate from P ,
the reverse reasoning from (⇐) also holds. �

From Theorem 2.2.1 and the fact that any DATALOG¬ program P amounts to a dl-program
(∅, P) [16], we obtain the following result.

Corollary 2.2.10. For any dl-program KB over a DL DL and ground atom a from BKB ,
deciding KB |=wf a is (i) data complete for PTIME, if DL is DATALOG-rewritable and
(ii) combined complete for EXPTIME, if DL is polynomial DATALOG-rewritable.

Thus, over DATALOG-rewritable DLs, the data complexity of dl-programs decreases from
PTIMENP to PTIME compared to SHIF(D)and SHOIN (D), and the combined com-
plexity from PTIMENEXP to EXPTIME compared to SHOIN (D)(and is the same as for
SHIF(D)) over polynomial DATALOG-rewritable DLs.

2.2.4 The Description Logic LDL+

In this section, we introduce the Description Logic LDL+ and derive some basic model-
theoretic properties.

2.2.4.1 Basic Definitions

We design LDL+ by syntactic restrictions on the expressions that occur in axioms, dis-
tinguishing between occurrence in the “body” α and the “head” β of an axiom α v β.
We define

• h-roles (h for head) E,F to be role names P , role inverses E−, role conjunctions
E u F , and role top >2;

CHAPTER 2. THEORETICAL FOUNDATIONS 15

• b-roles (b for body) E,F are the same as h-roles, plus role disjunctions E tF , role
sequences E ◦ F , transitive closures E+, role nominals {(o1, o2)}, where o1, o2 are
individuals.

Furthermore, let basic concepts C,D be concept names A, the top symbol >, and con-
junctions C uD; then we define

• h-concepts C,D are basic concepts B, and value restrictions ∀E.B where E a b-
role;

• b-conceptsC,D are basic conceptsB, disjunctionsCtD, exists restrictions ∃E.C,
atleast restrictions > nE.C, and nominals {o}, where E is a b-role, and o is an
individual.

Note that all h-roles are also b-roles, but an analog relation does not hold for concepts:
∀E.C is an h-concept but not a b-concept. When immaterial, we will refer to both b-
concepts and h-concepts as (LDL+) concepts; we use an analog convention for roles.

Now an LDL+ KB is a pair Σ = 〈T ,A〉 of a finite TBox T and a finite ABox A, where

• T is a set of terminological axioms B v H , where B is a b-concept and H is an
h-concept, and role axioms S v T , where S is a b-role and T is an h-role, and

• A is a set of assertions of the form C(o) and E(o1, o2) where C is an h-concept and
E an h-role.

Example 2.2.11. Reconsider the DL KB Σ from Example 2.2.2. It is easily checked that
Σ amounts to an LDL+ KB.

2.2.4.1.1 Normal Form. To simplify matters, we restrict to an expressive normal form
ofLDL+ knowledge bases Σ. First, an assertionC(o) is equivalent to the axiom {o} v C,
and and similarly E(o1, o2) is equivalent to {(o1, o2)} v E; hence, we assume that the
ABox is empty and identify Σ with its TBox. Second, every axiom B v H as above can
be equivalently rewritten such that H is either a concept name A, the> symbol, or ∀E.A,
where A is a concept name and E is a b-role. Indeed, B v C u D could be rewritten
as B v C and B v D, which in turn might have to be rewritten; B v ∀E.C could be
rewritten as B v ∀E.A and A v C and C v A for some new concept name A where
A v C might need to be rewritten further (note that C is a basic concept expression such
that it is also a valid b-concept expression). Since the concepts become smaller this is
clearly a finite process, which is moreover linear in the size of Σ. We can thus rewrite
a LDL+ KB such that it does not contain conjunction in the head. We can similarly
remove conjunction from the head T of role axioms S v T , and restrict the h-role T to
role names, inverse role names, and >2.

CHAPTER 2. THEORETICAL FOUNDATIONS 16

Proposition 2.2.12. Every LDL+ KB Σ can be transformed into the form described in
polynomial (in fact, in linear) time.

In the sequel, we tacitly deal with such normalized LDL+ KBs.

2.2.4.2 Immediate Consequence Operator

In this section, we define an immediate consequence operator for LDL+ that allows us to
calculate the ground entailment of atoms. Moreover, we show that ground entailment for
LDL+ is domain independent, and thus can be confined to the constants in the KB.

We first show that b-concepts satisfy a monotonicity property. For a given KB Σ and
interpretations I = (∆, ·I) and J = (∆, ·J) over the same domain ∆, we write I ⊆ J
if AI ⊆ AJ for concept names A in Σ and P I ⊆ PJ for role names P in Σ; note that
oI = oJ for any individual o due to the unique names assumption. Then I ⊂ J if I ⊆ J
but I 6= J . We say that a model I = (∆, ·I) of Σ is minimal, if there is no model
J = (∆, ·J) of Σ such that J ⊂ I.

Definition 2.2.13. An LDL+ concept (role) C (E) is monotonic, if for each pair of inter-
pretations I = (∆, ·I) and J = (∆, ·J) of Σ, I ⊆ J implies CI ⊆ CJ (EI ⊆ EJ).

Proposition 2.2.14. All b-concepts and all LDL+ roles are monotonic.

Proof. This can be easily inductively proved on the structure of the concepts and roles.
�

Note that an h-concept ∀E.B is not monotonic.

Recall that we can write interpretations I = (∆, ·I) as set-interpretations {A(x)|x ∈
AI}∪{P (x, y)|(x, y) ∈ P I}∪{{o}(o)} for concept (role) names A (P), and for individ-
uals o. Instead of x ∈ CI ((x, y) ∈ EI), we write I |= C(x) (I |= E(x, y)) for concepts
(roles) C (E). Note that each such I contains >(x) for every x ∈ ∆ as well as >2(x, y)
for all x, y ∈ ∆.

One can see that for a fixed ∆, the set I∆ of all set-interpretations over ∆ is under the
usual subset relation ⊆ a complete lattice as in [55].

Indeed, it is a non-empty set, ⊆ is a partial order on I∆, and for any two sets I and J in
I∆ there is a least upper bound I ∪ J and greatest lower bound I ∩ J . Moreover, it is a
complete lattice as every subset S ⊆ I∆ has a least upper bound

⋃
S and greatest lower

bound
⋂

S. In particular, there are elements 0∆
∆
=
⋂
I∆ and 1∆

∆
=
⋃

I∆. Note that 0∆ is
the set {{o}(o) | o ind. in Σ} ∪ {>(x),>2(x, y) | x, y ∈ ∆}.
For an LDL+ KB Σ and a domain ∆, we then define an immediate consequence operator
T∆ on I∆ as follows, where A ranges over the concept names, P over the role names, and

CHAPTER 2. THEORETICAL FOUNDATIONS 17

x, y over ∆:

T∆(I) = I ∪ {A(x) | B v A ∈ Σ, I |= B(x)}
∪ {A(x) | B v ∀E.A ∈ Σ, I |= B(y), I |= E(y, x)}
∪ {P (x, y) | S v P ∈ Σ, I |= S(x, y)}
∪ {P (y, x) | S v P− ∈ Σ, I |= S(x, y)} .

For a set-interpretation I of Σ over ∆, T∆(I) is still a set-interpretation of Σ over ∆, such
that T∆ is well-defined.

As easily seen, T∆ is monotone, i.e., J ⊆ I implies T∆(J) ⊆ T∆(I), and thus has a
least fixpoint LFP(T∆), i.e., a unique minimal I such that T∆(I) = I [55].

Proposition 2.2.15. Let Σ be an LDL+ KB, ∆ a domain. Then, T∆ is increasing and has
a least fixed point, i.e., there is an I ∈ I∆ such that T∆(I) = I and no J ∈ I∆ with
J ⊂ I exists such that T∆(J) = J .

Proof. If T∆ is increasing, the fixed point result follows directly from [55, Theorem 2].
We show that T∆ is indeed increasing.

Assume I ⊆ J , set-interpretations of Σ over ∆; we show that T∆(I) ⊆ T∆(J). Take an
A(x) ∈ T∆(I), then either (1) A(x) ∈ I, (2) there is a terminological axiom B v A such
that I |= B(x), or (3) there is a terminological axiom B v ∀E.A such that I |= B(y)
and I |= E(y, x) for some y ∈ ∆. Since I ⊆ J , (1) leads immediately to A(x) ∈
J ⊆ T∆(J). For (2), we have, due to monotonicity of B that J |= B(x) such that again
A(x) ∈ T∆(J). For (3), we have again due to monotonicity of E and B, that J |= B(y)
and J |= E(y, x) such that A(x) ∈ T∆(J).

The case for a P (x, y) ∈ T∆(I) can be done similarly. �

This fixpoint corresponds to a model of Σ, which in fact is the single minimal model of Σ
over ∆.

Proposition 2.2.16. Let Σ be an LDL+ KB and let ∆ be a domain over Σ. Then, I =
(∆, ·I) is a minimal model of Σ iff I corresponds to the set-interpretation LFP(T∆).

Proof. We abbreviate in the following T∆ with T and LFP(T) with L.

(⇒) Assume I = (∆, ·I) is a minimal model of Σ. We show that I corresponds to the
set-interpretation L. We assume I is written in its set-interpretation notation and prove
that I is indeed the least fixed point of T .

1. I is a fixed point, i.e., T (I) = I. Clearly, I ⊆ T (I) by definition of T . Assume
T (I) 6⊆ I. Then, there is a A(x) or a R(x, y) in T (I) that is not in I. For the case
A(x), we have that there is then (1) a B v A ∈ Σ such that I |= B(x) or (2) a
B v ∀E.A ∈ Σ such that I |= E(y, x) and I |= B(y) for some y ∈ ∆. For (1),

CHAPTER 2. THEORETICAL FOUNDATIONS 18

clearly, then x ∈ BI such that (since I is a model), x ∈ AI and thus A(x) ∈ I,
a contradiction. For (2), (y, x) ∈ EI and y ∈ BI such that, since I is a model,
y ∈ (∀R.A)I and thus, with (y, x) ∈ EI , that x ∈ AI , a contradiction. The case
R(x, y) can be done similarly. Thus, T (I) = I.

2. Assume it is not a least fixed point, then there is a J such that J ⊂ I and T (J) =
J . We show that J = (∆, ·J) is then a model of Σ, violating the minimality of I.

Take a terminological axiom B v H ∈ Σ and x ∈ BJ . Then J |= B(x). Assume
H = A for a concept name A, then H(x) ∈ T (J)(= J) by definition of T such
that x ∈ HJ . Assume H = ∀E.A for a concept name A. Then, x ∈ (∀E.A)J .
Indeed, if there is a (x, y) ∈ EJ , then J |= E(x, y) such that, by definition of
T , A(y) ∈ T (J) = J such that J |= A(y). Thus, J |= (∀E.A)(x) and x ∈
(∀E.A)J . Assume H = >, then the axiom is trivially satisfied.

Role axioms can be treated similarly.

(⇐) Assume I = L. That I is a minimal model can be showed using similar techniques
as in the other direction. �

We show that for a given domain ∆, the minimal model is unique, i.e., if both (∆, I) and
(∆,J) are minimal models, then I = J .

Proposition 2.2.17. Let Σ be an LDL+ KB and let ∆ be a domain over Σ with minimal
models I and J over ∆. Then, I = J .

Proof. By Proposition 2.2.16, we have that I and J are least fixed points of T . Define
K ∆

= I ∩ J . Then one can show that T (K) = K using monotonicity and that T (I) = I
and T (J) = J . Hence, since I and J are least fixed points, K = I = J . �

Corollary 2.2.18. Let Σ be an LDL+ KB and let ∆ be a domain over Σ. Then, there
exists a unique minimal model I = (∆, ·I), denoted MM (∆,Σ), that equals LFP(T∆).

Proof. By Proposition 2.2.15, T∆ has a least fixed point, which is, by Proposition
2.2.16, equal to the minimal model. The latter is unique by Proposition 2.2.17. �

Entailment checking of b-concepts can then in each domain be restricted to the unique
minimal model for that domain.

Proposition 2.2.19. Let Σ be an LDL+ KB, C a b-concept, and o ∈ ∆H(Σ). Then,
Σ |= C(o) iff for all ∆, MM (∆,Σ) |= C(o).

Proof. The (⇒) follows immediately.

For (⇐), we show that if minimal models entail C(o), then all models do. Take a model
(∆, ·I0), then either the corresponding set interpretation I0 is minimal for the domain ∆

CHAPTER 2. THEORETICAL FOUNDATIONS 19

or not. If it is, we are done, otherwise, there is a model (∆, ·I1) of Σ such that I1 ⊂ I0

for which one repeats the above reasoning, i.e., eventually, we will have a minimal model
In such that In ⊂ . . . I1 ⊂ I0 for which In |= C(o). Since C is monotonic, we have that
I0 |= C(o). �

Note that the proposition does not necessarily hold if C is an h-concept. For example,
consider Σ = {{a} v A} and the h-concept C = ∀R.A, where A is a concept name
and R is a role name. Clearly, Σ 6|= ∀R.A(a). However, when we consider the domain
∆H(Σ) = {a}, MM (∆H(Σ),Σ) = {A(a)} and MM (∆H(Σ),Σ) |= ∀R.A(a).

Lemma 2.2.20. Let ∆0 ⊆ ∆ be two domains, C(E) a b-concept (role) expression,
o, o1, o2 some individuals in ∆0, I (J) an interpretation on domain ∆0 (∆), and J =
I ∪ {>(x),>2(x, y) | x, y ∈ ∆}. Then I |= C(o) iff J |= C(o) and I |= E(o1, o2) iff
J |= E(o1, o2).

Proof. By induction on the structure of C (E). �

Importantly, the only relevant interpretation domain is the Herbrand domain ∆H(Σ) of the
KB Σ.

Proposition 2.2.21. Let Σ be an LDL+ KB, C a b-concept, and o ∈ ∆H(Σ). Then,
Σ |= C(o) iff MM(∆H(Σ),Σ) |= C(o).

Proof. Assume ∆H(Σ) = {o1, . . . , on}, and take an arbitrary domain ∆ = {o1, . . . , on,
e1, . . . , em}. Denote {>(x),>2(x, y) | x, y ∈ ∆} by >∆. The zero elements for set-
interpretations on ∆H(Σ) and ∆ are 0∆H(Σ)

= {{o}(o) | o ∈ ∆H(Σ)} ∪ >∆H(Σ)
and

0∆ = {{o}(o) | o ∈ ∆H(Σ)} ∪ >∆.

We abbreviate in the following T k∆H(Σ)
(0∆H(Σ)

) with Ik, T k∆(0∆) with Jk.

We inductively prove that Ik ∪ >∆ = Jk for all k > 0.

For k = 0, it is easy to verify that 0∆ = 0∆H(Σ)
∪ >∆.

For k + 1, take an A(x) ∈ Ik+1, then either (1) A(x) ∈ Ik, (2) there is a terminological
axiom B v A such that Ik |= B(x), or (3) there is a terminological axiom B v ∀E.A
such that Ik |= B(y) and Ik |= E(y, x) for some y ∈ ∆H(Σ). (1) leads immediately
to A(x) ∈ Ik ⊆ Jk ⊆ Jk+1 . For (2), due to Ik |= B(x), by Lemma 2.2.20, we also
have Jk |= B(x) so that A(x) ∈ Jk+1. For (3), we again have that Jk |= B(y) and
Jk |= E(y, x) so that Jk+1 |= A(x). The case for a P (x, y) ∈ T∆(I) can be done
similarly. So we have Ik ∪ >∆ ⊆ Jk.

Using the observation that for ei, ej ∈ {e1, . . . , em}, Jk 6|= A(ei) for concept name A,
and Jk 6|= P (ei, ej) for role name P , the other direction Ik ∪ >∆ ⊇ Jk can be proved
similarly,.

Now we have proved that Ik ∪ >∆ = Jk for all k > 0. So we have that LFP(T∆H(Σ)
) ∪

>∆ = LFP(T∆). By Proposition 2.2.16, we have MM(∆H(Σ),Σ) ∪ >∆ = MM(∆,Σ).

CHAPTER 2. THEORETICAL FOUNDATIONS 20

Now by Lemma 2.2.20, it follows that for o ∈ ∆H(Σ) , we have MM(∆H(Σ),Σ) |= C(o)
iff ∀∆, MM(∆,Σ) |= C(o). Finally, by Proposition 2.2.19, we have Σ |= C(o) iff
MM(∆H(Σ),Σ) |= C(o). �

Note that MM(∆H(Σ),Σ) = LFP(T∆H(Σ)
) is effectively constructable by fixpoint itera-

tion (for a finite KB in finite time).

Proposition 2.2.21 is at the core of the argument that LDL+ is a DATALOG-rewritable
DL, which we show in the next section.

2.2.5 LDL+ is DATALOG-rewritable

To show that a (normalized)LDL+ KB Σ is DATALOG-rewritable, we construct a suitable
DATALOG program ΦLDL+(Σ) such that Σ |= Q(o) iff ΦLDL+(Σ) |= Q(o), whenever Q
is a concept- or role name appearing in Σ and o ⊆ ∆H(Σ).

Define the closure of Σ, clos(Σ), as the smallest set containing (i) all subexpressions that
occur in Σ (both roles and concepts) except value restrictions, and (ii) for each role name
occurring in Σ, its inverse. The closure is in other words the smallest set satisfying the
following conditions:

• > and >2 are in clos(Σ),

• every concept name A, role name R and its inverted role name R−, nominal {o},
and role nominal {(o1, o2)} appearing in Σ is in clos(Σ),

• for each B v H a terminological axiom in Σ with H a concept name or H = >,
B ∈ clos(Σ),

• for each B v ∀E.A a terminological axiom in Σ, {B,E} ⊆ clos(Σ),

• for each S v T a role axiom in Σ, S ∈ clos(Σ),

• for every concept expression D in clos(Σ), we have

– if D = D1 uD2, then {D1, D2} ⊆ clos(Σ),

– if D = D1 tD2, then {D1, D2} ⊆ clos(Σ),

– if D = ∃E.D1, then {E,D1} ⊆ clos(Σ),

– if D => nE.D1, then {E,D1} ⊆ clos(Σ),

• for every role expression E in clos(Σ), we have

– if E = F−, then F ∈ clos(Σ),

– if E = E1 u E2, then {E1, E2} ⊆ clos(Σ),

– if E = E1 t E2, then {E1, E2} ⊆ clos(Σ),

CHAPTER 2. THEORETICAL FOUNDATIONS 21

– if E = E1 ◦ E2, then {E1, E2} ⊆ clos(Σ).

– if E = E+
1 , then E1 ⊆ clos(Σ).

Formally, ΦLDL+(Σ) is the following program:

• For each axiom B v H ∈ Σ where H is a concept name, add the rule

H (X)← B(X) (2.4)

• For each axiom B v ∀E.A ∈ Σ where A is a concept name, add the rule

A(Y)← B(X),E (X ,Y) (2.5)

• For each role axiom S v T ∈ Σ, add

T (X ,Y)← S (X ,Y) (2.6)

(Here T = P− may be an inverse for a role name P .)

• For each role name P that occurs in Σ, add the rule

P(X ,Y)← P−(Y ,X) (2.7)

• For each concept (role) name or (role) nominal Q (Q′) in clos(Σ), add the rules

>(X) ← Q(X)
>(X) ← Q ′(X ,Y)
>(Y) ← Q ′(X ,Y)

(2.8)

This ensures that newly introduced constants, e.g., in the context of dl-programs,
are also assigned to >— a relevant property for modularity.

• To deduce the top role, add

>2 (X ,Y)← >(X),>(Y). (2.9)

• Next, we distinguish between the types of concepts D in clos(Σ):

– if D = {o}, add
D(o)← (2.10)

– if D = D1 uD2, add

D(X)← D1 (X),D2 (X) (2.11)

CHAPTER 2. THEORETICAL FOUNDATIONS 22

– if D = D1 tD2, add
D(X) ← D1 (X)
D(X) ← D2 (X)

(2.12)

– if D = ∃E.D1, add the rule

D(X)← E (X ,Y),D1 (Y) (2.13)

– if D = >nE.D1, add

D(X) ← E (X ,Y1),D(Y1), . . . ,E (X ,Yn),D(Yn),
Y1 6= Y2, . . . , Yi 6= Yj, . . . , Yn−1 6= Yn

(2.14)

(where 1 6 i < j 6 n).

• Finally, for each role E ∈ clos(Σ):

– if E = {(o1, o2)}, add
E (o1 , o2)← (2.15)

– if E = F−, add
E (X ,Y)← F (Y ,X) (2.16)

– if E = E1 u E2, add

E (X ,Y)← E1 (X ,Y),E2 (X ,Y) (2.17)

– if E = E1 t E2, add

E (X ,Y) ← E1 (X ,Y)
E (X ,Y) ← E2 (X ,Y)

(2.18)

– if E = E1 ◦ E2, add

E (X ,Y)← E1 (X ,Z),E2 (Z ,Y) (2.19)

– if E = F+, add

E (X ,Y) ← F (X ,Y)
E (X ,Y) ← F (X ,Z),E (Z ,Y)

(2.20)

The following property is immediate.

Proposition 2.2.22. ΦLDL+ is polynomial rewritable. Furthermore, ΦLDL+ is modular.

The next result is the main result of this section, and shows that ΦLDL+(Σ) works as
desired.

CHAPTER 2. THEORETICAL FOUNDATIONS 23

Proposition 2.2.23. For every (normalized) LDL+ KB Σ, Q∈ clos(Σ), and o ⊆ ∆H(Σ),
it holds that Σ |= Q(o) iff ΦLDL+(Σ) |= Q(o).

Proof. We only prove the case Q is a concept C, as the case Q is a role can be proved
similarly. Due to Proposition 2.2.21, it suffices to show that MM (∆H(Σ),Σ) |= C(o) iff
Φ(Σ) |= C(o). Define MM

∆
= MM (∆H(Σ),Σ).

(⇒) Assume MM |= C(o). We define an interpretation M for Φ(Σ) as follows:

M
∆
= {D(a) | D ∈ clos(Σ),MM |= D(a)}

∪ {E(a, b) | E ∈ clos(Σ),MM |= E(a, b)}

Clearly, M |= C(o), such that it remains to show thatM is a minimal model of gr(Φ(Σ)).

1. M is a model of gr(Φ(Σ)). We check satisfiability of the rules in gr(Φ(Σ)).

• Take a rule H (a)← B(a) originating from (2.4) such that B(a) ∈ M . Then,
by definition of M , MM |= B(a). Since the rule (2.4) was introduced by an
axiom B v H ∈ Σ and MM is a model of Σ, we have that MM |= H(a) and
thus H(a) ∈M .

• Take a rule A(b)← B(a),E (a, b) originating from (2.5) such thatB(a), E(a, b) ∈
M . Then, MM |= B(a) and MM |= E(a, b). Since the rule (2.5) originates
from an axiom B v ∀E.A, we have that MM |= (∀E.A)(a), and thus by
definition of a value restriction, MM |= A(b) such that A(b) ∈M .

• Rules originating from (2.6) can be done similarly.

• For a rule P(a, b)← P−(b, a) originating from (2.7) with P−(b, a) ∈M , we
have that MM |= P−(b, a) such that MM |= P (a, b) and thus P (a, b) ∈M .

• Since MM |= >(o1) and MM |= >2(o1, o2), rules (2.8) and (2.9) are satisfied
as well.

• For a rule (2.10), we have that MM |= {o}(o) such that {o}(o) ∈M .

• For a rule D(a)← D1 (a),D2 (a) originating from (2.11) withD1(a), D2(a) ∈
M , we have MM |= D1(a) and MM |= D2(a) such that MM |= (D1uD2)(a)
and thus (D1 uD2)(a) ∈M where D = D1 uD2.

• All remaining rules in gr(Φ(Σ)) can be verified similarly.

2. M is a minimal model of gr(Φ(Σ)). Assume it is not, then there is a model N ⊂M
of gr(Φ(Σ)). Define a set-interpretation NN for Σ:

NN
∆
= {A(a) | A(a) ∈ N,A concept name}

∪ {P (a, b) | P (a, b) ∈ N,P role name}
∪ {>(a1),>2(a1, a2) | a1, a2 ∈ ∆H(Σ)}

∪ {{o1}(o1), {(o1, o2)}(o1, o2) | o1, o2 ∈ ∆H(Σ)}

CHAPTER 2. THEORETICAL FOUNDATIONS 24

Clearly, NN is a set-interpretation for Σ over ∆H(Σ) the Herbrand domain of Σ (and
of Φ(Σ)). Moreover, one can show — using that N is a model of gr(Φ(Σ)) and by
induction — that for any b-concept expression D′ and for any b-role expression E ′

NN |= D′(a)⇒ D′(a) ∈ N (2.21)

and
NN |= E ′(a, b)⇒ E ′(a, b) ∈ N (2.22)

We show that NN ⊂ MM and that NN is a model of Σ, contradicting the minimal-
ity of MM , such that M is indeed a minimal model of gr(Φ(Σ)).

(a) NN ⊂ MM . Note that both have the same domain ∆H(Σ) and thus NN and
MM are equal on

{>(a1),>2(a1, a2) | a1, a2 ∈ ∆H(Σ)}
∪ {{o1}(o1), {(o1, o2)}(o1, o2) | o1, o2 ∈ ∆H(Σ)}

We show first that NN ⊆ MM . Take a A(a) ∈ NN , then A(a) ∈ N ⊂ M
such that, by definition of M , MM |= A(a), i.e., A(a) ∈ MM (MM seen as a
set-interpretation); and similarly for a P (a, b) ∈ NN .
Since N ⊂ M there is a D(a) ∈ M − N or a E(a, b) ∈ M − N . Assume
D(a) ∈ M − N . Then, MM |= D(a) and by (2.21) NN 6|= D(a). Since
D is an b-concept expression (M only contains b-concept expressions) it is
monotonic (Proposition 2.2.14) and thus MM 6⊆ NN . Together with NN ⊆
MM , we have that NN ⊂ MM .

(b) NN is a model of Σ. One can prove this using that N is a model of gr(Φ(Σ))
together with (2.21) and (2.22). For example, for an axiom B v A with
concept name A and NN |= B(a), we have that (A(a)← B(a)) ∈ gr(Φ(Σ))
and, via (2.21) that B(a) ∈ N . Such that, since N is a model of gr(Φ(Σ)),
A(a) ∈ N . For concept names A, we then have that A(a) ∈ NN and thus
NN |= A(a).

(⇐) The other direction can be done similarly. �

Corollary 2.2.24. LDL+ is (polynomial) DATALOG-rewritable.

Proof. Indeed, take ΦLDL+ = Φ as in Proposition 2.2.23. �

Thus, using Theorem 2.2.1, reasoning with dl-programs over LDL+ reduces to reasoning
with DATALOG¬ under well-founded semantics.

CHAPTER 2. THEORETICAL FOUNDATIONS 25

Example 2.2.25. Take the LDL+ KB Σ from Example 2.2.2. Then, the reduction yields
the DATALOG program ΦLDL+(Σ):

Over(X) ← (> 2PaptoRev .>)(X)
(> 2PaptoRev .>)(X) ← PaptoRev(X ,Y1),>(Y1)

PaptoRev(X, Y2),>(Y2), Y1 6= Y2

Over(Y) ← Super+(X ,Y),Over(X)
Super+(X ,Y) ← Super(X ,Y)
Super+(X ,Y) ← Super(X ,Z), Super+(Z ,Y)

Super(X ,Y) ← {(a, b)}(X ,Y)
Super(X ,Y) ← {(b, c)}(X ,Y)
{(a, b)}(a, b) ←
{(b, c)}(b, c) ←
Super(X ,Y) ← Super−(Y ,X)

Pap2Rev(X ,Y) ← Pap2Rev−(Y ,X)
>2 (X ,Y) ← >(X),>(Y)

and in addition the rules for >. For KB = (Φ,P) in Example 2.2.3, we then can easily
construct Ψ(KB).

Reductions of DLs to LP have been considered before, e.g., in [39, 54]. Swift [54] reduces
reasoning in the DL ALCQI (in fact, consistency checking of concept expressions) to
DATALOG¬ under answer set semantics (employing a guess and check methodology),
while Hustadt et al. [39] reduce reasoning in the DL SHIQ− to disjunctive DATALOG in
a non-modular way, i.e., the translation as such is not usable in the context of dl-programs;
both DLs considered in [39] and [54] do not feature transitive closure.

From the complexity of DATALOG, we obtain by DATALOG-rewritability of LDL+ im-
mediately that it is tractable under data complexity. Moreover, due to the structure of
ΦLDL+(Σ), the same holds under combined complexity.

Corollary 2.2.26. For every LDL+ KB Σ, concept name A, and o ∈ ∆H(Σ), deciding
Σ |= A(o) is in PTIME under both data and combined complexity.

Indeed, all rules in ΦLDL+(Σ) except (2.14) can be grounded in polynomial time (they
use only constantly many variables). The rule (2.14) can be partially grounded for all
values of X; whether the body of such a partially grounded rule can be satisfied in a
given set of ground atoms is easily decided in polynomial time; hence, we can compute
MM (ΦLDL+(Σ)) by simple fixpoint iteration in polynomial time.

We will establish matching lower complexity bounds below.

2.2.6 The OWL 2 Profiles

In this section, we review the OWL 2 Profiles [43], which are fragments of OWL 2 [44]
that can be more efficiently evaluated than OWL 2, and discuss their relation with LDL+.

CHAPTER 2. THEORETICAL FOUNDATIONS 26

OWL 2 EL. OWL 2 EL corresponds to the DL EL++ [5, 6]. We consider the definition
of EL++ in [6], which extends [5], in particular its normal form for TBoxes. The only
concept expressions that EL++ allows that we did not introduce in LDL+ are ⊥ (bottom)
and so-called concrete domains. Given (Ci)i∈N , D either the top concept, concept names,
nominals or concrete domain concepts, where D can additionally be ⊥, an EL++ TBox
contains the following axioms:

1. All terminological axioms have the following form: C1 u . . . u Cn v D, C1 v
∃R.C2, and ∃R.C1 v D, for role names R,

2. Role inclusions are of the form R1 v R or R1 ◦R2 v R;

3. Range restrictions are of the form ran(R) v A for concept namesA and role names
R.

Both the range restrictions (in 3.) and the role inclusions (in 2.) correspond to valid
LDL+ axioms. Indeed, a range restriction ran(R) v A can be written as a terminologi-
cal LDL+ axiom > v ∀R.A. The only constructs that prevent (1.) from also being valid
LDL+ axioms are the possible presence of ⊥, concrete domains, and the exists restric-
tion in the head of the axiom. Denote the DL EL++ without ⊥, concrete domains, and
exists restrictions in the head of terminological axioms with EL++

− . We assume range
restrictions in EL++

− are written in LDL+ syntax.

Proposition 2.2.27. EL++
− is a fragment of LDL+, i.e., each EL++

− KB is an LDL+ KB,
and thus polynomially DATALOG-rewritable.

Even though EL++ is not a fragment of LDL+, in turn LDL+ contains many constructs
that EL++ does not allow, e.g., qualified number restrictions, inverses, general sequences
of roles, role conjunction, role disjunction, concept disjunction in axiom bodies. For
example, in EL++, one can only express so-called enumerations involving a single indi-
vidual [43] while in LDL+ we can represent enumerations of several individuals using
the nominal concept and concept disjunction.

OWL 2 QL. OWL 2 QL corresponds to the DL-Lite family DL-Litecore , DL-LiteR, and
DL-LiteF [11]. Concept expressions in DL-Litecore are defined by:

B −→ A | ∃R R −→ P | P−

C −→ B | ¬B E −→ R | ¬R

where A are concept names and P are role names. Terminological axioms are then of
the form B v C, with B and C defined as above. A DL-Lite ABox (also for the other
variants than DL-Litecore) is a set of assertions A(a) and R(a, b) for individuals a, b. The
language DL-LiteR adds role axioms R v E additionally, with R,E as above. Denote
by DL-Lite−X the DL DL-LiteX without negation and exists restrictions in axiom right-
hand sides, X ∈ {core,R,F}. Then, both terminological and role axioms in DL-Lite−R

CHAPTER 2. THEORETICAL FOUNDATIONS 27

are LDL+ axioms; and, any DL-Lite−R ABox can be rewritten using the nominals of
LDL+ as usual.

Proposition 2.2.28. The DLs DL-Lite−core and DL-Lite−R are fragments of LDL+, and
thus polynomially DATALOG-rewritable.

Similar to EL++, full DL-Litecore and DL-LiteR are not fragments of LDL+, but in turn
LDL+ has constructs which none of the DLs DL-LiteX allows, e.g., role sequences.

The DL DL-Lite−F , however, is not a fragment of LDL+. Indeed, like DL-LiteF it allows
for functional restrictions on roles, something that is not expressible in DATALOG as such.

OWL 2 RL. OWL 2 RL extends so-called Description Logic Programs [27]. The latter
have a classical model semantics and correspond to the restriction of LDL+ to conjunc-
tion and disjunction of concepts, exists restrictions, and value restrictions. Thus, De-
scription Logic Programs are a strict subset of LDL+, missing, e.g., nominals, qualified
number restrictions, and role constructors.

Proposition 2.2.29. Description Logic Programs are a fragment ofLDL+, and thus poly-
nomially DATALOG-rewritable.

The full OWL 2 RL profile supports some features which are not in LDL+now, such as
datatypes and negations in the head. Such constructors can be added to LDL+easily, thus
LDL+will be a strict superset of OWL 2 RL.

Note that the translation of the transitive closure of a role expression E+ results in the
recursive rules (2.20) such that, in contrast with Description Logic Programs, the trans-
formation ΦLDL+is not a first-order rewriting, justifying the term DATALOG-rewritable.
Although DLs with expressive role constructs such as role sequence, role disjunction and
transitive closure tend to become undecidable (e.g., ALC+N (◦,t) [7]), LDL+ remains
decidable. Moreover, it has an Herbrand domain model property (a finite model property
where the domain is the Herbrand domain). Indeed, from [7] one can see that the un-
decidability proofs for expressive DLs extensively use functional restrictions on roles, a
feature LDL+ cannot express.

Checking ground entailment in OWL 2 RL and Description Logic Programs is data and
combined complete for PTIME [43]. As the latter are a fragment of LDL+ without num-
ber restrictions, combined with Corollary 2.2.26 we obtain the following result.

Proposition 2.2.30. For any LDL+ KB Σ, concept name A, and o ∈ ∆H(Σ), deciding
Σ |= A(o) is data and combined complete for PTIME. The hardness holds in absence of
number restrictions.

CHAPTER 2. THEORETICAL FOUNDATIONS 28

Parse CQExtended OWL 2 ontology

LDL+

fragment?

Translate to
DATALOG

Reject

DATALOG reasoner profile DATALOG

Reasoner

yes

no

Figure 2.1: DReW Control Flow — DL Component

2.2.7 Implementation and Evaluation

2.2.7.1 Implementation

Based on the concept of DATALOG-rewriting, we developed a new reasoner DReW
(DATALOG ReWriter)4, which rewrites LDL+ontologies (dl-programs over LDL+ on-
tologies) to DATALOG (DATALOG¬) programs, and calls an underlying rule-based rea-
soner, currently DLV, to perform the actual reasoning. ForLDL+ ontologies, DReW does
instance checking as well as answering of conjunctive queries (CQs). For dl-programs
over LDL+ ontologies, DReW computes the well-founded model.

Figure 2.1 shows a schematic overview of the component of DReW responsible for reduc-
ing entailment from DLs to DATALOG. The extension for dl-programs is a straightforward
elaboration of this. Taking as input a conjunctive query and an ontology in OWL 2 syntax
extended for the complex role expressions of LDL+, DReW checks whether the ontol-
ogy is in the LDL+ fragment. If it is, we translate the ontology according to the format
suitable for the specified DATALOG reasoner (DLV in our case).

DReW is written in Java using an extension of the OWL API 3.0.05 for parsing LDL+

ontologies. The underlying DATALOG engine we used is the latest version of DLV (dl-
magic-snapshot-2009-11-26) 6 which supports magic sets and well-founded semantics.

4http://www.kr.tuwien.ac.at/research/systems/drew
5http://owlapi.sourceforge.net/
6http://www.dbai.tuwien.ac.at/proj/dlv/magic/

http://www.kr.tuwien.ac.at/research/systems/drew
http://owlapi.sourceforge.net/
http://www.dbai.tuwien.ac.at/proj/dlv/magic/

CHAPTER 2. THEORETICAL FOUNDATIONS 29

Ontology Axioms Inds Concepts Object Props LDL+? Violated Axs Violated %

Galen 4,356 0 2,747 261 no 1,881 0.43
Dolce 1,185 2 125 251 no 162 0.14
Wine 773 162 142 13 no 137 0.18

Vicodi 53,876 16,942 194 10 yes 0 0
Semintec 65,459 17,941 60 16 no 113 1.73 · 10−3

LUBM 8,612 1,555 43 25 no 8 9.29 · 10−4

Table 2.2: LDL+profile checking

2.2.7.2 Evaluation

In this section, we evaluate the DReW reasoner. We do so along two axes: as a pure
Description Logic reasoner and as a reasoner for dl-programs.

All experiments were performed on a laptop running Ubuntu 10.04 with a 1.83G CPU
and 2G of memory; the memory of the Java Virtual Machine was set to 1G.

2.2.7.2.1 Reasoning with Description Logics We first analyze to what extent com-
mon ontologies fall in the LDL+ fragment. Next, we analyze the performance of con-
junctive query answering with DReW compared to standard DL reasoners on those on-
tologies.

Expressiveness of LDL+

To assess the expressiveness of LDL+, we select several ontologies and show that they
fall to a large extent in theLDL+profile. We picked the ontologies that are used in Motik’s
thesis for testing the DL reasoner KAON2 [46]; they can be downloaded from the KAON
2 site7.

The results of this experiment are listed in Table 2.2. Note that for Galen over 40% of the
axioms are not in the LDL+ profile, but that for Dolce and Wine over 80% of axioms are
in LDL+. Only Vicodi is fully in LDL+and over 99% of Semintec and LUBM axioms
are in LDL+. Most of the violations are due to existential quantifiers occurring on the
right side of axioms.

Conjunctive Query Evaluation

To evaluate the performance of CQs over ontologies using DReW, we compare it with 3
state-of-the-art DL reasoners: KAON2, RacerPro, and Pellet. We did not consider other

7http://kaon2.semanticweb.org/download/test_ontologies.zip

http://kaon2.semanticweb.org/download/test_ontologies.zip

CHAPTER 2. THEORETICAL FOUNDATIONS 30

DL reasoners, such as HermiT or Fact++ as they cannot handle CQs.

Reasoning in KAON28 [46] is implemented using novel algorithms that reduce a SHIQ(D)
knowledge base to a disjunctive DATALOG program based on resolution techniques. Pel-
let9 [51] fully supports OWL 2[44]. In contrast with KAON2, it is a reasoner based on
tableaux algorithms. RacerPro10 [29] is a tableaux-based reasoner as well and implements
the Description Logic SHIQ. All 3 reasoners support conjunctive query answering.

We specifically tested CQs on The Lehigh University Benchmark (LUBM) [28]. LUBM
is developed to facilitate the evaluation of Semantic Web repositories in a standard and
systematic way. The benchmark is intended to evaluate the performance of those repos-
itories with respect to extensional queries over a large data set that commits to a single
realistic ontology. It consists of a university domain ontology, customizable and repeat-
able synthetic data, a set of test queries, and several performance metrics. The queries we
evaluated are as in the LUBM query page 11, referring to numbers 1-14.

As we indicated in Table 2.2, LUBM is not fully in LDL+: there are 8 violated axioms,
e.g.,

Person u ∃headOf .Department ≡ Chair .

For our experiments and to have an LDL+ conformant fragment of LUBM, we replace
such equivalence axioms by subsumption axioms, e.g., by

Person u ∃headOf .Department v Chair .

In general, such a conversion changes the semantics of the ontology. However, in our
considered test of the benchmark queries, the query results are exactly the same as on
the original LUBM. It is part of future research to investigate how DReW can deal with
partial LDL+ ontologies in answering queries as faithfully as possible.

The results of evaluating the 14 CQs on LUBM are shown in Table 2.3. From the ta-
ble, we see that DReW outperforms RacerPro and Pellet in all the queries and that it is
slightly better than KAON2 for most of the queries. Note the out-of-the-normal times for
RacerPro on query 4 and query 8; we assume they are caused by the use of data properties.

As DReW and KAON2 have evaluation times close to each other, we also evaluate CQs
on LUBM ontologies with a different numbers of individuals. The result is summarized
in Table 2.4.

LUBM1 is the original LUBM ontology. By removing and adding individuals, we get
LUBM0 and LUBM2. The number under each reasoner is the average time for answering
the 14 queries. In all the LUBMs, DReW is better than RacerPro and Pellet. However,
compared with KAON2, we also see that DReW is not so good at dealing with large
number of individuals. We assume that the reason is the use of DLV as the underlying

8http://kaon2.semanticweb.org/
9http://clarkparsia.com/pellet/

10http://www.racer-systems.com
11http://swat.cse.lehigh.edu/projects/lubm/query.htm

http://kaon2.semanticweb.org/
http://clarkparsia.com/pellet/
http://www.racer-systems.com
http://swat.cse.lehigh.edu/projects/lubm/query.htm

CHAPTER 2. THEORETICAL FOUNDATIONS 31

Query DReW KAON2 RacerPro Pellet

1 3.13 2.84 3.78 4.55
2 2.23 2.39 4.24 4.54
3 2.29 2.35 3.68 4.54
4 2.25 2.61 26.05 4.63
5 2.29 2.60 5.12 4.52
6 2.24 2.56 5.05 4.51
7 2.21 2.63 3.39 4.44
8 2.28 2.65 27.13 4.62
9 2.22 2.67 4.80 4.54
10 2.22 2.42 3.85 4.53
11 2.23 2.31 4.39 4.49
12 2.27 2.55 4.08 4.63
13 2.31 2.58 4.44 4.42
14 2.26 2.35 5.30 4.52

Table 2.3: Conjunctive Queries on LUBM (in secs.)

Ontology Inds DReW KAON2 RacerPro Pellet

LUBM0 904 1.61 2.27 4.51 3.53
LUBM1 1,555 2.27 2.54 7.52 4.53
LUBM2 2,753 5.07 3.72 9.38 7.57

Table 2.4: Conjunctive Queries on LUBM with Different Number of Individuals

DATALOG engine. Since there is no public API for DLV, we have to use it as a stan-
dalone process. When the translated ontology is big, the communication of processes
costs significant time.

2.2.7.2.2 Reasoning with DL-Programs DReW is designed for reasoning over dl-
programs under well-founded semantics. The only reasoner available for comparison
is DLVHEX 12 [17]. DLVHEX is a prototype implementation for computing the stable
models of so-called HEX-programs – an extension of dl-programs for reasoning with
external sources (not necessarily DL knowledge bases) under the answer set semantics.
By using the Description Logic Plugin 13, which interfaces to OWL ontologies via a
Description Logic reasoner (currently RacerPro), DLVHEX can reason on dl-programs
under the answer set semantics.

Note that for DATALOG programs (i.e., without negation), the well-founded semantics
12http://www.kr.tuwien.ac.at/research/systems/dlvhex
13http://www.kr.tuwien.ac.at/research/systems/dlvhex/dlplugin.html

CHAPTER 2. THEORETICAL FOUNDATIONS 32

coincides with the answer set semantics. We thus evaluate both reasoners on LUBM,
which is negation free. We wrote several dl-programs to evaluate CQs over dl-programs.

All the test results are shown in Table 2.5. We see that DReW outperforms DLVHEX

for all the tests. As the number of dl-atoms increases, the advantage of DReW becomes
more clear, confirming our hypothesis that translating dl-programs to DATALOG programs
reduces the overload of calling external DL reasoners as is the case in DLVHEX.

Query DReW DLVHEX+DL-Plugin dl-atoms Factor

0 2.81 4.31 1 1.53
1 2.63 3.04 1 1.16
2 2.60 3.88 1 1.49
3 2.59 4.04 1 1.56
4 2.75 3.51 1 1.27
5 3.00 5.10 1 1.70
6 4.69 19.59 6 4.17
7 3.20 8.38 2 2.62

Table 2.5: Reasoning on dl-programs

2.2.8 Conclusion

We defined the class of DATALOG-rewritable DLs and showed that reasoning with dl-
programs over such DLs can be reduced to DATALOG¬ under well-founded semantics.
This reduction avoids the overhead that is normally associated with the querying of a
native DL reasoner. The transformation is applicable to a range of different DLs, including
LDL+, a novel rich DL, as well as to large fragments of the OWL 2 Profiles that have
been designed for tractable DL reasoning. In particular, the transformation of a negation-
free (stratified) dl-program results in a DATALOG (stratified DATALOG¬) program. In
this way, we obtain tractable reasoning with recursion and negation, which thanks to
the availability of efficient engines for well-founded semantics (e.g., DLV, and the XSB
system) provides a basis for developing efficient and scalable applications that combine
rules and ontologies.

Looking at the OWL 2 profile OWL 2 QL LDL+ misses negation. Negation is not re-
alizable in DATALOG; it remains to be seen whether for DATALOG¬ under well-founded
semantics, transformations similar to the one we presented (with possibly restricted nega-
tion in DLs) are feasible.

We developed the reasoner DReW that uses the DATALOG-rewriting technique. DReW
can answer conjunctive queries over LDL+ ontologies, as well as reason on dl-programs
over LDL+ ontologies under well-founded semantics. The preliminary but encouraging
experimental results show that DReW can efficiently handle large knowledge bases. Our

CHAPTER 2. THEORETICAL FOUNDATIONS 33

results enable the use of mature LP technology, e.g., systems like XSB or DATALOG

engines like DLV, and emerging implementations of recursive SQL, to reason efficiently
with dl-programs involving recursion and negation, as a basis for advanced applications.

Finally, DATALOG-rewritability is not just useful for (1) DL reasoning via DATALOG

engines or (2) loosely-coupled reasoning via dl-programs, but also for tight-coupling ap-
proaches such as r-hybrid KBs [49]. Intuitively, while rules in r-hybrid KBs must be
DL-safe to ensure that only the Herbrand domain is relevant, our approach hints that it
is also interesting to look at DLs that have this property. Note that they are of particular
interest for data management, where often just the Herbrand domain matters.

2.3 Optimizations for Tableaux Algorithms for F-Hybrid
Knowledge Bases

As already mentioned in the introduction of this section, Datalog-rewritable DLs typically
do not allow for the exists restriction on the right-hand side of General Inclusion Axioms,
as this feature can enforce the introduction of new domain elements (beyond the Herbrand
universe). However, such a feature is sometimes needed: see, for example, the discussion
concerning the Steel Industry Use Case in the Appendix. One way to deal with this
feature is by dropping the restriction of the domain to the Herbrand universe in a logic
programming language: this is the principle which underlies OASP, a formalism which
extends the Answer Set Programming language by preserving the syntax of the original
language, but introducing an open domain semantics, like it is common in the DL world.
Programs are interpreted w.r.t. open domains, i.e., non-empty arbitrary domains which
extend the Herbrand universe.

Example 2.3.1. Consider the following program:

fail(X) ← not pass(X)
pass(john) ←

Although the predicate fail is not satisfiable under the ordinary answer set seman-
tics – the only answer set being {pass(john)} – it is satisfiable under the open answer
set semantics. If one considers, for example, the universe {john, x}, with x some in-
dividual which does not belong to the Herbrand universe, there is an open answer set
{pass(john), fail(x)} which satisfies fail.

OASP is generally undecidable. Several decidable fragments of OASP were identified
by syntactically restricting the shape of logic programs, while carefully safe-guarding
enough expressiveness for integrating rule- and ontology-based knowledge. A notable
fragment is that of Forest Logic Programs (FoLPs) that are able to simulate reasoning in
the DL SHOQ. FoLPs allow for the presence of only unary and binary predicates in
rules which have a tree-like structure. A sound and complete algorithm for satisfiability

CHAPTER 2. THEORETICAL FOUNDATIONS 34

checking of unary predicates w.r.t. FoLPs has been described in deliverable D3.2 [35].
The algorithm exploits the forest model property of the fragment: if a unary predicate
is satisfiable, than it is satisfied by a forest-shaped model, with the predicate checked to
be satisfiable being in the label of the root of one of the trees composing the forest. It
is essentially a tableau-based procedure which builds such a forest model in a top-down
fashion.

In this section we present an optimization for the tableau algorithm for reasoning with
FoLPs achieved by means of a knowledge compilation technique. So-called unit com-
pletion structures, which are possible building blocks of a forest model, in the form of
trees of depth 1, are computed in an initial step of the algorithm. This is done by using
the original algorithm. Repeated computations are avoided by using these structures in
a pattern-matching style when constructing a model. In general, not all unit completion
structures have to be considered: inherent redundancy in a FoLP, like rules which are less
general than others gives rise to redundancy among completion structures. A unit comple-
tion structure is redundant iff there is another simpler (less constrained) unit completion
structure. The latter can replace the former in any forest model. We formalize this notion,
making it possible to identify such redundant structures and discard them.

We will start with some preliminaries in Section 2.3.1, like the OASP semantics and some
notation. Section 2.3.2 recalls the FoLP and the f-hybrid knowledge bases fragments,
while Section 2.3.3 gives an overview of the original algorithm for reasoning with FoLPs.
The new algorithm for reasoning with FoLPs is described in Section 2.4.1. Finally, Sec-
tion 2.4.2 draws some conclusions.

2.3.1 Preliminaries

We recall the open answer set semantics [34]. Constants a, b, c, . . ., variables X, Y, . . .,
terms s, t, . . ., and atoms p(t1, . . . , tn) are as usual. A literal is an atom L or a negated
atom not L. We allow for inequality literals of the form s 6= t, where s and t are terms. A
literal that is not an inequality literal will be called a regular literal. For a set S of literals
or (possibly negated) predicates, S+ = {a | a ∈ S} and S− = {a | not a ∈ S}. For a set
S of atoms, not S = {not a | a ∈ S}. For a set of (possibly negated) unary predicates
S: S(X) = {a(X) | a ∈ S}, and for a set of (possibly negated) binary predicates S:
S(X, Y) = {a(X, Y) | a ∈ S}. For a predicate p, ±p denotes p or not p, whereby
multiple occurrences of ±p in the same context will refer to the same symbol (either p or
not p).

A program is a countable set of rules α ← β, where α is a finite set of regular literals
and β is a finite set of literals. The set α is the head and represents a disjunction, while
β is the body and represents a conjunction. If α = ∅, the rule is called a constraint.
A special type of rules with empty bodies, are so-called free rules which are rules of
the form: q(t1, . . . , tn) ∨ not q(t1, . . . , tn)←, for terms t1, . . . , tn; these kind of rules
enable a choice for the inclusion of atoms in the open answer sets. We call a predicate

CHAPTER 2. THEORETICAL FOUNDATIONS 35

q free if there is a q(X1, . . . , Xn) ∨ not q(X1, . . . , Xn)←, with variables X1, . . . , Xn.
Atoms, literals, rules, and programs that do not contain variables are ground. For a rule
or a program R, let cts(R) be the constants in R, vars(R) its variables, and preds(R)
its predicates with upreds(R) the unary and bpreds(R) the binary predicates. For every
non-free predicate q and a program P , Pq is the set of rules of P that have q as a head
predicate. A universe U for P is a non-empty countable superset of the constants in P :
cts(P) ⊆ U . We call PU the ground program obtained from P by substituting every
variable in P by every element in U . Let HBP (LP) be the set of regular atoms (literals)
that can be formed from a ground program P .

An interpretation I of a ground P is a subset of HBP . We write I |= p(t1, . . . , tn) if
p(t1, . . . , tn) ∈ I and I |= not p(t1, . . . , tn) if I 6|= p(t1, . . . , tn). Also, for ground terms
s, t, we write I |= s 6= t if s 6= t. For a set of ground literals L, I |= L if I |= l for every
l ∈ L. A ground rule r : α ← β is satisfied w.r.t. I , denoted I |= r, if I |= l for some
l ∈ α whenever I |= β. A ground constraint ← β is satisfied w.r.t. I if I 6|= β.

For a positive ground program P , i.e., a program without not , an interpretation I of P is
a model of P if I satisfies every rule in P ; it is an answer set of P if it is a subset minimal
model of P . For ground programs P containing not , the GL-reduct [24] w.r.t. I is defined
as P I , where P I contains α+ ← β+ for α ← β in P , I |= not β− and I |= α−. I is an
answer set of a ground P if I is an answer set of P I .

A program is assumed to be a finite set of rules; infinite programs only appear as byprod-
ucts of grounding with an infinite universe. An open interpretation of a program P is
a pair (U,M) where U is a universe for P and M is an interpretation of PU . An open
answer set of P is an open interpretation (U,M) of P with M an answer set of PU . An
n-ary predicate p in P is satisfiable if there is an open answer set (U,M) of P s. t.
p(x1, . . . , xn) ∈M , for some x1, . . . , xn ∈ U .

We introduce notation for trees which extend those in [57]. Let · be a concatenation
operator between sequences of constants or natural numbers. A tree T with root c (Tc),
where c is a specially designated constant, has as nodes sequences of the form c · s,
where s is a (possibly empty) sequence of positive integers formed with the concatenation
operator; for x · d ∈ T , d ∈ N∗, we have that x ∈ T . The set AT = {(x, y) | x, y ∈
T,∃n ∈ N∗ : y = x · n} is the set of arcs of a tree T . For x, y ∈ T , we say that x <T y iff
x is a prefix of y and x 6= y.

A forest F is a set of trees {Tc | c ∈ C}, where C is a set of distinguished constants. We
denote with NF = ∪T∈FT and AF = ∪T∈FAT the set of nodes and the set of arcs of a
forest F , respectively. Let <F be a strict partial order relationship on the set of nodes NF

of a forest F where x <F y iff x <T y for some tree T in F . An extended forest EF
is a tuple (F,ES) where F = {Tc | c ∈ C} is a forest and ES ⊆ NF × C. We denote
by NEF = NF the nodes of EF and by AEF = AF ∪ ES its arcs. So unlike a normal
forest, an extended forest can have arcs from any of its nodes to any root of some tree in
the forest.

Finally, for a directed graph G, pathsG is the set of pairs of nodes for which there exists

CHAPTER 2. THEORETICAL FOUNDATIONS 36

a path in G from the first node in the pair to the second one.

2.3.2 Forest Logic Programs

Forest Logic Programs (FoLPs) [33] are logic programs with tree-shaped rules which
allow for constants and for which satisfiability checking under the open answer set se-
mantics is decidable.

Definition 2.3.2. A forest logic program (FoLP) is a program with only unary and binary
predicates, and such that a rule is either:

1. a free rule
a(s) ∨ not a(s)←

or
f (s , t) ∨ not f (s , t)← ,

where s and t are terms such that if s and t are both variables, they are different,

2. a unary rule
a(s)← β(s), (γm(s , tm), δm(tm))16m6k , ψ

where s and tm, 1 6 m 6 k, are terms (again, if both s and tm are variables, they
are different; similarly for ti and tj), where

• ψ ⊆
⋃

16i 6=j6k{ti 6= tj} and {6=} ∩ γm = ∅ for 1 6 m 6 k,

• ∀ti ∈ vars(r) : γ+
i 6= ∅, i.e., for variables ti there is a positive atom that

connects s and ti,

3. a binary rule
f (s , t)← β(s), γ(s , t), δ(t)

with {6=} ∩ γ = ∅ and γ+ 6= ∅ if t is a variable (s and t are different if both are
variables), or

4. a constraint
← a(s)

or
← f (s , t),

where s and t are different if both are variables).

The following program P is a FoLP which says that an individual is a special member of
an organization (smember) if it has the support of another special member: rule r1, or if
it has the support of two regular members of the organization (rmember): rule r2. The
binary predicate support which describes the ‘has support’ relationship is free. No indi-
vidual can be at the same time both a special member and a regular member: constraint
r4. Two particular regular members are a and b: facts r5 and r6.

CHAPTER 2. THEORETICAL FOUNDATIONS 37

xa
{support}

b
{support}

{smember}
{rmember} {rmember}

Figure 2.2: A Forest Model for P

Example 2.3.3.

r1 : smember(X) ← support(X ,Y), smember(Y)
r2 : smember(X) ← support(X ,Y), rmember(Y),

support(X,Z), rmember(Z), Y 6= Z
r3 : support(X ,Y) ∨ not support(X ,Y) ←
r4 : ← smember(X), rmember(X)
r5 : rmember(a) ←
r6 : rmember(b) ←

As their name suggests FoLPs have the forest model property:

Definition 2.3.4. Let P be a FoLP. A predicate p ∈ upreds(P) is forest satisfiable w.r.t. P
if there is an open answer set (U,M) of P and there is an extended forest EF ≡ ({Tε} ∪
{Ta | a ∈ cts(P)},ES), where ε is a constant, possibly one of the constants appearing
in P , and a labeling function L : {Tε} ∪ {Ta | a ∈ cts(P)} ∪ AEF

// 2preds(P) s. t.

• U = NEF , and

• p ∈ L(ε),

• for any T ∈ EF and i > 0: z · i ∈ T , iff there is some f(z, z · i) ∈M , z ∈ T , and

• for any T ∈ EF , y ∈ T , q ∈ upreds(P), and f ∈ bpreds(P), we have that

– q(y) ∈M iff q ∈ L(y), and

– f(y, u) ∈M iff (u = y · i ∨ u ∈ cts(P)) ∧ f ∈ L(y, u).

We call such a (U,M) a forest model and a program P has the forest model property
if the following property holds: if p ∈ upreds(P) is satisfiable w.r.t. P then p is forest
satisfiable w.r.t. P .

Consider the FoLP P introduced in Example 2.3.3. The unary predicate smember is for-
est satisfiable w.r.t. P : ({a, b, x}, {rmember(a), rmember(b), support(x, a), support(x, b),
smember(x)}) is a forest model in which smember appears in the label of the (anony-
mous) root of one of the trees in the forest (see Figure 2.2). Note that in the ordinary
LP setting, where one restricts the universe to the Herbrand universe, smember is not
satisfiable.

CHAPTER 2. THEORETICAL FOUNDATIONS 38

Finally, we also recall the definition and some complexity results concerning f-hybrid
knowledge bases.

Definition 2.3.5. An f-hybrid knowledge base is a pair 〈Σ, P 〉 where Σ is a SHOQ
knowledge base and P is a FoLP.

Atoms and literals in P might have as the underlying predicate an atomic concept or role
name from Σ, in which case they are called DL atoms and DL literals respectively. Addi-
tionally, there might be other predicate symbols available, but without loss of generality
we assume they cannot coincide with complex concept or role descriptions.

Proposition 2.3.6. Satisfiability checking w.r.t. f-hybrid knowledge bases is in 2EXPTIME

in the size of the f-hybrid knowledge base.

2.3.3 An Algorithm for Forest Logic Programs

In this section, we review the tableau algorithm for satisfiability checking for FoLPs intro-
duced in deliverable D3.2. We use as a running example the FOLP from Example 2.3.3.
Constraints are not treated explicitly in the algorithm as they can be simulated using unary
rules. As such, the constraint

r4 : ← smember(X), rmember(X)

in Example 2.3.3 is replaced with

r ′4 : co(X)← not co(X), smember(X), rmember(X),

with co being a new predicate.

The basic data structure used by the algorithm to describe a forest model in construction is
a so-called completion structure. Its main components are an extended forest EF , whose
set of nodes constitutes the universe of the model, and a labeling function ct (content),
which assigns to every node, resp. arc ofEF , a set of possibly negated unary, resp. binary
predicates. The presence of a predicate symbol p/not p in the content of some node or
arc x indicates the presence/absence of the atom p(x) in the open answer set.

The presence (absence) of an atom in the open answer set is justified by imposing that
the body of at least one ground rule which has the respective atom in the head is satisfied
(no body of a rule which has the respective atom in the head is satisfied). In order to keep
track which (possibly negated) predicate symbols in the content of some node or arc have
already been expanded a so-called status function . is introduced. Furthermore, in order
to ensure that no atom in the partially constructed open answer set is circularly motivated,
i.e. the atoms are well-supported [18], a graph G which keeps track of dependencies
between atoms in the (partial) model is maintained.

CHAPTER 2. THEORETICAL FOUNDATIONS 39

Definition 2.3.7. An A1-completion structure for a FoLP P 14 is a tuple 〈EF , ct, . , G〉
where:

• EF = 〈F,ES 〉 is an extended forest,

• ct : NEF ∪ AEF
// 2preds(P)∪not (preds(P)) is the ‘content’ function,

• . : {(x,±q) | ±q ∈ ct(x), x ∈ NEF ∪ AEF} // {exp, unexp} is the ‘status’
function,

• G = 〈V,A〉 is a directed graph which has as vertices atoms in the answer set in
construction: V ⊆ HBPNEF

.

An initial A1-completion structure for checking satisfiability of a unary predicate p w.r.t.
a FoLP P is a completion structure 〈EF , ct, . , G〉 with EF = (F, ∅), F = {Tε} ∪ {Ta |
a ∈ cts(P)}, where ε is a constant, possibly in cts(P), Tx = {x}, for x ∈ {ε} ∪ cts(P),
G = 〈V, ∅〉, V = {p(ε)}, and ct(ε) = {p}, . (ε, p) = unexp.

Thus, an initial A1-completion structure contains an extended forest which is a set of
single-node trees, one for every constants from P , having as root the respective constant,
and, possibly, another single-node tree with anonymous root. The anonymous root, in
case it exists, contains p, the predicate to satisfy. Otherwise the root of one of the other
trees contains p. The intuition is that an initial A1-completion structure is a skeleton of a
forest model which satisfies p, either by containing an atom of the form p(a), where a is a
constant appearing in the program, or an atom of the form p(x), where x is an anonymous
individual, in which ε = x. G is initialized with a single node graph – the atom p(ε),
which is already asserted as being part of the constructed model.

The forest model from Figure 2.2 has been evolved from the initial completion structure
depicted in Figure 2.3 which has as ε, the root element where smember has to be satisfied,
the anonymous individual, x. There are two other single-node trees: Ta and Tb. The
predicate smember in the content of x is marked as unexpanded and G is a graph with a
single vertex smember(x).

An initial A1-completion structure for checking the satisfiability of a unary predicate p
w.r.t. a FoLP P is evolved by means of expansion rules to a complete clash-free structure
that corresponds to a finite representation of an open answer set in case p is satisfiable
w.r.t. P . Applicability rules govern the application of the expansion rules.

14We use the prefixA1 to denote completion structures computed using this original algorithm as opposed
to completion structures computed using the optimised algorithm described in the next section for which
we will use the prefix A2.

CHAPTER 2. THEORETICAL FOUNDATIONS 40

EF :
xa b

{smemberu}
{} {}

V : smember(x)
A: ∅

Figure 2.3: Initial completion structure for checking satisfiability of smember w.r.t. P

2.3.4 Expansion Rules

Expansion rules justify why a certain atom is/is not part of an open answer set, or make
guesses about the presence of certain atoms in the open answer set in order to have a
complete model. Their scope of application is always a node or an arc in the completion
structure. In the following, for a completion structure 〈EF , . , ct, G〉, let x ∈ NEF and
(x, y) ∈ AEF be the node, resp. arc, under consideration.

(i) Expand unary positive. For a unary positive (non-free) p ∈ ct(x) s. t. . (x, p) =
unexp, choose a unary rule r ∈ Pp for which s, the head term, matches x; ground this rule
by substituting s with x, in case s is a variable, and each successor terms tm which is a
variable with a successor of x in EF s. t. the inequalities in ψ are satisfied (if needed one
can introduce new successors of x in EF , either as successors of x in T , where x ∈ T , or
in the form of constants from P). We motivate the presence of p(x) in the open answer set
by enforcing the body of this ground rule to be satisfied by inserting appropriate (possibly
negated) predicate symbols in the contents of nodes/arcs of the structure. The newly
inserted predicate symbols are marked as unexpanded and G is updated, by adding arcs
from p(x) to every atom in the body of the rule.

In our example, smember is unexpanded in the initial completion structure. Rule r2 is
chosen to motivate the presence of smember(x) in the open answer set. It is grounded
by substituting X with x, and Y1 and Y2 with a and b, respectively: smember(x) ←
support(x, a), rmember(x, a), support(x, b),
rmember(x, b). We enforce the body of this ground rule to be true and update G accord-
ingly (see Figure 2.4).

All currently unexpanded predicates, i.e., support in the content of arcs (x, a) and (x, b),
and rmember in the content of nodes a and b, can be trivially expanded as support is a
free predicate and r5 and r6 are facts. However one still has to ensure that the structure
constructed so far can be extended to an actual open answer set, i.e., it is consistent with
the rest of the program. The following expansion rule takes care of this.

CHAPTER 2. THEORETICAL FOUNDATIONS 41

EF :
xa

{supportu}
b

{supportu}
{smembere}

{rmemberu} {rmemberu}

V : smember(x), support(x, a), support(x, b), rmember(x, a), rmember(x, b)

A : smember(x)→ support(x, a), smember(x)→ support(x, b),
smember(x)→ rmember(x, a), smember(x)→ rmember(x, b)

Figure 2.4: The completion structure for checking satisfiability of smember w.r.t. P after
the expansion of smember(x)

EF :
xa

{support}
b

{support}
{sm, not rm, not co}

{rm, not sm, not co} {rm, not sm, not co}

V : sm(x), support(x, a), support(x, b), rm(x, a), rm(x, b)
A : sm(x)→ support(x, a), sm(x)→ support(x, b),

sm(x)→ rm(x, a), sm(x)→ rm(x, b)

Figure 2.5: Final completion structure for checking satisfiability of smember w.r.t. P

(ii) Choose a unary predicate. If all predicates in ct(x) and in the contents of x’s out-
going edges are expanded and there are still unary predicates p which do not appear in
ct(x), pick such a p and inject either p or not p in ct(x). The intuition is that one has
to explore all unary/binary predicates at every node/arc as some predicate which is not
reachable by dependency-directed expansion can prohibit the extension of the partially
constructed model to a full model. Consider the simple case where there is a predicate
p defined only by the rule: p ← not p and ±p does not appear in the body of any other
rule. The program is obviously inconsistent, but this cannot be detected without trying to
prove that p is or is not in the open answer set.

In our example, one does not know whether co or not co belongs to ct(x). We choose to
inject not co in ct(x) and mark it as unexpanded.

(iii) Expand unary negative. Justifying a negative unary predicate not p ∈ ct(x) means
refuting the body of every ground rule which defines p(x), or in other words refuting at
least a literal from the body of every ground rule which defines p(x). For more technical
details concerning this rule we refer the reader to [35].

In our example, the unexpanded predicate in ct(x), not co, is defined by one rule, r′4,
whose only possible grounding is:

co(x)← not co(x), smember(x), rmember(x).

Refuting the body of this rule amounts to inserting not rmember in ct(x) (smember

CHAPTER 2. THEORETICAL FOUNDATIONS 42

EF : V : {smember(x), smember(y)} A : {smember(x)→ smember(y)}
x

y

{support}
{smember}

{smember}

Figure 2.6: Completion structure for checking satisfiability of smember w.r.t. P in which
blocking is not applicable

and not co are already part of the content of that node). At its turn, the presence of
not rmember in ct(x) has to be motivated by using the expand unary negative rule, and
the process goes on. Finally, we obtain a completion structure in which no expansion rule
is further applicable and which represents exactly the forest model from Figure 2.2 (see
Figure - smember and rmember are abbreviated with sm and rm, respectively):

Similarly to rules (i), (ii), and (iii) we define the expansion rules for binary predicates:
(iv) Expand binary positive, (v) Expand binary negative, and (vi) Choose binary.

2.3.5 Applicability Rules

The applicability rules restrict the use of the expansion rules.

(vii) Saturation. A node x ∈ NEF is saturated if for all p ∈ upreds(P), p ∈ ct(x)
or not p ∈ ct(x), and no ±q ∈ ct(x) can be expanded with rules (i-iii), and for all
(x, y) ∈ AEF and p ∈ bpreds(P), p ∈ ct(x, y) or not p ∈ ct(x, y), and no ±f ∈
ct(x, y) can be expanded with (iv-vi). In other words, a node is saturated when every
unary predicate symbol appears either in a positive form or negated in its label and every
binary predicate symbol appears in a positive form or negated in the label of its outgoing
arcs. We want to ensure saturations as nodes and arcs in order to guarantee that our
structure will eventually stand for a complete model and not a partial one: partial stable
models can not always be expanded to total models. No expansions should be performed
on a node from NEF which does not belong to cts(P) until its predecessor is saturated.

(viii) Blocking. A node x ∈ NEF is blocked if there is an ancestor y of x in F , y <F x,
y 6∈ cts(P), s. t. ct(x) ⊆ ct(y) and the set pathsG(y, x) = {(p, q) | (p(y), q(x)) ∈
pathsG ∧ q is not free} is empty. We call (y, x) a blocking pair. No expansions can
be performed on a blocked node. One can notice that subset blocking is not enough
for pruning the tableau expansion. Every atom in the open answer set has to be finitely
motivated [32, Theorem 2]: in order to ensure that, one has to check that there is no
dependency in G between an atom formed with the blocking node and an atom formed
with the blocked node.

CHAPTER 2. THEORETICAL FOUNDATIONS 43

Example 2.3.8. Consider a restricted version of P from Example 2.3.3 which contains
only rules r1, and r3. By checking satisfiability of smember w.r.t. the new program one
obtains the completion structure depicted in Figure 2.6.

While the contents of nodes x and y are identical, they do not form a blocking pair as
there is an arc in G between smember(x) and smember(y): unfolding the structure
(justifying y similarly as x) would lead to an infinite chain of dependencies: smember(x),
smember(y), smember(z), . . . ,.

The extra condition concerning paths in the dependency graph makes the blocking rule
insufficient to ensure the termination of the algorithm. The following applicability rule
ensures termination.

(ix) Redundancy. A node x ∈ NEF is redundant if it is saturated, it is not blocked, and
there are k ancestors of x in F , (yi)16i6k, with k = 2p(2p

2 − 1) + 3, and p = |upreds(P)|,
s. t. ct(x) = ct(yi). In other words, a node is redundant if it is not blocked and it has k
ancestors with content equal to its content. Any forest model of a FoLP P which satisfies
p can be reduced to another forest model which satisfies p and has at most k + 1 nodes
with equal content on any branch of a tree from the forest model, and furthermore the
(k + 1)st node, in case it exists, is blocked. One can thus search for forest models only
of the latter type. As such the detection of a redundant node constitutes a clash and stops
the expansion process.

2.3.5.1 Termination, Soundness, Completeness

AnA1-completion structure is contradictory if for some x ∈ NEF/AEF and p ∈ upreds(P)/
bpreds(P), {p, not p} ⊆ ct(x). An A1-completion structure for a FoLP P and a
p ∈ upreds(P) is complete if it is a result of applying the expansion rules to the ini-
tial completion structure for p and P , taking into account the applicability rules, s. t. no
expansion rules can be further applied.

Also, a complete A1-completion structure CS = 〈EF , ct, . , G〉 is A1-clash-free if: (1)
CS is not contradictory (2) EF does not contain redundant nodes (3) G does not contain
cycles (4) there is no p ∈ upreds(P)/bpreds(P) and x ∈ NEF/AEF , x unblocked, s.t.
p ∈ ct(x), and . (x, p) = unexp.

It has been shown that an initial A1-completion structure for a unary predicate p and a
FoLP P can always be expanded to a complete A1-completion structure (termination),
that, if p is satisfiable w.r.t. P , there is a complete clash-free A1-completion structure
(soundness), and, finally, that, if there is a complete clash-free A1-completion structure,
p is satisfiable w.r.t. P (completeness).

In the worst case the algorithm runs in double exponential time, and a complete comple-
tion structure has a double exponential number of nodes in the size of the program. The
high complexity is mostly due to the fact that blocking is not enough to ensure termi-
nation, and that, in particular, “anywhere blocking”[45] cannot be used as a termination

CHAPTER 2. THEORETICAL FOUNDATIONS 44

technique. As already explained this peculiarity appears as a result of adopting a minimal
model semantics.

2.4 Optimized Reasoning with FoLPs

This section presents a knowledge compilation technique for reasoning with FoLPs to-
gether with an algorithm which makes use of this pre-compiled knowledge. The main
idea is to capture all possible local computations, which are typically performed over and
over again in the process of saturating the content of a node, by pre-computing all possi-
ble completion structures of depth 1 using the original algorithm described in the previous
section. In the new algorithm, saturating the content of a node reduces to picking up one
of the pre-computed structures which satisfies the existing constraints regarding the con-
tent of that node and appending the structure to the completion in construction: such
constraints are sets of unexpanded (possibly negated) predicates which are needed to mo-
tivate the presence/absence in the open answer set of atoms constructed with the current
node and the node above it.

Picking up a certain unit completion structure to saturate a node can impose strictly more
constraints on the resulted structure than picking another unit completion structure with
the same root content. Such constraints refer to: (1) the contents of the successor (non-
blocked) nodes in a unit completion structure; (2) the paths from an atom formed with the
root node of a unit completion to an atom formed with a successor node of such a comple-
tion – the more paths there are the harder blocking becomes. We discard such structures
which are strictly more constraining than others, as they can be seen as redundant building
blocks for a model.

The rest of the section formalizes and exemplifies these notions.

2.4.1 Optimized Reasoning with FoLPs

2.4.1.1 Unit Completion Structures

As mentioned in the introduction of this section, the intention is to obtain all completion
structures of depth 1 which can be used as building blocks in our algorithm. We call such
structures unit completion structures. The skeleton of such a structure, is a so-called initial
unit completion structure. If they are to be used as building blocks in the algorithms, unit
completion structures have to have as backbones trees of depth 1, and not forests. Hence,
an initial unit completion structure is defined as a tree (unlike its counterpart notion from
the previous section, initial completion structure, which is defined as a forest) with a
single node, the root, which is either an anonymous constant or one of the constants
already present in the program. The content of the root is empty.

CHAPTER 2. THEORETICAL FOUNDATIONS 45

Definition 2.4.1. An initial unit completion structure for a FoLP P is a completion struc-
ture 〈EF , ct, . , G〉 with EF = (F,ES), F = {Tε}, where ε is a constant, possibly in
cts(P), Tε = {ε}, ES = ∅, G = 〈V,A〉, V = ∅, A = ∅, and ct(ε) = ∅.

A unit completion structure captures local computations which are performed to saturate
the content of a node. As such, it is computed by expanding an initial unit completion
structure until the root of the tree is saturated. The following definition captures this
intuition.

Definition 2.4.2. A unit completion structure 〈EF , ct, . , G〉 for a FoLP P , with EF =
({Tε},ES), is an A1-completion structure derived from an initial unit completion struc-
ture by application of the expansion rules (i)-(vi) described in Section 2.3.4, according
to the applicability rules introduced in Section 2.3.5, which has been expanded such
that ε is saturated and for all s such that ε · s ∈ Tε, and for all ±p ∈ ct(ε · s),
. (±p, ε · s) = unexp.15

Example 2.4.3. Consider the program Pr:

r1 : p(X) ← not p(X)
r2 : p(X) ← f (X ,Y), not q(Y)
r3 : p(X) ← f (X ,Y), p(Y)
r4 : p(X) ← f (X ,Y), not q(Y), p(Y)
r5 : q(X) ← f (X ,Y), not p(Y)
r6 : f (X ,Y) ∨ not f (X ,Y) ←

Figure 2.7 depicts three unit completion structures for Pr. They all have the same content
for the root node: {p, not q}. The presence of p in the content of the root node has been
motivated in the first structure by means of rule r4, in the second structure by means of
rule r3, and in the third structure by means of rule r2. The different ways to motivate p
lead to different sets of arcs in the dependency graphs belonging to each structure. On the
other hand, to motivate that not q is in the content of the root node, in each case it was
shown that the body of r5 grounded such that X is instantiated as the root node and Y as
the successor node is not satisfied, or more concretely the presence of p in the content of
the successor node was enforced in each case (not f could not be used to invalidate the
triggering of the rule as f was already present in the content of the arc from the root node
to the successor node in each case).

One can notice that while the content of the successor node is included in the content of
the root node in each of the cases, only for UC3, the two nodes form a blocking pair as
pathsG3(c, c1) = ∅.

15The status function is relevant only in the definition/construction of a unit completion structure, but not
in the context of using such structures. As such, we will denote a unit completion structure in the following
as a triple 〈EF , ct, G〉.

CHAPTER 2. THEORETICAL FOUNDATIONS 46

UC1 : UC2 : UC3 :

a

a1

{f}

{p,not q}

{p,not q}

b

b1

{f}

{p,not q}

{p}

c

c1

{f}

{p,not q}

{p,not q}

G1 = (V1, A1) G2 = (V2, A2) G3 = (V3, A3)

V1 : p(a), p(a1), f(a, a1) V2 : p(b), p(b1), f(d, d1) V3 : p(c), p(c1), f(c, c1)

A1 :
p(a)→ f(a, a1),

A2 :
p(b)→ f(b, b1),

A3 : p(c)→ f(c, c1)
p(a)→ p(a1) p(b)→ p(b1)

Figure 2.7: Three unit completion structures for Pr: UC1, UC2, and UC3.

Definition 2.4.4. A unit completion structure is final iff all its successor nodes are blocked,
or they have empty contents.

Proposition 2.4.5. A final unit completion structure is a complete clash-freeA1-completion
structure.

In our example UC3 is a final unit completion structure, and thus also a complete clash-
free A1-completion structure.

Proposition 2.4.6. There is a deterministic procedure which computes all unit completion
structures for a FoLP P in the worst-case scenario in exponential time in the size of P .

Proof Sketch. We consider the transformation of the non-deterministic algorithm de-
scribed in Definition 2.4.2 into a deterministic procedure. There are at most 2n different
values for the content of a saturated node, in this case for the content of the root of a
unit completion structure, where n = |upreds(P)|. Justifying the presence of a predicate
symbol p in the content of a node takes in the worst case polynomial time (choosing a
possible grounding with successor nodes for some rule r ∈ Pp), but there is an exponen-
tial number of choices to do this (an exponential number of possible groundings for every
rule). Justifying the presence of a negated predicate symbol not p in the content of a node
takes in the worst case exponential time (all possible groundings of every rule r ∈ Pp
have to be considered), while at every step of the computation there is a polynomial num-
ber of choices (for the ground rule in consideration, choosing a literal in its body to be
refuted). Overall, such a deterministic procedure runs in exponential time in the worst
case scenario. �

CHAPTER 2. THEORETICAL FOUNDATIONS 47

2.4.1.2 Redundant Unit Completion Structures

As seen in Example 2.4.3, there are unit completion structures with roots with equal con-
tent, but possibly different topologies, contents of the successor nodes and/or possibly
different dependency graphs. As discussed in the introduction to this section it is worth-
while to identify structures which are strictly more constraining than others, in the sense
that they impose more constraints on the content of the successor nodes of the structure
and introduce more paths in the dependency graph. Such structures can be seen as re-
dundant, and subsequently they can be discarded, as whenever such a structure is part
of a complete clash-free completion structure, there is a complete clash-free completion
structure in which a simpler structure is used as a building block. The following definition
singles out such redundant structures.

Definition 2.4.7. A unit completion structure UC1 = 〈EF 1, ct1, G1〉, with EF 1 =
({Tε1}, ES1), is said to be redundant iff there is another unit completion structure UC2 =
〈EF 2, ct2, G2〉, with EF 2 = ({Tε2}, ES2) s. t.:

• if ε2 ∈ cts(P), then ε2 = ε1;

• ct(ε1) = ct(ε2);

• if ε2 · s1, . . . , ε2 · sl are the non-blocked successors of ε2, there exist l distinct suc-
cessors ε1 · t1, . . . , ε1 · tl of ε1 such that:

– ct(ε2 · si) ⊆ ct(ε1 · ti), for every 1 6 i 6 l, and

– pathsG2(ε2, ε2 · si) ⊆ pathsG1(ε1, ε1 · ti), for every 1 6 i 6 l,

with at least one inclusion being strict.

The intuition is that the content of the successor nodes of a simpler structure can always
be expanded in a similar way to the content of the corresponding successor nodes of the
more complex structure, while the fact that there are fewer paths between atoms formed
with the root node and atoms formed with successor nodes guarantees that no blocking
conditions are violated, and even more, blocking might occur earlier than when using the
more complex structure.

Considering the previous example, one can see that all three unit completion structures
have the same content of the root and also the same topology: the tree in every structure
has one node. However, UC1 is more constraining than UC2, and UC2 at its turn is more
constraining than UC3:

• UC1 is more constraining than UC2 as the content of the successor node a1 of UC1

is a strict superset of the content of the successor node b1 of UC2. This is a result
of using rule r4 to motivate p in the first structure and using rule r3 to motivate p in
the second structure: one can see that rule r3 is more general than r4 as it allows the
deduction of the same fact from fewer prerequisites.

CHAPTER 2. THEORETICAL FOUNDATIONS 48

• while the content of b1, the successor node of UC2 is a strict subset of the content of
c1, the successor node of UC3, c1 is actually a blocked node, and thus UC3 serves
as a witness of the redundancy of UC2: the third condition of Definition 2.4.7 is
trivially fulfilled.

Thus, UC1, and UC2 are redundant structures: whenever one has to justify the presence
of both p and not q in the content of some node, one can do it in the way indicated by
UC3, which as already mentioned in the previous subsection is a final unit completion
structure.

Proposition 2.4.8. Computing the set of non-redundant unit completion structures for a
FoLP P can be performed in the worst case in exponential time in the size of P .

Proof Sketch. The result follows from the fact that there is an exponential number of unit
completion structures for a FoLP P in the worst case scenario.�

2.4.1.3 Reasoning with FoLPs Using Unit Completion Structures

We define a new algorithm which uses the set of pre-computed non-redundant completion
structures. We call this algorithm A2. As in the case of the previous algorithm, A2 starts
with an initial A2-completion structure for checking satisfiability of a unary predicate p
w.r.t. a FoLP P and expands this to a so-called A2-completion structure.

An A2-completion structure 〈EF , ct, . , G〉 is defined similarly as an A1-completion
structure, but the status function has a different domain, the set of nodes of the forest:
. : NEF

// {exp, unexp}.
An initial A2-completion structure for a unary predicate p and FoLP P is defined simi-
larly as an initial A1-completion structure for p and P , but in this case every node in the
extended forest is marked as unexpanded.

Definition 2.4.9. An initial A2-completion structure for checking satisfiability of a unary
predicate p w.r.t. a FoLP P is a completion structure 〈EF , ct, . , G〉 with EF = (F, ∅),
F = {Tε} ∪ {Ta | a ∈ cts(P)}, where ε is a constant, possibly in cts(P), Tx = {x} and
. (x) = unexp, for x ∈ {ε} ∪ cts(P), G = 〈V, ∅〉, V = {p(ε)}, and ct(ε) = {p}.

In this scenario nodes are marked as expanded or unexpanded as a model is constructed by
starting with some constraints in the form of an initial A2-completion structure, and then
subsequently matching the content of the unexpanded nodes with existent non-redundant
unit completion structures. We make explicit the notion of matching the content of a node
with a unit completion structure by introducing a notion of local satisfiability:

Definition 2.4.10. A unit completion structure UC for a FoLP P , 〈EF , ct, G〉, with
EF = ({Tε},ES), locally satisfies a (possibly negated) unary predicate p iff p ∈ ct(ε).
Similarly, UC locally satisfies a set S of (possibly) negated unary predicates iff S ⊆
ct(ε).

CHAPTER 2. THEORETICAL FOUNDATIONS 49

All three unit completions in Figure 2.7 locally satisfy the set {p, not q}. It is easy to
observe that if a unary predicate p is not locally satisfied by any unit completion structure
UC for a FoLP P (or equivalently not p is locally satisfied by every unit completion
structure), p is unsatisfiable w.r.t. P . However, local satisfiability of a unary predicate p
in every unit completion structure for a FoLP P does not guarantee ’global’ satisfiability
of p w.r.t. P . Recall the A1-completion structure depicted in Figure 2.6: the structure is a
unit completion structure which locally satisfies smember, but smember is not satisfied
by the program considered in that particular example.

In the process of building an A2-completion structure CS = 〈EF , ct, . , G〉, with G =
(V,A), for a FoLP P by using unit completion structures as building blocks an operation
commonly appears: the expansion of a node x ∈ NEF by addition of a unit completion
structure UC = 〈EF

′
, ct

′
, G′〉, with EF

′
= ({Tε}, ES

′
) and G′

= (V
′
, A

′
), which

locally satisfies ct(x), at x, given that its root matches with x 16. We call this operation
expandCS(x, UC). Formally, its application updates CS as follows:

• . (x)=exp,

• NEF = NEF ∪ {x · s | ε · s ∈ Tε},

• AEF = AEF ∪ {(x, x · s) | (ε, ε · s) ∈ AEF
′},

• ct(x) = ct(ε). For all s such that ε · s ∈ Tε, ct(x · s) = ct(ε · s),

• V = V ∪ {p(x) | p ∈ ct(ε)} ∪ {p(x · s) | p ∈ ct(ε · s)},

• A = A ∪ {(p(z), q(y)) | (p(z), q(y)) ∈ A′}, where ε = x, and ε · s = x · s.

The algorithm has a new rule compared with the original algorithm which we call Match.
This rule is meant to replace the expansion rules (i)-(vi) and the applicability rule (vii)
from the original algorithm.

Match. For a node x ∈ NEF : if . (x) = unexp non-deterministically choose a non-
redundant unit completion structure UC with root matching x which satisfies ct(x) and
perform expandCS(x, UC).

In this variant of the algorithm we still employ rules (viii) Blocking and (ix) Redundancy
described in Section 2.3.3.

Definition 2.4.11. A completeA2-completion structure for a FoLP P and a p ∈ upreds(P),
is an A2-completion structure that results from applying the rule Match to an initial A2-
completion structure for p and P , taking into account the applicability rules (viii) and
(ix), s. t. no other rules can be further applied.

16An anonymous individual behaves like a variable: it matches with any term, while a constant matches
only with itself; thus, unit completion structures with roots constants can only be used as initial building
blocks for the trees with non-anonymous roots in the structure.

CHAPTER 2. THEORETICAL FOUNDATIONS 50

The local clash conditions regarding contradictory structures or structures which have
cycles in the dependency graph G are no longer relevant:

Definition 2.4.12. A complete A2-completion structure CS = 〈EF , ct, . , G〉 is clash-
free if (1) EF does not contain redundant nodes (2) there is no node x ∈ NEF , x un-
blocked, s.t. st(x) = unexp.

2.4.1.4 Termination, Soundness, Completeness

The termination of the algorithm follows immediately from the usage of the blocking and
of the redundancy rule:

Proposition 2.4.13. An initial A2-completion structure for a unary predicate p and a
FoLP P can always be expanded to a complete A2-completion structure.

The algorithm is sound and complete:

Proposition 2.4.14. A unary predicate p is satisfiable w.r.t. a FoLP P iff there is a com-
plete clash-free A2-completion structure.

Proof Sketch. The soundness of A2 follows from the soundness of A1: any completion
structure computed using A2 could have actually been computed using A1 by replacing
every usage of the Match rule with the corresponding rule application sequence used by
A1 to derive the unit completion structure which is currently appended to the structure.

The completeness of A2 derives from the completeness of A1: any clash-free complete
A1-completion structure can actually be seen as a complete clash-free A2-completion
structure. It is essential here that the discarded unit completion structures were strictly
more constraining than some other (preserved) unit completion structures. Whenever
the expansion of a node in the complete clash-free A1-completion structure has been
performed by a sequence of rules captured by a redundant unit completion structure, it is
possible to construct a complete clash-free A2-completion structure by using the simpler
non-redundant unit completion structure instead.�

As we still employ the redundancy rule in this version of the algorithm, a complete A2-
completion structure has in the worst case a double exponential number of nodes in the
size of the program. As such:

Proposition 2.4.15. A2 runs in the worst-case in double exponential time.

As reasoning with f-hybrid knowledge bases can be reduced to reasoning with FoLPs, we
note that we can employ the new algorithm for reasoning with f-hybrid knowledge bases.
However the upper bound concerning the complexity of f-hybrid knowledge bases has not
been improved.

CHAPTER 2. THEORETICAL FOUNDATIONS 51

EF : V : A :

x

y

z

. . .

{support}

{support}

{support}

{smember}

{smember}

{smember}

{smember(x), smember(y), {smember(x)→ smember(y),
smember(z), . . . , } smember(y)→ smember(z), . . .}

Figure 2.8: Hard problem due to (non-trivial) unsatisfiability of smember

2.4.2 Discussion

Our optimized algorithm runs in the worst case in double exponential time: this is not a
surprise as the scope of the technique introduced here is saving time by avoiding redun-
dant local computations. The worst-case running complexity of the algorithm depends on
the depth of the trees which have to be explored in order to ensure completeness of the al-
gorithm and on the fact that anywhere blocking is not feasible. Even with classical subset
blocking one has to explore an exponential number of nodes across a branch in order for
the algorithm to terminate. Thus, the only factor which would improve the worst-case per-
formance is finding a termination condition which considers nodes in different branches.
At the moment this seems highly unattainable.

The next step of this work is the evaluation of the new algorithm. We expect it will per-
form considerably better than the original algorithm in returning positive answers to sat-
isfiability checking queries, while it might still take considerable time in the cases where
a predicate is not satisfiable. Especially problematic are cases like the one described in
Example 2.3.8 where there exists a unit completion structure which locally satisfies the
predicate checked to be satisfiable, but the predicate is actually unsatisfiable. The algo-
rithm will match identical structures until the limit imposed by the redundancy rule is met
(see Figure 2.8). An obvious strategy for implementation is to establish a limit on the
depth of the explored structures: in practice it is highly improbable that if there exists a
solution, it can be found only in an open answer set of a considerable size (depth of the
corresponding extended forest): actually, it is quite hard to come up with examples of
such programs.

In D3.2 [35] we introduced the fragment of simple Forest Logic Programs by imposing a
restriction on predicate recursion in programs. Simple Forest Logic Programs are expres-
sive enough to simulate reasoning in the DLALCHOQ. As such, they gave rise to a tight

CHAPTER 2. THEORETICAL FOUNDATIONS 52

combination of simple FoLPs and ALCHOQ ontologies: simple f-hybrid knowledge
bases. We also showed how our tableau algorithm for satisfiability checking w.r.t. FoLPs
can be simplified for reasoning with simple FoLPs. The simplified algorithm runs in the
worst case in exponential time. The optimization technique presented in this section can
be straightforwardly applied to the simplified algorithm for reasoning with simple FoLPs.
The worst case complexity remains the same. We note that also related approaches from
literature (based on knowledge pre-compilation techniques) do not improve on the worst-
case complexity of the algorithm, but, however, in practice they prove to be considerably
better than the original algorithms.

For example, a knowledge compilation technique for reasoning with the Description
Logic ALC is described in [22]. The pre-compilation technique consists of two steps.
In the first step, all possible sub-concepts of a concept which are conjunctions of simple
concepts and role restrictions are computed. These sub-concepts are captured by so-
called paths which are sets of simple concepts and role restrictions. Paths which contain
contradictory concepts are removed (these are called links), as well as paths which are
super-sets of other paths. Note the similarity with our method as concerns removing local
contradictions and redundancy. However our way of removing redundancy is much more
sophisticated as we also consider redundancies in the set of dependencies between atoms
in the model. In the second step, role restrictions are considered: all links for ’potentially
reachable’ concepts from the original concept are removed and a so-called linkless graph
is obtained. Reachability is defined as the transitive closure of the relation between a con-
cept and each of its role restriction fillers. Unlike that, our method investigates structures
of depth 1 – we consider that pre-computing structures with higher depth would be an
overkill. Finally, the method explores the linkless graph for checking concept consistency
and answering subsumption queries. Consistency checking is polynomial in the size of
the linkless graph, while query answering is linear in the size of the linkless graph for a
certain class of restricted queries. As the linkless graph has a size exponential in the size
of the original program, both reasoning tasks take in the worst case exponential time.

In the area of tableau algorithms for DL, several pre-processing techniques were em-
ployed successfully so far, like normalization and absorption [36]. Our method is closest
to normalization, which seeks to eliminate local contradictions and tautologies, and as
well to simplify some concepts. Absorption is a technique which removes general axioms
in a TBox by absorbing them into primitive definition axioms, that is, inclusion axioms
which have on the right hand side only simple concepts. Due to the particularities of stable
model semantics this technique cannot be straightforwardly generalized to our setting.

Chapter 3

OWL 2 RL in ObjectLogic

3.1 Introduction

The OWL 2 RL profile defines a syntactic subset of OWL 2 which is aimed at applications
that require scalable reasoning without sacrificing too much expressive power. There are a
small number of experimental reasoners available implementing this profile like Jena [20],
OWLIM [48] or the reference implementation OWLRL of Ivan Herman [31], as well as
first industrial implementations, like the Oracle Database 11g OWL Reasoner [58].

The ontoprise contribution to the OntoRule Deliverable 3.3 consists in providing an im-
plementation of OWL 2 RL in ObjectLogic. As reasoning engine we use the ontoprise
product suite, specifically OntoBroker 6.x with ObjectLogic as ontology and rule lan-
guage. OntoBroker 6.x supports both ObjectLogic and OWL 2 relying on the same inter-
nal representation and set of algorithms.

The implementation does not preserve the OWL semantics entirely. The main difference
concerns the semantics of equality and was adopted due to performance reasons. All of
the rules which have owl:sameAs in the rule head have been replaced by constraints.

In this chapter we give as preliminaries a short overview of OWL, OntoBroker and Ob-
jectLogic, then explain the requirements which led to our specific type of implementation
and finally give details of the implementation as well as a syntax reference.

We provide as part of ONTORULE deliverable D3.6 Efficient processing of expressive
combinations [40] a demonstrator and a tutorial to illustrate the usage of the OWL in
ObjectLogic constructs and the reasoning with the RL profile.

53

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 54

3.2 Preliminaries

3.2.1 OWL 2

OWL 2 is an ontology language for the Semantic Web with formally defined meaning.
OWL 2 ontologies provide classes, properties, individuals, and data values. Classes pro-
vide an abstraction mechanism for grouping resources with similar characteristics. Like
RDF schema classes, every OWL class is associated with a set of individuals, called the
class extension. The individuals in the class extension are called the instances of the
class. In the following we give a brief enumeration of the syntactical elements of OWL
and illustrate them with some self-explaining examples. For a more detailed description
we refer to the language reference [47] published online by W3C.

3.2.1.1 OWL 2 Syntax

OWL classes are described through class descriptions, which can be combined into class
axioms. OWL has the following types of class descriptions:

1. Enumeration of individuals: owl:oneOf

2. Property restrictions

• value constraints:
owl:allValuesFrom, owl:someValuesFrom, owl:hasValue

• cardinality constraints
owl:maxCardinality, owl:minCardinality, owl:Cardinality

3. Intersection of two or more class descriptions owl:intersectionOf.

4. Union of two or more class descriptions owl:unionOf.

5. Complement of a class description owl:complementOf.

The class construct owl:someValuesFrom defines those individuals as part of the class
which have some (that is, at least one) values for a given property from a given range.
The class construct owl:allValuesFrom defines those individuals as part of the class which
have only values for a given property from a given range and no values from other ranges.

The class constructs owl:intersectionOf, owl:unionOf and owl:complementOf correspond
to conjunction, disjunction and negation operators in predicate logic.

Table 3.1 shows examples for classes defined by property restrictions .

Additionally, OWL provides the language constructs rdfs:subClassOf, owl:disjointWith
and owl:equivalentClass denoted as class axioms. Table 3.2 shows examples for the in-
tersection of two classes. Table 3.3 shows examples for equivalent and disjoint classes.

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 55

// owl:allValuesFrom
<owl:Restriction>
<owl:onProperty rdf:resource="#hasParent"/>
<owl:allValuesFrom rdf:resource="#Human" /> </owl:Restriction>
// owl:someValuesFrom
<owl:Restriction>
<owl:onProperty rdf:resource="#hasParent" />
<owl:someValuesFrom rdf:resource="#Mathematician" /> </owl:Restriction>
// owl:hasValue
<owl:Restriction>
<owl:onProperty rdf:resource="#hasParent" />
<owl:hasValue rdf:resource="#Adam" /> </owl:Restriction>
// owl:maxCardinality
<owl:Restriction>
<owl:onProperty rdf:resource="#hasParent" />
<owl:maxCardinality rdf:datatype="xsd:nonNegativeInteger">2
</owl:maxCardinality> </owl:Restriction>

Table 3.1: Example of OWL classes defined by property restrictions

// owl:intersectionOf
<owl:Class rdf:ID="Woman">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Person" />
<owl:Restriction>
<owl:onProperty rdf:resource="#hasGender" />
<owl:hasValue rdf:resource="#Female" />
</owl:Restriction>
</owl:intersectionOf>
</owl:Class>

Table 3.2: Example for the intersection of two classes

// owl:equivalentClass
<owl:Class rdf:about="#Human">
<owl:equivalentClass rdf:resource="#Person"/>
</owl:Class>
// owl:disjointWith
<owl:Class rdf:ID="Woman">
<rdfs:subClassOf rdf:resource="#Person"/>
<owl:disjointWith rdf:resource="#Man"/>
</owl:Class>

Table 3.3: Example for equivalent classes and disjoint classes

OWL has two types of properties, object properties which connect individuals with indi-
viduals and datatype properties which connect individuals with data values. The property
axiom constructs are the following:

• RDF schema constructs

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 56

rdfs:subPropertyOf, rdfs:domain, rdfs:range

• Algebraic properties
symmetric, transitive, reflexive, asymmetric

• Relations between properties
owl:EquivalentProperty, owl:inverseProperty

• Global cardinality constraints
owl:functionalProperty, owl:inverseFunctionalProperty

Individuals are defined by their class membership or by identity. OWL has no unique
name assumption. Instead, OWL provides three constructs for defining identity between
individuals:

• owl:sameAs - means that two URIs refer to the same individual

• owl:differentFrom - means that two URIs refer to different individuals

• owl:allDifferent - means that a list of individuals are mutually different.

// Transitive property
<owl:ObjectProperty rdf:ID="hasAncestor">
<rdf:type rdf:resource="owl:TransitiveProperty"/>
<rdfs:domain rdf:resource="#Person"/>
<rdfs:range rdf:resource="#Person"/>
</owl:ObjectProperty>

// Functional property
<owl:ObjectProperty rdf:ID="husband">
<rdf:type rdf:resource="owl:FunctionalProperty" />
<rdfs:domain rdf:resource="#Woman" />
<rdfs:range rdf:resource="#Man" />
</owl:ObjectProperty>

Table 3.4: Example of a transitive and functional property in OWL syntax

3.2.1.2 OWL 2 RL Profile

The OWL 2 RL profile [43] is aimed at applications that require scalable reasoning with-
out sacrificing too much expressive power. OWL 2 RL allows for polynomial reasoning
(consistency, classification and instance checking) using rule-based technologies.

The profile defines a syntactic subset of OWL 2 which is amenable to implementation
using rule-based technologies and presenting a partial axiomatization in the form of first-
order implications that can be used as the basis for such an implementation. For ontologies

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 57

satisfying the OWL 2 RL syntactic constraints, a suitable rule-based implementation will
have desirable computational properties; for example, it can return all and only the correct
answers to certain kinds of query. The DL underlying the OWL 2 RL profile is a Datalog-
rewritable DL, and thus, it can be used in the context of tractable dl-programs

In OWL RL the use of OWL constructs is restricted to defined syntactic positions. In
subClassOf axioms, the constructs in the subclass and superclass expressions must follow
the usage patterns shown in Table 2 in the OWL 2 RL Specification [43].

With exception of owl:Thing, any class is allowed as subclass or superclass expression.
The intersection of classes and the hasValue class expression may be a subclass or a
superclass expression. For the other constructs, the following holds: oneOf, unionOf,
someValuesFrom are allowed only as subclass expressions; complementOf, allValues-
From and maxCardinality 0/1 only as superclass expressions.

The semantics of the RL profile is given by the set of rules specified and published online
by the W3C recommendation [43]. Each rule is given a short unique name. For exam-
ple, the rules for the semantics of equality (eq-ref, eq-sym, eq-trans, eq-rep-s, eq-rep-p,
eq-rep-o, eq-diff1, eq-diff2, eq-diff3) define the owl:sameAs relation as being reflexive,
symmetric and transitive and axiomatize the standard replacement properties of equality.

The set of rules is not minimal, as certain rules are implied by other ones. This was done
to make the definition of the semantic consequences of each piece of OWL 2 vocabulary
self-contained. For example the second rule for the intersection of classes cls-int2 is
implied by the schema rule scm-int, see Section 3.4.2.11.

3.2.2 OntoBroker

The ontoprise product suite is the most complete SemanticWeb infrastructure and world-
wide the only one supporting all major W3C SemanticWeb recommendations including
OWL, RDF(s), RIF and ObjectLogic. According to the “OpenRuleBench” benchmark,
OntoBroker is the leading rule and ontology engine with respect to the evaluation perfor-
mance.

The current version of the product suite is OntoBroker 6.0/OntoStudio 3.0, released in
June 2010. The main changes with respect to the previous release OntoBroker 5.3/On-
toStudio 2.3 is that F-logic as main supported language is replaced by ObjectLogic, as
well as improved performance, optimization and support for collaborative ontology engi-
neering.

The ObjectLogic engine is a deductive, object oriented database system. Its underlying
formalism is the frame logic ObjectLogic, the successor of F-Logic. Its main features are
reasoning and query answering over ObjectLogic knowledge bases.

ObjectLogic rules consist of conjunctions of literals in the rule head and arbitrary pred-
icate logic formulas in the rule body. In OntoBroker the rules are transformed in an
extended form of datalog programs using the Lloyd-Topor [42] transformation and eval-

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 58

uated during query time. Functions and negations are supported as well. OntoBroker
supports multiple query languages. The primary query language and the native format
of OntoBroker is ObjectLogic. Other supported languages are a subset of SPARQL and
SQL. Disjunctive queries or queries which contain builtins, temporary facts, etc. are only
supported by ObjectLogic.

OntoBroker supports high-performance and scalable reasoning using several different
evaluation algorithms like Bottom-Up Evaluation, Magic Sets [9] or Dynamic Filtering.
The performance of OntoBroker can be increased by other means like the optimisation of
ordering of body literals or the materialisation of rules at start time.

The functionality can be extended with procedural attachments and built-ins. With this
functionality it is possible to connect external data sources during runtime in order to
integrate the data for query evaluation. Built-ins are Java programs that can be seamlessly
accessed from ObjectLogic rules and queries via built-in predicates. They can perform
arithmetic or string operations. The list of built-ins can be extended by implementing the
provided interface.

3.2.3 ObjectLogic

ObjectLogic is the ontology and rule language supported by OntoBroker 6.x and the suc-
cessor of F-logic with additional extensions like property hierarchies, algebraic properties
and constraints. An ObjectLogic ontology consists of a TBox (schema definitions, con-
cept/class and property hierarchy), an ABox (instances), user-defined rules, constraints
and queries. Variable names are preceded by a question mark. Rules consist of a premise
(rule body) and a conclusion (rule head) part, separated by the infer-symbol :-. Object-
Logic supports the closed world assumption (everything which is not explicitly known, is
assumed to be false) and the unique name assumption (every resource is identified by a
unique name). For further details see [3].

head(?X) :- body(?X).

A constraint has the syntax

!- body(?X).
A constraint is considered violated if a result is yielded when the constraint is posed as a
query. A query has the syntax

?- body(?X).

The following example in Table 3.5 illustrates a small ObjectLogic-ontology, excerpt from
a genealogy, with a property hierarchy, userdefined-rule, constraint and queries.

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 59

// Schema:
Person[].
Woman::Person.
Person[hasAncestor {0:*,transitive} *=> Person].
Person[hasSister*=>Woman].
hasMother << hasParent. hasParent << hasAncestor.
// Instances:
X:Woman[hasMother->XX].
XX:Woman[hasMother->XXX].
// User-defined rule
@{hasAunt}
?A[hasAunt->?B] :-
?A:Person[hasParent->?P] AND ?P:Person[hasSister->?B] AND ?B:Woman.
// Constraint
!- ?X:Person[hasAunt -> ?C:Woman] AND (NOT EXIST ?S ?C[hasSibling->?S]).
// Query:
?- ?X:Person[hasAncestor->?Y].
// Results:
XX
XXX
XXXX

Table 3.5: Example ontology in ObjectLogic: genealogy

3.3 Requirements

ontoprise has planned to implement the OWL 2 RL profile in ObjectLogic as part of
its product strategy. The intention is to come as close as possible to the OWL standard
while prioritizing features with high industrial relevance and avoiding features that lead to
performance problems. Features identified as candidates for being included in the product
are, in the order of their importance: property hierarchies, functional properties, algebraic
properties, cardinality restrictions.

3.3.1 Property Hierarchies and Chains

Property hierarchies have been identified as an important and useful feature to be included
in ObjectLogic core, since it occurs often that properties are specializations of other prop-
erties. A property hierarchy is realized via the subproperty relationship << which states
that one property is subproperty of another. The following sample ontology illustrates the
property hierarchy concept, where hasMother is a subproperty of hasParent and hasParent
is a subproperty of hasAncestor. Without a property hierarchy, it would be necessary to
write user-defined rules in order to find all ancestors of a person.

Property chains enable the definitions of new properties as a chain of existing properties,
like defining hasAunt by chaining hasParent and hasSister:

_PropertyChain([hasParent,hasSister])«hasAunt.

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 60

3.3.2 Algebraic Properties

Currently supported features for relations within ObjectLogic core are symmetric prop-
erties, transitive properties and the inverse of a property. A symmetric property/relation
r is a relation for which holds that if a[r->b] then b[r->a] also holds. Examples for
symmetric relations are hasRelative, hasSibling or hasFriend.

A transitive relation r is a relation for which holds that if a[r->b] and b[r->c] then also
holds a[r->c]. An example for a transitive relation from common sense is hasAncestor.
An inverse relation R2 of a relation R1 is a relation for which holds that if A[R1 -> B]
then B[R2 -> A] also holds. Example for an inverse relation: hasSon is the inverse of
hasFather.

The OWL constructs for irreflexive and asymmetric properties are also to be considered
for support in ObjectLogic core. A property is declared reflexive if each individual is
related to itself by the property, like the hasRelative property: every person is trivially a
relative of itself. A property is declared irreflexive if no individual can be related to itself
by the property, like the parentOf property: a person cannot be its own parent.

3.3.3 Cardinality Restrictions

With cardinality constraints it is possible to restrict the number of values for a particular
property. The OWL 2 RL profile restricts MaxCardinality to the values 0 and 1. An
OWL reasoner, following the model theoretic semantics of OWL, would derive that, if
the cardinality is one and there exist two values of the property, the two instances are the
same. Within ObjectLogic the cardinality constraints are interpreted as actual constraints.
So in the example above ObjectLogic would derive that the model described above does
not satisfy the constraint.

3.3.4 Equality

OWL does not make the unique name assumption. Different names may refer to the same
entity. Instead, OWL supports the equality expressions owl:sameAs, owl:differentFrom
and owl:allDifferent. The ontology engineer may declare arbitrary individuals as same or
different.

In order to decide on the support for these constructs in ObjectLogic, we have to consider
first the (industrial) usecase aspect and second the performance aspect.

For the usecase aspect, we found that the most widespread use of owl:sameAs is in the
linked data community, where it is used in interlinking data-sets on the web. The latter
practice seems error-prone, in particular with regards to its interactions with inference.
Halpin and Hayes [30] discuss four distinct uses of owl:sameAs in addition to the precise
idea of “same thing as”, namely: Same Thing As But Different Context, Same Thing As

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 61

But Referentially Opaque, Represents, Very Similar To which all lead to non standard
interpretations of the owl:sameAs construct.

An example (see [30]) for misused owl:sameAs is the concept of sodium in DBpedia,
which has an owl:sameAs link to the concept of sodium in OpenCyc. The OpenCyc
ontology says that an element is the set (class) of all pieces of the pure element, so that
for example sodium in Cyc has a member which is the lump of pure metallic sodium.
On the other hand, sodium as defined by DBPedia is used to also include isotopes, which
have different number of neutrons than standard sodium. So, one should not state the
number of neutrons in DBPedias use of sodium, but one can with OpenCyc. Therefore,
owl:sameAs here is an error, as it does not allow mutual substitutivity.

Another typical use of owl:sameAs could be to equate individuals defined in different
documents to one another, as part of unifying two ontologies. This assumes that the
ontology engineer has a good knowledge of the respective ontologies in order to be able
to declare individuals as same.

The usecases with industrial relevance for the owl:sameAs construct are yet scarse, since
most applications rely on data from databases, where the unique name assumption hold.

For the performance aspect, we found that inferring equality is performance-expensive. A
rule engine needs additional mechanisms to assure efficient reasoning, like performance-
enhancing algorithms and parallel inferencing. We analyzed different methods of support-
ing efficient reasoning.The most promising is the concept of ground equality, an approach
where equality is not inferred and all individuals declared as same are put in equivalence
classes. From each equivalence class one individual is chosen as a representative and all of
the inferences for the chosen equivalence class are consolidated using that representative.

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 62

3.4 Implementation

In the period M13-M24 of the ONTORULE project ontoprise has realized the implemen-
tation of the OWL 2 RL Profile in ObjectLogic. The implementation follows an iterative
process. After defining and testing the syntactical elements and part of the axioms (sub-
class and subproperties), unit tests were run for entailment.

3.4.1 Syntax

In a first step the necessary syntactical elements were implemented.

Every OWL 2 RL construct which has an equivalent construct in ObjectLogic is mapped
directly, as the following examples in Table 3.6 show for subClassOf and subPropertyOf.
All OWL 2 RL constructs which do not have an equivalent in ObjectLogic are mapped to
special predicates, as the following example in Table 3.7 shows for the owl:allValuesFrom
restriction.

The OWL 2 RL in ObjectLogic syntax implementation has some specific details. First,
we make no distinction between ObjectProperty and DataProperty constructs. Second,
we do not support restrictions using n-ary data range since they are not supported by the
OWL API [4]. Third, some of the newly introduced predicates are rewritten internally as
predicates with additional facts, needed by the axiomatization. An example: The OWL
construct owl:oneOf is represented by the ObjectLogic predicate _OneOf and has the

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 63

Language
feature

OWL ObjectLogic

subClassOf <owl:Class rdf:about="#Man">
<rdfs:subClassOf>
<owl:Class rdf:about="#Person"/>
</rdfs:subClassOf> </owl:Class>

Man::Person.

subPropertyOf <owl:ObjectProperty rdf:ID="hasDesc">
<rdfs:domain rdf:resource="#Wine" />
<rdfs:range rdf:resource="#Desc"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasColor">
<rdfs:subPropertyOf rdf:resource="#hasDesc" />
<rdfs:range rdf:resource="#Color" />
</owl:ObjectProperty>

Wine[hasDesc*=>Desc].
hasColor<<hasDesc.

Table 3.6: SubClassOf and SubPropertyOf in OWL vs. ObjectLogic

Language
feature

OWL ObjectLogic

allValuesFrom <owl:Restriction>
<owl:onProperty rdf:resource="#hasParent" />
<owl:allValuesFrom rdf:resource="#Human"
</owl:Restriction>

C::_AllValuesFrom
(hasParent, Human).

Table 3.7: AllValuesFrom class descriptor in OWL and ObjectLogic

internal representation $OneOf. The first position in the internal predicate $OneOf(?, ?c,
?y) is placeholder for an internal unique id, ?c is the name of the complex class and ?y
represents a list variable.

The complete syntax reference is given in Section 3.6.

3.4.2 Semantics

The semantics for the OWL-equivalent predicates is given by implementing the rule sub-
set from the W3C OWL 2 RL profile specification [43] in ObjectLogic.

In the following subsections, we point out the details for the axiomatization of the single
language constructs. Note that we have deviations from the standard OWL semantics for a
number of constructs, in particular: equality, functional and inverse functional properties,
equivalent and disjoint classes, complement of a class. We replace all the rules which
have owl:sameAs in the rule head by constraints. We have a special handling for equality.
We use internal predicates to represent a number of rules which require additional facts.

Where the rules are self-explaining, we simply state them in the form of a table.

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 64

3.4.2.1 owl:Thing

The axiomatization of owl:Thing could be done explicitly with scm-cls, stating that each
class is a subclass of owl:Thing. This would be performance costly, and we choose not to
axiomatize it, rather adding additional axioms where needed.

3.4.2.2 Equality

The semantics of the equality relation owl:sameAs is given by the axioms eq-ref, eq-
sym, eq-trans and eq-rep-s, eq-rep-s,eq-rep-o. The constructs owl:differentFrom and
owl:AllDifferent are realized by eq-diff1, eq-diff2, eq-diff3.

Axiom RDF Syntax
eq-ref IF T(?s, ?p, ?o)

THEN T(?s, owl:sameAs, ?s) T(?p, owl:sameAs, ?p) T(?o, owl:sameAs, ?o)
eq-sym IF T(?x, owl:sameAs, ?y)

THEN T(?y, owl:sameAs, ?x)
eq-trans IF T(?x, owl:sameAs, ?y) T(?y, owl:sameAs, ?z)

THEN T(?x, owl:sameAs, ?z)
eq-rep-s IF T(?s, owl:sameAs, ?s1) T(?s, ?p, ?o)

THEN T(?s1, ?p, ?o)
eq-rep-p IF T(?p, owl:sameAs, ?p1) T(?s, ?p, ?o)

THEN T(?s, ?p1, ?o)
eq-rep-o IF T(?o, owl:sameAs, ?o1) T(?s, ?p, ?o)

THEN T(?s, ?p, ?o1)
eq-diff1 IF T(?x, owl:sameAs, ?y) T(?x, owl:differentFrom, ?y)

THEN false
eq-diff2 IF T(?x, rdf:type, owl:AllDifferent) T(?x, owl:members, ?y) LIST[?y, ?z1, ..., ?zn]

T(?zi, owl:sameAs, ?zj) THEN false
eq-diff3 IF T(?x, rdf:type, owl:AllDifferent) T(?x, owl:distinctMembers, ?y) LIST[?y, ?z1,

..., ?zn] T(?zi, owl:sameAs, ?zj) THEN false

Table 3.8: Semantics of equality

We analyzed three variants for implementing owl:sameAs in ObjectLogic.

Equality handling #1: owl:sameAs is fully axiomatized.

The axioms eq-diff2 and eq-diff3 define the semantics for the AllDifferent construct, in
ObjectLogic denoted by DifferentIndividuals1. The auxiliary axiom reduce-diff (see table
3.9) reduces DifferentIndividuals1, the construct for a list with mutually different mem-
bers, to DifferentIndividuals, the predicate for a list with 2 different members.

Equality handling #2: owl:sameAs is not axiomatized.

We state a constraint which is violated by all individuals in the ontology declared as
_SameIndividual and not having the same name.

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 65

ObjectLogic rules
@{’eq-ref’} _SameIndividual(?s,?s) AND _SameIndividual(?p,?p) AND _SameIndividual(?o,?o)
:- ?s[?p->?o].

@{’eq-sym’} _SameIndividual(?y,?x):-_SameIndividual(?x,?y).

@{’eq-trans’} _SameIndividual(?x,?z) :- _SameIndividual(?x,?y) AND _SameIndividual(?y,?z).

@{’eq-diff1’} !- _SameIndividual(?x,?y) AND _DifferentIndividuals(?x,?y).

@{’eq-diff2’} _DifferentIndividuals(?A, ?B) :- _DifferentIndividuals1(?X) AND ?X[_member-
>?A] AND ?X[_member->?B] AND NOT _SameIndividual(?A, ?B).

@{’eq-diff3’} _SameIndividual(?A, ?B) :- _SameIndividual1(?X) AND ?X[_member->?A]
AND ?X[_member->?B].

@{’reduce-diff’} _DifferentIndividuals(?i,?j) :- _DifferentIndividuals1(?x) AND ?x[_member->?i]
AND ?x[_member->?j] AND NOT _SameIndividual(?i,?j).

Table 3.9: Fully axiomatized equality in ObjectLogic

ObjectLogic rules
@{’eq-sameas-cst’} !- _SameIndividual(?x,?y) AND NOT ?x=?y.

Table 3.10: Constraint for Unique Name Assumption.

Equality handling #3: owl:sameAs is axiomatized partially.

For performance reasons, we choose not to infer equality. _SameIndividual(?x,?y) is not
inferred. Internally we create equivalence classes for same individuals. Thus, the axioms
eq-ref, eq-sym, eq-trans are not needed.

3.4.2.3 Equivalent Classes

Classes are equivalent when they are mutually in a subclass relationship and thus contain
the same set of individuals. Table 3.11 shows in the upper part the axioms for equivalent
classes in RDF syntax and in the lower part their implementation as ObjectLogic rules.
cax-eqc1 and cax-eqc1 state that an individual from one of the classes must be also in
the other class. scm-eqc1 states that if we have two equivalent classes, they must be
mutually in a subclass relationship. scm-eqc2 states that if we have two classes with
a mutual subclass relationship, they must be equivalent classes. Note that scm-eqc2 is
implemented as constraint rather than as rule: for performance reasons, we do not want
to have the owl:sameAs construct in a rule header.

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 66

Axiom RDF Syntax
cax-eqc1 IF T(?c1, owl:equivalentClass, ?c2) T(?x, rdf:type, ?c1) THEN T(?x, rdf:type, ?c2)
cax-eqc2 IF T(?c1, owl:equivalentClass, ?c2) T(?x, rdf:type, ?c2) THEN T(?x, rdf:type, ?c1)
scm-eqc1 IF T(?c1, owl:equivalentClass, ?c2)

THEN T(?c1, rdfs:subClassOf, ?c2) T(?c2, rdfs:subClassOf , ?c1)
scm-eqc2 IF T(?c1, rdfs:subClassOf, ?c2) T(?c2, rdfs:subClassOf, ?c1)

THEN T(?c1, owl:equivalentClass , ?c2)
ObjectLogic rules
@{’cax-eqc1’} ?x:?c2 :- _EquivalentClasses(?c1,?c2) AND ?x:?c1.
@{’cax-eqc2’} ?x:?c1 :- _EquivalentClasses(?c1,?c2) AND ?x:?c2.
@{’scm-eqc1’} ?c1::?c2 AND ?c2::?c1 :- _EquivalentClasses(?c1,?c2).
@{’scm-eqc2’} !- ?c1::?c2 AND ?c2::?c1 AND NOT _EquivalentClasses(?c1,?c2).

Table 3.11: Axioms for Equivalent Classes in OWL and ObjectLogic

3.4.2.4 Disjoint Classes

Axiom cax-dw is realized by a constraint which states a violation if an individual is si-
multaneously in two disjoint classes.

Axiom RDF Syntax
cax-dw IF T(?c1, owl:disjointWith, ?c2) T(?x, rdf:type, ?c1) T(?x, rdf:type, ?c2)

THEN false
ObjectLogic rules
@{’cax-dw’} !- _DisjointClasses(?c1,?c2) AND ?x:?c1 AND ?x:?c2.

Table 3.12: Axioms for Disjoint Classes in ObjectLogic

3.4.2.5 OneOf Class Description

Axiom RDF Syntax
cls-oo IF T(?c, owl:oneOf, ?x) LIST[?x, ?y1, ..., ?yn]

THEN T(?y1, rdf:type, ?c) . . . T(?yn, rdf:type, ?c)
ObjectLogic rules
@{’cls-oo’} ?y1:?c :- $OneOf(?, ?c, ?y1).

Table 3.13: Axioms for OneOf Class Description in ObjectLogic

3.4.2.6 HasValue Class Description

The HasValue class description is a particular case of the someValuesFrom class descrip-
tion.

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 67

Axiom RDF Syntax
cls-hv1 IF T(?x, owl:hasValue, ?y) T(?x, owl:onProperty, ?p) T(?u, rdf:type, ?x)

THEN T(?u, ?p, ?y)
cls-hv2 IF T(?x, owl:hasValue, ?y) T(?x, owl:onProperty, ?p) T(?u, ?p, ?y)

THEN T(?u, rdf:type, ?x)
scm-hv IF T(?c1, owl:hasValue, ?i) T(?c1, owl:onProperty, ?p1)

T(?c2, owl:hasValue, ?i) T(?c2, owl:onProperty, ?p2)
T(?p1,rdfs:subPropertyOf, ?p2) THEN T(?c1, rdfs:subClassOf, ?c2)

ObjectLogic rules
@{’cls-hv1’} ?u[?p->?y] :- $HasValue(?,?x,?p,?y) AND ?u:?x.
@{’cls-hv2’} ?u:?x :- $HasValue(?,?x,?p,?y) AND ?u[?p->?y].
@{’scm-hv’} ?c1::?c2 :- $HasValue(?,?c1,?p1,?y) AND $HasValue(?,?c2,?p2,?y) AND ?p1<<?p2.

Table 3.14: Axioms for HasValue Class Description in ObjectLogic

3.4.2.7 SomeValuesFrom Class Description

An individual ?u is in the SomeValuesFrom class description for the property ?p and the
class ?x if there is at least one individual ?v such that ?u[?p->?v]. The class axioms cls-
svf1 and cls-svf2 state the rules which infer when an individual is part of the class ?x given
by the SomeValuesFrom restriction on the property p. The schema axiom scm-svf1 relates
the class with concept hierarchies and scm-svf2 relates it with property hierarchies.

Axiom RDF Syntax
cls-svf1 IF T(?x, owl:someValuesFrom, ?y) T(?x, owl:onProperty, ?p)

T(?u, ?p, ?v) T(?v, rdf:type, ?y) THEN T(?u, rdf:type, ?x)
cls-svf2 IF T(?x, owl:someValuesFrom, owl:Thing) T(?x, owl:onProperty, ?p) T(?u, ?p, ?v) THEN

T(?u, rdf:type, ?x)
scm-svf1 IF T(?c1, owl:someValuesFrom, ?y1) T(?c1, owl:onProperty, ?p)

T(?c2, owl:someValuesFrom, ?y2) T(?c2, owl:onProperty, ?p)
T(?y1, rdfs:subClassOf, ?y2) THEN T(?c1, rdfs:subClassOf , ?c2)

scm-svf2 IF T(?c1, owl:someValuesFrom, ?y) T(?c1, owl:onProperty, ?p1) T(?c2,
owl:someValuesFrom, ?y) T(?c2, owl:onProperty, ?p2) T(?p1, rdfs:subPropertyOf, ?p2)
THEN T(?c1, rdfs:subClassOf, ?c2)

ObjectLogic rules
@{’cls-svf1’} ?u:?x :- $SomeValuesFrom(?,?x,?p,?y) AND ?u[?p->?v] AND ?v:?y.
@{’cls-svf2’} ?u:?x :- $SomeValuesFrom(?,?x,?p,owl#Thing) AND ?u[?p->?v].
{’scm-svf1’}
?c1::?c2 :- $SomeValuesFrom(?,?c1,?p,?y1) AND $SomeValuesFrom(?,?c2,?p,?y2) AND ?y1::?y2.
@{’scm-svf2’}
?c1::?c2 :- $SomeValuesFrom(?,?c1,?p1,?y) AND $SomeValuesFrom(?,?c2,?p2,?y) AND ?p1<<?p2.

Table 3.15: Axioms for SomeValuesFrom Class Description in ObjectLogic

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 68

3.4.2.8 AllValuesFrom Class Description

cls-avf states that all values ?v of individuals ?u in the owl:allValuesFrom class descrip-
tion ?x on the property ?p must be in restricting range ?y. The schema axiom scm-avf1
relates the class with concept hierarchies and scm-avf2 relates it with property hierarchies.

Axiom RDF Syntax
cls-avf IF T(?x, owl:allValuesFrom, ?y) T(?x, owl:onProperty, ?p)

T(?u, rdf:type, ?x) T(?u, ?p, ?v) THEN T(?v, rdf:type, ?y)
scm-avf1 IF T(?c1, owl:allValuesFrom, ?y1) T(?c1, owl:onProperty, ?p)

T(?c2, owl:allValuesFrom, ?y2) T(?c2, owl:onProperty, ?p)
T(?y1, rdfs:subClassOf, ?y2) THEN T(?c1, rdfs:subClassOf, ?c2)

scm-avf2 IF T(?c1, owl:allValuesFrom, ?y) T(?c1, owl:onProperty, ?p1)
T(?c2, owl:allValuesFrom, ?y) T(?c2, owl:onProperty, ?p2)
T(?p1, rdfs:subPropertyOf, ?p2) THEN T(?c2, rdfs:subClassOf, ?c1)

ObjectLogic rules
@{’cls-avf’} ?v:?y :- $AllValuesFrom(?,?x,?p,?y) AND ?u:?x AND ?u[?p->?v].
@{’scm-avf1’}
?c1::?c2 :- $AllValuesFrom(?,?c1,?p,?y1) AND $AllValuesFrom(?,?c2,?p,?y2) AND ?y1::?y2.
@{’scm-avf2’}
?c2::?c1 :- $AllValuesFrom(?,?c1,?p1,?y) AND $AllValuesFrom(?,?c2,?p2,?y) AND ?p1<<?p2

Table 3.16: Axioms for AllValuesFrom Class Description in ObjectLogic

3.4.2.9 MaxCardinality Class Descriptions

The OWL 2 RL profile allows only MaxCardinality 0 and 1. We state cls-maxc1 as a
constraint, which is violated if the _MaxCardinality(0, p, C) class contains individuals ?u
having a value for the property ?p.

Axiom RDF Syntax
cls-maxc1 IF T(?x, owl:maxCardinality, "0"ˆˆxsd:nonNegativeInteger)

T(?x, owl:onProperty, ?p) T(?u, rdf:type, ?x) T(?u, ?p, ?y)
THEN false

cls-maxc2 T(?x, owl:maxCardinality, "1"ˆˆxsd:nonNegativeInteger)
T(?x, owl:onProperty, ?p) T(?u, rdf:type, ?x) T(?u, ?p, ?y1) T(?u, ?p, ?y2)
THEN T(?y1, owl:sameAs, ?y2)

ObjectLogic rules
@{’cls-maxc1’} !- $MaxCardinality(?,?x,0,?p,?c) AND ?u:?x AND ?u[?p->?y].
@{’cls-maxc2’}
!- $MaxCardinality(?,?x,1,?p,?c) AND ?u:?x AND ?u[?p->?y1] AND ?u[?p->?y2] AND NOT ?y1=?y2.

Table 3.17: Axioms for MaxCardinality Class Description in ObjectLogic

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 69

3.4.2.10 Union of Classes

The class construct owl:unionOf corresponds to the disjunction operator in predicate
logic. The axiomatization of the union of classes is given by the axioms cls-uni and
scm-uni.

Axiom RDF Syntax
cls-uni IF T(?c, owl:unionOf, ?x) LIST[?x, ?c1, ..., ?cn] T(?y, rdf:type, ?ci)

THEN T(?y, rdf:type, ?c)
scm-uni IF T(?c, owl:unionOf, ?x) LIST[?x, ?c1, ..., ?cn]

THEN
T(?c1, rdfs:subClassOf, ?c) T(?c2, rdfs:subClassOf, ?c) ...
T(?cn, rdfs:subClassOf, ?c)

ObjectLogic rules
@{’cls-uni’} ?y:?c :- $UnionOf(?,?c,?c1) AND ?y:?c1.
@{’scm-uni’} ?c1::?c :- $UnionOf(?,?c,?c1).

Table 3.18: Axioms for UnionOf Class Description in ObjectLogic

3.4.2.11 Intersection of Classes

The class construct owl:intersectionOf corresponds to the conjunction operator in pred-
icate logic. The axiomatization of the intersection of classes is given by the axioms cls-
int1, cls-int2 and scm-int, as shown in the upper part of table 3.19.

We do not need cls-int2 as it is a consequence of scm-int and cax-sco. Cf. cls-int2, the
intersection ?c of a list of classes is a subclass of every member class ?ci in the list. Then
according to the subclass axiom @{’cax-sco’} ?x:?c2 :- ?c1::?c2 AND ?x:?c1, every
individual ?y from ?c must also be an instance of each list member ?ci, which implies
that cls-int2 holds true.

The axioms for axiomatizing the intersection of classes contain lists. They were splitted
for better performance in sub-axioms for lists with less than 9 members plus one axiom
defining the recursion:

If C1−9 is the identifier for _IntersectionOf([C1, C2, . . . ,C9]), then this predicate is repre-
sented internally as

$IntersectionOf8(<id>, C1−9, C1, . . . ,C7, _IntersectionOf([C8, C9]))

and

_IntersectionOf([C8, C9])

is given by

$IntersectionOf2(<id>, C8−9 ,C8, C9).

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 70

Axiom RDF Syntax
cls-int1 IF T(?c, owl:intersectionOf, ?x) LIST[?x, ?c1, ..., ?cn]

T(?y, rdf:type, ?c1) T(?y, rdf:type, ?c2) ... T(?y, rdf:type, ?cn)
THEN T(?y, rdf:type, ?c)

cls-int2 IF T(?c, owl:intersectionOf, ?x) LIST[?x, ?c1, ..., ?cn] T(?y, rdf:type, ?c)
THEN T(?y, rdf:type, ?c1) T(?y, rdf:type, ?c2) ... T(?y, rdf:type, ?cn)

scm-int IF T(?c, owl:intersectionOf, ?x) LIST[?x, ?c1, ..., ?cn]
THEN T(?c, rdfs:subClassOf, ?c1) T(?c, rdfs:subClassOf, ?c2) ...
T(?c, rdfs:subClassOf, ?cn)

ObjectLogic rules
@{’cls-int1-2’} ?y:?c :- $IntersectionOf2(?,?c,?c1,?c2) AND ?y:?c1 AND ?y:?c2.
@{’cls-int1-3’} ?y:?c :- $IntersectionOf3(?,?c,?c1,?c2,?c3) AND ?y:?c1 AND ?y:?c2 AND ?y:?c3.
..
@{’scm-int-2’} ?c::?c1 AND ?c::?c2 :- $IntersectionOf2(?,?c,?c1,?c2).
@{’scm-int-3’} ?c::?c1 AND ?c::?c2 AND ?c::?c3 :- $IntersectionOf3(?,?c,?c1,?c2,?c3).
..

Table 3.19: Axioms for IntersectionOf Class Description in ObjectLogic

3.4.2.12 Complement of a Class

The ObjectLogic equivalent of the cls-com rule is an ObjectLogic constraint which states
that an individual ?x cannot be an instance of a class ?c1 and of a class ?c2 if ?c1 is
defined as the complement of ?c2. Table 3.20 shows in the upper part the axiom for the
complement of a class in RDF syntax and in the lower part the implementation as Object-
Logic constraint: an individual cannot be in a class and in its complement simultanously.

Axiom RDF Syntax
cls-com IF T(?c1, owl:complementOf, ?c2) T(?x, rdf:type, ?c1) T(?x, rdf:type, ?c2)

THEN false
ObjectLogic rules
!- $ComplementOf(?,?c1,?c2) AND ?x:?c1 AND ?x:?c2.

Table 3.20: Axioms for ComplementOf Class Description in ObjectLogic

3.4.2.13 Algebraic and Inverse Properties

A property is symmetric, if from relating an individual ?x with an individual ?y follows
that ?y is also related with ?x, as expressed by prp-symp. Symmetric properties have
identical domain and range. A property is asymmetric, if there may not be a relation
between ?x and ?y and ?y and ?x simultanously, as expressed by prp-asymp.

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 71

Axiom RDF Syntax
prp-irp IF T(?p, rdf:type, owl:IrreflexiveProperty) T(?x, ?p, ?x) THEN false
prp-symp IF T(?p, rdf:type, owl:SymmetricProperty) T(?x, ?p, ?y) THEN T(?y, ?p, ?x)
prp-asyp IF T(?p, rdf:type, owl:AsymmetricProperty) T(?x, ?p, ?y) T(?y, ?p, ?x) THEN false
prp-trp IF T(?p, rdf:type, owl:TransitiveProperty) T(?x, ?p, ?y) T(?y, ?p, ?z) THEN

T(?x, ?p, ?z)
prp-inv1 IF T(?p1, owl:inverseOf, ?p2) T(?x, ?p1, ?y) THEN T(?y, ?p2, ?x)
prp-inv2 IF T(?p1, owl:inverseOf, ?p2) T(?x, ?p2, ?y) THEN T(?y, ?p1, ?x)
ObjectLogic rules
// Irreflexive property
@{’prp-irp’} !- ?c[?p{_irreflexive}*=>()] AND ?x:?c[?p->?x].
// Symmetric property
@{’prp-symp’} ?y[?p->?x] :- ?c[?p{_symmetric}*=>()] AND ?x:?c[?p->?y].
// Asymmetric property
@{’prp-asyp’} ?c[?p{_asymmetric}*=>()] AND ?x:?c[?p->?y] AND ?y[?p->?x].
// Transitive property @{’prp-trp’} ?x[?p->?z] :- ?c[?p{_transitive}*=>()] AND ?x:?c[?p->?y] AND
?y:?c[?p->?z].
// Inverse property @{’prp-inv1’} ?y:?c2[?p2->?x] :- ?c1[?p1 {inverseOf(?p2)} *=> ?c2] AND
?x:?c1[?p1->?y].
@{’prp-inv2’} ?y:?c1[?p1->?x] :- ?c1[?p1 {inverseOf(?p2)} *=> ?c2] AND ?x:?c2[?p2->?y].

Table 3.21: Axioms for Algebraic and Inverse Properties

3.4.2.14 Functional and Inverse Functional Properties

For functional and inverse functional properties we provide a special handling, addressing
thus performance issues of owl:sameAs. Instead of inferring owl:sameAs, we state a con-
straint violation if a functional property has two different values for the same individual
or an inverse functional property has the same value for two different individuals. Our
interpretation of prp-fp states a constraint violation each time a property ?p is defined as
functional ?C[?p{0:1}*=>()] and there is an individual ?x having two values ?y1, ?y2
for ?p which are not related through the _SameIndividual relation. Our interpretation of
prp-ifp states a constraint violation each time a property ?p is defined as inverse functional
?C[?p{inverseFunctional}*=>()] and there are two different individuals ?x1, ?x2 having
the same value ?y for ?p.

Axiom RDF Syntax
prp-fp IF T(?p, rdf:type, owl:FunctionalProperty) T(?x, ?p, ?y1) T(?x, ?p, ?y2)

THEN T(?y1, owl:sameAs, ?y2)
prp-ifp IF T(?p, rdf:type, owl:InverseFunctionalProperty) T(?x1, ?p, ?y) T(?x2, ?p, ?y)

THEN T(?x1, owl:sameAs, ?x2)
ObjectLogic rules
@{’prp-fp’} !- ?C[?p{0:1}*=>()] AND
?x[?p->?y1] AND ?x[?p->?y2] AND NOT _SameIndividual(?y1, ?y2).
@{’prp-ifp’} !- ?C[?p{inverseFunctional}*=>()] AND
?x1[?p->?y] AND ?x2[?p->?y] AND NOT _SameIndividual(?x1, ?x2).

Table 3.22: Axioms for Functional and Inverse Functional Properties

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 72

3.4.2.15 Equivalent and Disjoint Properties

We provide a special handling for prp-pwd and scm-eqp2, which we implement as con-
straint in order to avoid inferring owl:sameAs.

Axiom RDF Syntax
prp-eqp1 IF T(?p1, owl:equivalentProperty, ?p2) T(?x, ?p1, ?y) THEN T(?x, ?p2, ?y)
prp-eqp2 IF T(?p1, owl:equivalentProperty, ?p2) T(?x, ?p2, ?y) THEN T(?x, ?p1, ?y)
prp-pwd IF T(?p1, owl:propertyDisjointWith, ?p2) T(?x, ?p1, ?y) T(?x, ?p2, ?y) THEN false
scm-eqp1 IF T(?p1, owl:equivalentProperty, ?p2)

THEN T(?p1, rdfs:subPropertyOf, ?p2) T(?p2, rdfs:subPropertyOf, ?p1)
scm-eqp2 IF T(?p1, rdfs:subPropertyOf, ?p2) T(?p2, rdfs:subPropertyOf, ?p1)

THEN T(?p1, owl:equivalentProperty, ?p2)

ObjectLogic rules
@{’prp-eqo1’} ?x[?p2 -> ?y] :- _EquivalentProperties(?p1,?p2) AND ?x[?p1->?y].
@{’prp-eqp2’} ?x[?p1 -> ?y] :- _EquivalentProperties(?p1,?p2) AND ?x[?p2 ->?y].
@{’prp-pwd’} !- _DisjointProperties(?p1,?p2) AND ?x[?p1->?y] AND ?x[?p2->?y].
@{’scm-eqp1’} ?p1<<?p2 AND ?p2<<?p1 :- _EquivalentProperties(?p1,?p2).
@{’scm-eqp2’} !- ?p1<<?p2 AND ?p2<<?p1 AND NOT _EquivalentProperties(?p1, ?p2).

Table 3.23: Axioms for Equivalent and Disjoint Properties

3.4.2.16 Property Chains

The property chain axiom prp-spo2 has been split for performance reasons in the axioms
prp-spo2-2 (for a chain given by two properties) to prp-spo2-8 (for a chain given by eight
properties). Larger property chains are computed recursively.

Axiom RDF Syntax
prp-spo1 IF T(?p1, rdfs:subPropertyOf, ?p2) T(?x, ?p1, ?y) THEN T(?x, ?p2, ?y)
prp-spo2 IF T(?p, owl:propertyChainAxiom, ?x)

LIST[?x, ?p1, ..., ?pn] T(?u1, ?p1, ?u2)
T(?u2, ?p2, ?u3) ... T(?un, ?pn, ?un+1)
THEN T(?u1, ?p, ?un+1)

ObjectLogic rules
@{’prp-spo1’} ?x[?p2->?y] :- ?p1<<?p2 AND ?x[?p1->?y].
@{’prp-spo2-2’}
?u1[?p->?u3] :- $PropertyChain2(?,?p,?p1,?p2) AND ?u1[?p1->?u2] AND ?u2[?p2->?u3].
@{’prp-spo2-3’}
?u1[?p->?u4] :- $PropertyChain3(?,?p,?p1,?p2,?p3) AND ?u1[?p1->?u2] AND ?u2[?p2->?u3] AND
?u3[?p3->?u4].
. . .

Table 3.24: Axioms for Property Chains in ObjectLogic

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 73

3.4.2.17 Keys

A set of properties is a key for a class, if no two named instances of the class coincide on
all values of the properties. This language feature is interesting when mapping database
tables with primary keys consisting of more than one attribute to a concept in an ontology.
We provide a special handling for prp-key, which we implement as constraint in order to
avoid inferring owl:sameAs. The key axiom prp-key is split for performance reasons in
the constraints prp-key-1 (for a key given by one property) to prp-key-8 (for a key given by
eight properties). Keys consisting of more than eight properties are rewritten recursively.

Axiom RDF Syntax
prp-key IF T(?c, owl:hasKey, ?u)

LIST[?u, ?p1, ..., ?pn] T(?x, rdf:type, ?c) T(?x, ?p1, ?z1) ... T(?x, ?pn, ?zn)T(?y,
rdf:type, ?c) T(?y, ?p1, ?z1) ... T(?y, ?pn, ?zn)
THEN T(?x, owl:sameAs, ?y)

ObjectLogic rules
@{’prp-key-1’} !- $HasKey1(?,?c,?p) AND ?x:?c AND ?x[?p->?r] AND ?y:?c AND ?y[?p->?r] AND
NOT _SameIndividual(?x,?y).
@{’prp-key-2’} !- $HasKey2(?,?c,?p1,?p2) AND ?x:?c AND ?x[?p1->?r1,?p2->?r2] AND ?y:?c AND
?y[?p1->?r1,?p2->?r2] AND NOT _SameIndividual(?x,?y).
@{’prp-key-3’}
!- $HasKey3(?,?c,?p1,?p2,?p3) AND ?x:?c AND ?x[?p1->?r1,?p2->?r2,?p3->?r3] AND ?y:?c AND
?y[?p1->?r1,?p2->?r2,?p3->?r3] AND NOT _SameIndividual(?x,?y).
. . .

Table 3.25: Axioms for Keys in ObjectLogic

3.4.3 Tests

Tests for the OWL 2 RL in ObjectLogic implementation consisted in a series of syntac-
tical translation tests, followed by semantical tests for the axiomatization part. Before
including the OWL 2 RL functionality in the product, a profile identification test and a
benchmark test will be performed.

3.4.3.1 Semantic Tests

Semantic tests specifically address the functionality of OWL entailment checkers. Each
test case of this type specifies necessary requirements that must be satisfied by any entail-
ment checker that meets the according conformance conditions. Semantic tests specify
one or more OWL 2 ontology documents and check semantic conditions defined with re-
spect to abstract structures obtained from the ontology documents, typically via a parsing
process. The abstract structure is an OWL 2 ontology. Let Ont(d) be the abstract structure
obtained from the ontology document d.

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 74

Entailment tests as specified by the OWL 2 Conformance and Test Cases [53] specify
two ontology documents: a premise ontology document d1 and a conclusion ontology
document d2 where Ont(d1) entails Ont(d2) with respect to the specified semantics. If
provided with inputs d1 and d2 a conforming entailment checker should return True,
it should not return Unknown, and it must not return False. Non-Entailment tests (or
negative entailment tests) specify two ontology documents: a premise ontology document
Ont(d1) and a non-conclusion ontology Ont(d2) where Ont(d1) does not entail Ont(d2)
with respect to the specified semantics. The tests we performed cover the OWL 2 RL Test
Cases 1.

//Schema
_IntersectionOf([_HasValue(p,v),_HasValue(q,w)])::C.
a[p->v].a[q->w].b[p->v].c[q->w].
d[p->z].d[q->z].
//Axioms
@{’cls-hv1’} ?u[?p->?y] :- $HasValue(?,?x,?p,?y) AND ?u:?x.
@{’cls-hv2’} ?u:?x :- $HasValue(?,?x,?p,?y) AND ?u[?p->?y].
// ...
@{’cls-int1-2’} ?y:?c :- $IntersectionOf2(?,?c,?c1,?c2) AND ?y:?c1 AND ?y:?c2.
@{’cls-int1-3’} ?y:?c :- $IntersectionOf3(?,?c,?c1,?c2,?c3) AND ?y:?c1 AND ?y:?c2 AND ?y:?c3.
@{’scm-int-2’} ?c::?c1 AND ?c::?c2 :- $IntersectionOf2(?,?c,?c1,?c2).
@{’scm-int-3’} ?c::?c1 AND ?c::?c2 AND ?c::?c3 :- $IntersectionOf3(?,?c,?c1,?c2,?c3).
// ...
// Query
?- ?i:C.
//Expected results
a

Table 3.26: Entailment test for the production IntersectionOf-HasValue

3.4.3.2 Tests with Optimization Switches

OntoBroker has a number of performance-related configuration switches which improve
performance significantly depending on the type of the rule. If configuration option ’Con-
ceptNamesGround’ is on, rules must not have variables in concept positions. If ’Attribute-
NamesGround’ is used, no rule may have a head containing a variable for the relation
name as these cannot be reinterpreted during compile time.

The configuration switch ConceptNamesGround may be used for equality, hasKey, com-
plementOf, maxCardinality and disjointClasses. On the other hand, most of the axioms
for complex classes have variables in concept positions which excludes the usage of Con-
ceptNamesGround. The configuration switch AttributesNamesGround may be used for
equality, hasKey, complementOf, disjointClasses, equivalentClasses, functional proper-
ties, but not for any axiom containing the subproperty relationship, and thus not for has-
Value, someValuesFrom, allValuesFrom.

1OWL Test Cases http://owl.semanticweb.org/page/OWL_2_Test_Cases

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 75

//Schema
_UnionOf([_UnionOf([E,F]),_IntersectionOf([E,F]),
_OneOf([a,b]),_HasValue(p,u),_SomeValuesFrom(q,D)])::C.
// Instances
e:E. f:F. x[p->u]. y[q->v]. v:D. z[q->w].
// Axioms
@{’scm-int-2’} ?c::?c1 AND ?c::?c2 :- $IntersectionOf2(?,?c,?c1,?c2).
@{’scm-int-3’} ?c::?c1 AND ?c::?c2 AND ?c::?c3 :- $IntersectionOf3(?,?c,?c1,?c2,?c3).
@{’cls-int1-2’} ?y:?c :- $IntersectionOf2(?,?c,?c1,?c2) AND ?y:?c1 AND ?y:?c2.
@{’cls-int1-3’} ?y:?c :- $IntersectionOf3(?,?c,?c1,?c2,?c3) AND ?y:?c1 AND ?y:?c2 AND ?y:?c3.
// ...
@{’cls-uni’} ?y:?c :- $UnionOf(?,?c,?ci) AND ?y:?ci.
@{’scm-uni’} ?ci::?c :- $UnionOf(?,?c,?ci).
@{’cls-hv1’} ?u[?p->?y] :- $HasValue(?,?x,?p,?y) AND ?u:?x.
@{’cls-hv2’} ?u:?x :- $HasValue(?,?x,?p,?y) AND ?u[?p->?y].
@{’scm-hv’} ?c1::?c2 :- $HasValue(?,?c1,?p1,?y) AND $HasValue(?,?c2,?p2,?y) AND ?p1«?p2.
@{’cls-oo’} ?yi:?c :- $OneOf(?,?c,?yi).
@{’cls-svf’} ?u:?x :- $SomeValuesFrom(?,?x,?p,?y) AND ?u[?p->?v] AND ?v:?y.
@{’scm-svf1’} ?c1::?c2 :- $SomeValuesFrom(?,?c1,?p,?y1) AND $SomeValuesFrom(?,?c2,?p,?y2) AND
?y1::?y2.
@{’scm-svf2’} ?c1::?c2 :- $SomeValuesFrom(?,?c1,?p1,?y) AND $SomeValuesFrom(?,?c2,?p2,?y) AND
?p1«?p2.
// Query ?- ?x:C.
//Results a,b,e,f,x,y

Table 3.27: Entailment test for the combination of UnionOf with all admissible subclass
expressions

3.5 Conclusions

The OWL 2 RL in ObjectLogic implementation is an example of a tight coupling of
rules and ontologies. Ontology and rule language is the same: ObjectLogic. We have
implemented the OWL syntactical constructs as ObjectLogic predicates and added the
semantics of the RL profile as given by its defining rule set in the form of ObjectLogic
rules.

Some of the OWL features - especially owl:sameAs - were found to be performance-
critical. The performance issues were addressed by means of a specific interpretation
for equality, functional and inverse functional properties, equivalent and disjoint classes.
We use constraints and a partial axiomatization of equality. In this we have a deviation
from the standard OWL semantics. This should not be critical, since we are able to satify
the higher prioritized features from industrial usecases while maintaining performance
requirements.

Finally, we learned that although part of the OWL functionality can be expressed by core
ObjectLogic rules, other OWL specific features like owl:sameAs offer new and promising
ways of reasoning and inferring facts from existing knowledge bases.

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 76

3.6 OWL 2 RL in ObjectLogic Syntax Reference

The following section enumerates the predicates introduced in ObjectLogic as equivalents
of the OWL syntactical elements. We present them in the form of tables. The tables for
the constructs without special internal representation have as first column the name of the
language feature, as second column the OWL 2 functional syntax, as third column the
corresponding ObjectLogic Syntax. The tables for features with an internal ObjectLogic
representation (boolean class expressions, datarange expressions, property chains, keys)
have as first column the functional syntax, as second column the ObjectLogic syntax and
as third column the ObjectLogic internal representation. Note that the internal represen-
tation is used in particular for the axiomatization of language constructs containing lists.

PREDEFINED AND NAMED CLASSES

Feature Functional Syntax ObjectLogic Syntax
named class CN CN
universal class owl:Thing owl#Thing
empty class owl:Nothing owl#Nothing

DATATYPE DEFINITIONS

Feature Functional Syntax ObjectLogic Syntax
datatype definition DatatypeDefinition(DN D) _DatatypeDefinition(DN, D)

ASSERTIONS

Feature Functional Syntax ObjectLogic Syntax
equality SameIndividual(a1 . . .an) _SameIndividual(a1, a2)

_SameIndividual1([a1, . . .an]).

inequality DifferentIndividuals(a1 a2) _DifferentIndividuals(a1, a2).

pairwise
inequality

DifferentIndividuals(a1 . . .an) _DifferentIndividuals1([a1, . . . an])

class assertion ClassAssertion (C a) a:C.
positive object
property assertion

ObjectPropertyAssertion(PN a1 a2) a1[PN -> a2].

positive data
property assertion

DataPropertyAssertion(R a v) a[R ->v].

negative object
property assertion

NegativePropertyAssertion(P a1a2) _NegativePropertyAssertion(P, a1, a2).

negative data prop-
erty assertion

NegativePropertyAssertion(R a v) _NegativePropertyAssertion(R, a, v).

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 77

CLASS EXPRESSION AXIOMS

Feature Functional Syntax ObjectLogic Syntax
subclass SubClassOf(C1 C2) C1::C2.

equivalent
classes

EquivalentClasses(C1 C2) _EquivalentClasses(C1, C2).

equivalent
classes

EquivalentClasses(C1 . . .Cn) _EquivalentClasses1([C1,. . . , Cn]).

disjoint
classes

DisjointClasses(C1 C2) _DisjointClasses(C1,C2).

pairwise disjoint
classes

DisjointClasses(C1 . . .Cn) _DisjointClasses1([C1,. . . , Cn]).

BOOLEAN CONNECTIVES

Functional Syntax ObjectLogic Syntax ObjectLogic Internal Facts
intersection
ObjectIntersectionOf(C1

. . .Cn)
_IntersectionOf([C1, C2])
. . .
_IntersectionOf([C1,C2,. . . ,C8])
. . .
_IntersectionOf([C1,C2,. . . ,C9])

$IntersectionOf2(<id>,C,C1,C2)
. . .
$IntersectionOf8(<id>, C, C1, . . . , C8)
. . .
$IntersectionOf8(<id>, C, C1,. . . , C7,
_IntersectionOf([C8,C9]))

union
ObjectUnionOf(C1

. . .Cn)
_UnionOf([C1, . . .Cn]) $UnionOf(<id>,C, C1)

. . .
$UnionOf(<id>,C, Cn)

complement
ObjectComplementOf(C) _ComplementOf(C) $ComplementOf(<id>,

_ComplementOf(C), C)
enumeration
ObjectOneOf(a1 . . .an) _OneOf([a1, . . . , an]) $OneOf(<id>, C, a1)

. . .
$OneOf(<id>, C, an)

PROPERTY EXPRESSIONS

Functional Syntax ObjectLogic Syntax ObjectLogic Internal Facts
named object property
PN PN
universal object property
owl:topObjectProperty owl#topObjectProperty
empty object property
owl:
bottomObjectProperty

owl#bottomObjectProperty

inverse property
ObjectInverseOf(PN) _InverseOf(PN) $InverseOf(<id>, _InverseOf(PN), PN)

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 78

DATARANGE EXPRESSIONS

Functional Syntax ObjectLogic Syntax ObjectLogic Internal Facts

data range intersection
DataIntersectionOf(D1

. . .Dn)
_IntersectionOf([D1, D2]) $IntersectionOf2(<id>,

_IntersectionOf([D1, D2]), D1, D2)
.
_IntersectionOf([D1, D2,
. . . ,D8])

$IntersectionOf8(<id>, D, D1, . . . ,D8)

_IntersectionOf([D1, D2,
. . . ,D9])

$IntersectionOf8(<id>, D, D1, . . . ,D7,
_IntersectionOf([D8, D9]))

data range union
DataUnionOf(D1 . . .Dn) _UnionOf([D1, . . . ,Dn]) $UnionOf(<id>,D, D1)

. . .
$UnionOf(<id>,D,Dn)

literal enumeration
DataOneOf(v1 . . .vn) _OneOf(v1, . . .vn) $OneOf(<id>,_OneOf([v1, . . . ,vn]), v1)

. . .
$OneOf(<id>,_OneOf([v1, . . . ,vn]), vn)

datatype restriction
DataTypeRestriction(DN
f1 v1 . . . fn vn)

_DatatypeRestriction(DN, [f1,
v1, . . . fn, vn])

none

PROPERTY CHAINS

Functional Syntax ObjectLogic Syntax ObjectLogic Internal Facts

SubObjectPropertyOf
(ObjectPropertyChain(P1

. . .Pn) P)

_PropertyChain([P1, P2]) $PropertyChain2(<id>,P,P1, P2)

_PropertyChain([P1, P2, . . . ,P8]) $PropertyChain8(<id>,P,P1, . . . ,P8)

_PropertyChain([P1, P2, . . . ,P9]) $PropertyChain8(<id>,
_ PropertyChain ([P1,. . . , P9]), P1,
. . . ,P7, _PropertyChain ([P8, P9]))

where

_PropertyChain([P8, P9])

is given by

$PropertyChain2(<id>,
_PropertyChain([P8, P9],P8, P9)

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 79

OBJECT PROPERTY AXIOMS

Feature Functional Syntax ObjectLogic Syntax
subproperty SubPropertyOf(P1 P2) P1 << P2

property
domain

ObjectPropertyDomain(P C) C[P*=>rdfs#Resource]

property
range

ObjectPropertyRange(P C)

equivalent
properties

EquivalentObjectProperties(P1 . . .Pn) _EquivalentProperties(P1, . . .Pn)

disjoint
properties

DisjointObjectProperties(P1 P2) _DisjointProperties(P1, P2)

pairwise
disjoint
properties

DisjointObjectProperties(P1 . . .Pn) _DisjointProperties1([P1, . . . , Pn])

inverse
properties

InverseObjectProperty(P1 P2) owl#Thing[P1{inverseOf(P2)*=>()]

FUNCTIONAL AND INVERSE FUNCTIONAL PROPERTIES

Feature Functional Syntax ObjectLogic Syntax
functional
property

FunctionalProperty(P) owl#Thing[P{0:1}*=>()]

inverse
functional
property

InverseFunctionalProperty(P) owl#Thing[P{inverseFunctional}*=>()]

ALGEBRAIC PROPERTIES

Feature Functional Syntax ObjectLogic Syntax
irreflexive
property

IrreflexiveObjectProperty(P) owl#Thing [P{irreflexive} *=> ()].

symmetric
property

SymmetricObjectProperty(P) owl#Thing [P{symmetric} *=> ()].

asymmetric
property

AsymmetricObjectProperty(P) owl#Thing [P{asymmetric} *=> ()].

transitive
property

TransitiveObjectProperty(P) owl#Thing [P{transitive} *=> ()].

CHAPTER 3. OWL 2 RL IN OBJECT LOGIC 80

KEYS

Functional
Syntax

ObjectLogic Syntax ObjectLogic Internal Facts

HasKey (C
(P1. . .Pm))
m>0

_HasKey(C, [P1]) $HasKey1(<id>, C, P1)

_HasKey(C, [P1,P2]) $HasKey2(<id>, C, P1,P2)

.

_HasKey(C, [P1,..,P8]) $HasKey8(<id>, C, P1,..,P8)
_HasKey(C, [P1,..,P9]) $HasKeyAnyArity(<id>,C, [P1,..,P9])

DATA PROPERTY AXIOMS

Feature Functional Syntax ObjectLogic Syntax
subproperty SubPropertOf(R1 R2) R1 << R2

property
domain

DataPropertyDomain(R C) C[R*=>rdfs#Resource]

property
range

DataPropertyRange(R C) owl#Thing[R*=>D]

equivalent
properties

EquivalentDataProperties(R1 . . .Rn) _EquivalentProperties1([R1 . . .Rn])

disjoint
properties

DisjointDataProperties(R1 R2) _DisjointProperties(R1 R2)

pairwise
disjoint
properties

DisjointDataProperties(R1 . . .Rn) _DisjointProperties1([R1 . . .Rn])

INDIVIDUALS & LITERALS

Feature Functional Syntax ObjectLogic Syntax
named
individual

aN aN

anonymous
individual

_:a _#‘a‘

literal
(datatype value)

"abc"ˆˆDN "abc"ˆˆDN

DECLARATIONS

Feature Functional Syntax ObjectLogic Syntax
datatype Declaration(Datatype(DN)) DN:owl#DataProperty
object
property

Declaration(ObjectProperty(PN)) PN:owl#ObjectProperty

data
property

Declaration(DataProperty(R)) R:owl#DataProperty

annotation
property

Declaration(AnnotationProperty(A)) A:owl#AnnotationProperty

named
individual

Declaration(NamedIndividual(aN)) aN:owl#NamedIndividual

Chapter 4

Combining Production Rules and
Ontologies

The main goal of this work is to combine production rules and ontologies. The aim of
such a combination is to use an ontology to describe the vocabulary used in the rules.
The language we consider for the description of such ontologies is the W3C standard
OWL [47], which is a declarative, logical language, based on Description Logics family
of knowledge representation languages [8]. In contrast, the language of production rules
has an operational semantics, i.e., the semantics is given by the algorithm used to execute
the rules.

The integration of two knowledge representation languages with such different semantics
requires a solid theoretical foundation in order to understand the implications of the com-
bination – both semantical and operational – on a deep level. In this chapter we bridge
the gap between the semantics of production rules and ontologies.

In Section 4.1 we present a loosely-coupling approach, where the semantics of the pro-
duction rules and the ontologies are decoupled: the interaction between the two semantics
is based on entailment. In Section 4.2 we present a tightly-coupling approach based on
fixedpoint logic, where there is a stronger potential interaction between the rules and on-
tologies. In particular, in this section we provide a new semantics for production systems
augmented with DL ontologies, and discuss several issues that arise when combining
production rules (PR) with description logic (DL) ontologies. In addition, we extend the
FPL embedding presented in deliverable D3.2 to cover the semantic of the combination.
Finally, we present conclusions in Section 4.3.

4.1 Loose Coupling of Production Rules and Ontologies

There exist different variants of descriptions of Production Rules (PRs). They differ
mainly in descriptions of conditions and actions. Regularly conditions corresponds to

81

CHAPTER 4. PRS AND ONTOLOGIES 82

sets of patterns, i.e. sets of templates of nested objects, that are being matched against
elements of a working memory, that are called facts. A working memory represents data
and exploit a Closed World Assumption (CWA). If a condition of a PR is successfully
matched, an action of the rule can be applied. Actions regularly perform operations,
changing a working memory.

There are different ways of representing a working memory, different patterns matching
and action performance algorithms (depending on the way facts in a working memory
are represented) were developed (see, for example, [21]). In this section we try to com-
bine ontologies with PRs. Together with a working memory we consider an ontology,
imposing restrictions and giving a structure to the working memory. And while checking
conditions and performing actions, the ontology should be taken into account.

In contrast to databases, ontologies exploit an Open World Assumption (OWA). So, as far
as we use ontologies, we take an OWA in our approach, that fundamentally differs it from
other known approaches to PRs descriptions.

To describe an ontology and a working memory, we use a First-Order Logic (FOL) in
general and a Description Logics (DLs) in particular and define conditions and actions
using capabilities of these logics. We develop here different kinds of semantics of a
condition satisfiability (patterns matching) and an action performance using some known
results of research (for example, in the area of DL ontologies) and adapting them to our
case.

The rest of the section is organized as follows. In Section 4.1.1 we introduce FOL and
DLs and give definitions to main components of PRs using FOL. Section 4.1.2 presents
a semantics of conditions and actions of production rules over a First-Order Knowledge
Base. In Section 4.1.2.1 we consider conditions of PRs and introduce two kinds of con-
dition satisfiability, giving different semantics to this notion using a logical entailment.
In Section 4.1.2.2 we developed two different semantics of actions, changing a working
memory. One of them (formula-based) is syntactical and based on a direct changing of a
working memory by adding and removing of some facts, while the second one (Possible
Models Approach) is based on changing of common models of an ontology and a work-
ing memory, considering these models as a possible states-of-affairs of the application.
Section 4.1.3 considers some peculiarities of semantics of PRs over DL ontologies. In
section 4.1.3.1 we show that in this particular case (when we consider a DL ontology as a
KB) definitions of a satisfiability of a set of patterns can be simplified. In section 4.1.3.2.1
on the base of algorithms, computing an ABox update (or its approximation) of an ontol-
ogy, we introduce a procedure for computing the result of an action, i.e. a new working
memory for some DLs from a DL− Lite family. In Section 4.1.3.2.2 we introduce an
alternative semantics for update and erasure (i.e. action performance) in DLs and prove
its equivalence to the Possible Models Approach semantics, introduced in Section 4.1.2.4.

CHAPTER 4. PRS AND ONTOLOGIES 83

4.1.1 Preliminaries

Here we use FOL in general to define FO KBs that are FO theories and DLs to define DL
KBs (ontologies) that are finite sets of DL assertions. So, we introduce these notions first
in Sections 4.1.1.1 and 4.1.1.2 respectively. In Section 4.1.1.3 we define PRs.

4.1.1.1 First-Order Logic

We consider a set C of constants, a set P of predicate symbols and a set X of variables.
Each predicate symbol has a fixed arity n > 0 (number of its arguments). A pair (C,P) is
called signature. We also include an equality symbol ‘=’, that syntactically behaves like
a binary predicate and has special semantics. Term is either a variable or a constant.

An atomic formula is any expression of the form P (t1, . . . , tn), where t1, . . . , tn are terms
and P is an n-ary predicate symbol. Complex formulas are constructed as usual by using
logical connectives ¬, ∧, ∨, →, ↔, quantifiers ∀, ∃ and punctuation symbols ‘(’, ‘)’,‘,’.
Set of all formulas over a signature Σ = (C,P) constitutes a first-order languageL(C,P).

A variable occurrence in a formula is called free if it does not occur in the scope of any
quantifier, otherwise it is called bound. A sentence is a formula with no free-variable
occurrences.

Let G be a formula. We denote the set of all variables of the formula G with Var(G) and
the set of all variables, that occur free in the formula G with FreeVar(G). This extends
to the sets of formulas in the natural way.

A substitution is a mapping σ : X 7→ C ∪ X . Also we set xσ = σ(x) for any vari-
able x, cσ = c for any constant c, Pσ = P for any nullary predicate symbol P and
[P (t1, . . . , tn)]σ = P (t1σ, . . . , tnσ), where t1, . . . , tn are terms and P is n-ary predicate
symbol. Substitution extends to sets of formulas in a natural way.

We give the usual semantics in terms of interpretations, and main terms accompanying
this notion are supposed to be defined as usual. Let us remind some of them, that we
directly use here.

An interpretation of a language L(C,P) is a pair I = (∆I , ·I), where ∆I is a nonempty
set, called domain and ·I is a mapping, called an interpretation function that associates to
every constant c ∈ C, some cI ∈ ∆I and to every n−ary predicate symbol P ∈ P , some
n−ary relation P I ∈ (∆I)n.

A variable assignment in an interpretation I is a mapping A which assigns to every
variable x ∈ X , an element xA ∈ ∆I of the domain. A variable assignment A′ is an
x−variant of A if yA = yA

′ for every variable y ∈ X such that y 6= x.

Given an interpretation I = (∆I , ·I), a variable assignment A, and a term t ∈ X ∪C, tI,A

is defined as follows: tI,A = tA if t ∈ X , and tI,A = tI , if t ∈ C.

We say that an interpretation I = (∆I , ·I) satisfies an atomic formula P (t1, . . . , tn)

CHAPTER 4. PRS AND ONTOLOGIES 84

relative to a variable assignment A, where t1, . . . , tn are terms and denote it I, A |=
P (t1, . . . , tn), if (tI,A1 , . . . , tI,An) ∈ P I . And I, A |= t1 = t2, if tI,A1 = tI,A2 , where t1 and
t2 are terms. This is extended to arbitrary formulas as usual.

Given a formula φ, an interpretation I is a model of φ, denoted I |= φ, if I, A |= φ, for
every variable assignment A.

Let S be some set of sentences. We say that some interpretation is a model of S, if it is a
model of each sentence from S. We denote a set of all the models of S by Mod(S). A set
S of sentences is satisfiable (consistent), if there exists at least one model of it. A set S of
sentences logically entails a sentence s, denoted S |= s, if every model of S is also model
of s.

4.1.1.2 Description Logics

DL languages may be considered as proper subsets of FO language. In DLs only predi-
cates of arity 1 and 2 are considered. Predicates of arity 1 denoting sets of individuals are
called atomic concepts, and predicates of arity 2 denoting binary relations between indi-
viduals are called atomic roles. Using atomic concepts and roles one can build complex
descriptions of concepts and roles. The language for building descriptions is specified
for each DL, and different DLs are distinguished by their description languages [8]. The
common rule is that descriptions (usually concept descriptions) are built from atomic con-
cepts and roles by using DL constructors, such as u,t,¬,∃,∀. For example, in basic DL
ALC concepts (concept descriptions) are defined as follows:

C ::= ⊥ |A | ¬C |C uD |C tD | ∃R.C | ∀R.C,

where A denotes an atomic concept, R an atomic role, and C, D are concepts. By adding
or removing some constructs we can get other DLs. For instance, if we add an inverse
role constructor R− (R is an atomic role) to ALC, we will get a DL ALCI.

A DL KB, i.e. an ontology, consists of two components, a TBox and an ABox. A TBox
represents the terminology by a set of assertions, that are usually general concept in-
clusion axioms C v D, where C and D are concepts (sometimes we say that C is a
left-hand side (LHS) and D is a right-hand side (RHS) of the general concept inclusion
axiom C v D). Allowing another TBox assertions or restricting existing ones can also
result in another DLs. For example, adding to ALC a possibility to define hierarchies of
roles through role inclusions axioms R v S (R and S are roles) in the TBox, we get a
DL ALCH. There are also DLs, where only restricted general concept inclusion axioms
can be used, e.g. in many DLs from a DL− Lite family negation (¬) can occur only in a
RHS of a general concept inclusion axiom.

An ABox introduces knowledge about named individuals denoted by constants. It con-
tains concept assertions A(a) and role assertions R(a, b), where A is a concept, R is a
role and a, b are constants. And again ABox assertions can be extended or restricted. For
example, in DL− LiteS assertions of the form C(z), where z is a variable, are allowed.

CHAPTER 4. PRS AND ONTOLOGIES 85

DL Constructor FOL formula
A φA(x)
¬C ¬φC(x)

C uD φC(x) ∧ φD(x)
C tD φC(x) ∨ φD(x)
C v D ∀x(φC(x)→ φD(x))
∃R.C ∃y(φR(x, y) ∧ φC(y))
∀R.C ∀y(φR(x, y)→ φC(y))
A(a) φA(a)
R(a, b) φR(a, b)

Table 4.1: Translation from ALC to FOL.

This assertion states, that there exists an object, denoted by the variable z, that is an in-
stance of the general concept C. Concerning restrictions of ABox assertions, in many
logics from the DL− Lite family concept assertions to negated concepts are not allowed.

In classical DLs all the assertions in the TBox and in the ABox can be identified with
sentences in FOL (see Table 4.1 for ALC concepts, for example). And we transfer the
usual semantics in terms of interpretations from FOL to DLs.

4.1.1.3 Production Rules

In this section we introduce main terms we will use in conjunction with production rules
and a production rule itself.

A fact type is an n-ary predicate symbol (n > 0). Let P be a fact type of arity n (n > 0)
and a1, . . . , an be constants, then the atomic sentence P (a1, . . . , an) is called fact.

A pattern is any formula. Let us consider a set of patterns. Each pattern can be positive
or negative. The fact, that some pattern pi from the set of patterns is positive or negative
is denoted by marking it as p+

i or p−i respectively. We also denote finite sets of positive
and negative patterns by p+ and p− correspondingly. That is, p+ = {p+

1 , . . . , p
+
k } and

p− = {p−1 , . . . , p−m}, where k > 0, m > 0. We assume p+ and p− to be disjoint. Then
the set of positive and negative patterns p = p+ ∪ p−.

Definition 4.1.1. Let L be some set of labels and p be a finite set of positive and neg-
ative patterns. Let r and a be two finite sets of atomic formulas such that V ar(r) ⊆
FreeV ar(p) and V ar(a) ⊆ FreeV ar(p). A production rule (PR) is an expression of
the form:

[l] if p then remove r add a,

where l is some label from L.

CHAPTER 4. PRS AND ONTOLOGIES 86

A set p is called condition or left-hand side (LHS) of the rule l, and a pair of sets (r, a)
is called action or right-hand side (RHS) of the rule l. Let σ be an any substitution, such
that xσ is a constant for any x ∈ Var(r) ∪ Var(a). Then a pair (rσ, aσ) is called an
action instance of an action (r, a).

This variant of a PR definition is very similar to the one proposed in [21]. The main
difference is that here we consider formulas as patterns (sentences as facts) rather than
terms (ground terms).

4.1.2 Semantics of Production Rules over First-Order Knowledge
Bases

Here we look deeply into conditions and actions of a PR. Conditions are checked and
are performed over a working memory taking into account an unchangeable KB. It this
section we consider a satisfiable set of sentences as a KB. We say that a set of sentences F
(in particular working memory) is consistent with a KB K, if the set K ∪ F is satisfiable.

In Subsection 4.1.2.1 we consider conditions of PRs and introduce two kinds of condition
satisfiability, giving different semantics to this notion. They differ in matching of negative
patterns. It is defined as not entailment in the first approach and as an entailment of
negations in the second approach. In Subsection 4.1.2.2 we consider actions as an update
and an erasure of a working memory with corresponding facts, and specify again two
fundamentally different variants of semantics of these notions. The first one is based
on changing of facts of working memory, while the second one is based on changing of
models.

4.1.2.1 Conditions

Checking fireability, i.e. checking conditions of a rule is an important part of a Production
System execution. Let us define this notion.

Definition 4.1.2. Given a KB K, a working memory WM and a finite set of positive
and negative patterns p = p+ ∪ p−. If WM is consistent with K and there exists some
substitution σ such that:

1. ∀x ∈ FreeVar(p) xσ ∈ C,

2. ∀p′ ∈ p+ K ∪WM |= p′σ,

3. ∀p′ ∈ p− K ∪WM 6|= p′σ,

then the set p is said to be σ-satisfiable in K and WM .

We can consider another alternative definition of the satisfiability of a set of positive and
negative patterns.

CHAPTER 4. PRS AND ONTOLOGIES 87

Definition 4.1.3. Given a KB K, a working memory WM and a finite set of positive
and negative patterns p = p+ ∪ p−. If WM is consistent with K and there exists some
substitution σ such that:

1. ∀x ∈ FreeVar(p) xσ ∈ C,

2. ∀p′ ∈ p+ K ∪WM |= p′σ,

3. ∀p′ ∈ p− K ∪WM |= ¬p′σ,

then the set p is said to be strongly σ-satisfiable in K and WM .

Since, by definition, any fact from a working memory WM is a sentence, and for any
pattern p′ from a set of patterns p, p′σ is a sentence because of the item 1., the above
definitions are well defined.

Definition 4.1.4. Given a KB K, a working memory WM and a finite set of positive and
negative patterns p = p+∪p− and sets r and a defined as in the definition of a production
rule. A PR

[l] if p then remove r add a

is said to be σ-fireable (strongly σ-fireable) in K and WM , if p is σ-satisfiable (strongly
σ-satisfiable) in K and WM .

Since the condition 3. of the definition of a strongly σ-satisfiable set of patterns implies
the condition 3 of the definition of a σ-satisfiable set of patterns, any strongly σ-satisfiable
set of patterns is also σ-satisfiable and, hence, any strongly σ-fireable Production Rule is
also σ-fireable. However these definitions are not equivalent.

Roughly speaking, the pattern satisfiability takes the assumption that all unknown infor-
mation (it is not known for sure that it is positive) is considered as negative, while strong
pattern satisfiability means that information is considered to be negative only if it is known
for sure (“for sure" here means “holds for all the models of the KB").

Example 4.1.5. Let everything, that begins with ‘*’, be a constant, and everything, that
begins with ‘?’ be a variable.

First, we define a special kind of KB - ontologyK = 〈T ,A〉 and a working memory WM :

T = {HighPrice v Price,LowPrice v Price,

LowPrice v ¬HighPrice}
A = {Price(∗300)}
WM = {Searching ,House(∗55, ∗red, ∗300),Available(∗55),

HouseAddress(∗55, ∗8, ∗Saint −Martin, ∗Paris),

CHAPTER 4. PRS AND ONTOLOGIES 88

Person(∗36, ∗John, ∗Smith),

Address(∗36, ∗48, ∗Dante, ∗Milan)}
Second, we define a set of positive and negative patterns p (here we consider only atomic
patterns) and sets r and a:

p := p+ ∪ p−, where

p+ := {Searching ,House(?id1, ∗red , ?price), Available(?id1),

HouseAddress(?id1, ?number1, ?street1, ∗Paris),

Person(?id2, ?name, ?surname),

Address(?id2, ?number2, ?street2, ?city2)}
p− := {HighPrice(?price)}
r := {Searching ,Available(?id1),

Address(?id2, ?number2, ?street2, ?city2)}
a := {UnAvailable(?id1),

Address(?id2, ?number1, ?street1, ∗Paris)}
And then we consider a production rule

[HouseSearch] if p then remove r add a

Let us check, if this rule is fireable (strongly fireable) inK and WM . It is enough to check
if the set of patterns p is satisfiable (strongly satisfiable) in K and WM .

We consider both the definition of a σ-satisfiable set of patterns and the definition of a
strongly σ-satisfiable set of patterns. WM is consistent with K. Conditions 1 and 2 are
the same in both definitions. It is evident, that there exists only one substitution σ such
that conditions 1 and 2 are satisfied.

Let I = (∆, ·I) be some model from Mod(T ∪ A ∪WM) such that

(∗300)I = 300 ∈ ∆

HighPriceI = {x ∈ R |x > 400} ⊂ ∆

Then I 6|= HighPrice(∗300) and, hence, p is σ-satisfiable (the rule is σ-fireable).

But the same set of patterns p is not strongly σ-satisfiable in the same Knowledge Base
K = 〈T ,A〉 and Working Memory WM . One can consider, for example, a model I ′ =
(∆, ·I′), where ·I′ is the same as ·I except one assignment:

HighPriceI
′
= {x ∈ R |x > 200} ⊂ ∆

Then I ′ 6|= ¬HighPrice(∗300). Thus the condition 3 of the definition of a strongly σ-
satisfiable set of patterns is violated and the set p is not strongly σ-satisfiable (the rule is
not strongly σ-fireable).

Let us modify the example by replacing the A-Box assertion Price(∗300) byLowPrice(∗300)

CHAPTER 4. PRS AND ONTOLOGIES 89

(that is defining a new A-Box A′ := {LowPrice(∗300)}). Then T ∪ A′ ∪ WM |=
¬HighPrice(∗300). Thus, the set of patterns p is strongly σ-satisfiable (the rule is
strongly σ-fireable) and, hence, σ-satisfiable (the rule is also σ-fireable).

The example above shows that the choice of the definition of satisfiability (strong or not
strong) of a set of patterns depends on an idea of fireability of rules that we have in mind.
If we want to apply the rule to houses that together with other conditions are not ranked
as having a high price (it is not implied, that they have a high price), we should use the
definition of a σ-satisfiable set of patterns. If we want to apply the rule to houses that
together with other conditions are ranked as having a low price or at least not having a
high price (it is implied, that they have not a high price), we should use the definition of a
strongly σ-satisfiable set of patterns.

4.1.2.2 Actions

Here we consider the second important aspect of PRs, that is action and its application,
that represent the last step in each iteration of the inference cycle of Production Systems.

Any fireable Production Rule can be fired (applied). It means, that its RHS (action) is
executed.

Given a Production Rule

[l] if p then remove r add a,

which is σ-fireable (or strongly σ-fireable) in K and WM , its application leads to a new
Working Memory WM ′ defined as output of some operation Act(K,WM , rσ, aσ).

We should note here, that if new working memory WM ′ is inconsistent withK, the work-
flow stops, because for any substitution σ no rules are σ-fireable (strongly σ-fireable) for a
working memory that is inconsistent with the KB, since a consistency of a working mem-
ory with a KB is one of the requirements of the pattern satisfiability (strong satisfiability).

The operation Act may be realized in different ways, that correspond to different ap-
proaches to update and erasure of FO theories. Many semantics for update (and erasure
as its counterpart) are described in literature [60]. Here we follow two main directions of
research in this topic:

• formula-based, that changes formulas of a working memory

• model-based, that changes models of a a working memory and a KB

Both of the approaches has advantages and disadvantages. Let us consider each of them
in details.

CHAPTER 4. PRS AND ONTOLOGIES 90

4.1.2.3 Formula-Based Approach

This approach consists in simple removing and adding corresponding sets of facts from/to
working memory:

Act(K,WM , fr, fa) := (WM − fr) ∪ fa,
where fr and fa are sets of facts, that are supposed to be removed and added from/to
working memory WM 1.

One of the drawbacks of this approach is that it depends on the formulas. So, it is syntax-
dependant. And, for example, logically equivalent but syntactically different theories may
behave differently under this formula-base semantics.

Example 4.1.6. Let us consider some DL TBox K as a KB and two consistent with it
ABoxes WM 1, WM 2 as WMs:

K = {LowPrice ≡ Price u ¬HighPrice,NotHighPrice ≡ ¬HighPrice}
WM 1 = {LowPrice(a)}
WM 2 = {Price(a),NotHighPrice(a)}

Then theories K ∪WM 1 and K ∪WM 2 are logically equivalent (have the same sets of
models). Consider action instance ({NotHighPrice(a)}, {}), that has to be performed
over both of the theories:

Act(K,WM 1, {NotHighPrice(a)}, {}) = {LowPrice(a)}
Act(K,WM 2, {NotHighPrice(a)}, {}) = {Price(a)}

So, in spite of the logical equivalence of the initial theories, we obtained different (not
logically equivalent) results, that shows, that formula-based approach is really syntax-
dependent.

Adding new facts to working memory can also lead to undesirable situations. It can result
in inconsistency of a new working memory with respect to the KB.

Example 4.1.7. Let K be some DL TBox, that we consider as a KB, and WM be some
DL ABox, considered as a working memory consistent with K. And let LowPrice v
¬HighPrice ∈ K and WM = {LowPrice(a)}. Perform operation Act , adding {HighPrice(a)}
to the WM . Then a new working memory

WM ′ = Act(T ,A, {}, {HighPrice(a)}) = {LowPrice(a),HighPrice(a)}.
But it is inconsistent with the KB K, that stops the workflow of the production system.

One more drawback resulting from the syntax-dependency is revealed when the operation
Act removes facts from the working memory. The point is that the removed facts can still
be entailed from the new theory (KB and a new working memory), so that the removing
does not have any semantic impact.

1The order of removing and adding here is important, because in general for any three sets A, B and C,
(A−B) ∪ C is not equal to (A ∪ C)−B.

CHAPTER 4. PRS AND ONTOLOGIES 91

Example 4.1.8. LetK be some DL TBox, that we consider as a KB, and WM be some DL
ABox, considered as a working memory consistent with K. And let HighPrice v Price ∈
K and WM = {HighPrice(a),Price(a)}. Perform operation Act , removing {Price(a)}
from the working memory WM . Then a new working memory

WM ′ = Act(K,WM , {Price(a)}, {}) = {HighPrice(a), }.
So, in fact, semantically performing of this operation does not make any changes in a
sense that the old theory K ∪WM and the new one K ∪WM ′ are logically equivalent
and, hence, the same rules will be fireable again for the same substitutions.

4.1.2.4 Model-Based Approach

There are different model-based semantics for update and erasure [60], but all of them are
based on the same idea. First, to perform an update and an erasure of a theory with fa and
fr respectively, changes are to be done over each model of the theory. And second, these
changes have to be as little as necessary to make fa consistent and fr inconsistent with
the KB.

Here we consider so-called Possible Models Approach (PMA) introduced by Winslett
[59]. To define it formally we need some assumptions and definitions.

We again consider a FO theory K∪WM consisting of a protected set of sentences K and
unprotected set of facts WM .

As usual we give the semantics of the theory in terms of interpretations and use Standard
Names Assumption (SNA), i.e.:

1. All the interpretations share the same domain of interpretations, that is some fixed
infinite domain ∆ of objects;

2. All the interpretations interpret constants equally. That is, for any constant a and
any interpretations I = (∆, ·I) and I ′ = (∆, ·I′) aI = aI

′
= a∗ ∈ ∆;

3. There is a constant for each object in ∆ denoting that object. That is, for any a∗ ∈ ∆
there exists a constant a s.t. for any interpretation I = (∆, ·I), aI = a∗.

So, in this case a set of constants and shared domain of interpretations are coincide and
we can assume, that for any interpretation I = (∆, ·I) (satisfying conditions above) and
for any constant a, aI = a. So, we take a SNA for this subsection.

We use SNA to simplify comparison between models needed for updates. In fact, the use
of standard names could be avoided, but this would make some of the definitions below
clumsier.

Definition 4.1.9. Let I = (∆, ·I) and I ′ = (∆, ·I′) be two interpretations. We say that
I is contained in I ′, written I ⊆ I ′, iff I, I ′ are such that P I ⊆ P I

′
for every atomic

CHAPTER 4. PRS AND ONTOLOGIES 92

predicate P . We say that I is properly contained in I ′, written I ⊂ I ′, iff I ⊆ I ′ but
I ′ 6⊆ I.

Definition 4.1.10. Let I = (∆, ·I) and I ′ = (∆, ·I′) be two interpretations. We define
the difference between I and I ′, written I 	 I ′, as the interpretation (∆, ·I	I′) such that
P I	I

′
= P I 	 P I′ for every atomic predicate P , where S 	 S ′ denotes the symmetric

difference between sets S and S ′, i.e. S 	 S ′ = (S ∪ S ′)− (S ∩ S ′).

An update set is a finite set of sentences to be incorporated into a theory. Hereafter we
consider a finite set of facts or negated facts as an update set, but in general the definitions
below can be also used for any kinds of update set.

Definition 4.1.11. Let K be a KB, WM be a working memory and F be an update set.
Consider an interpretation I ∈ Mod(K) (where Mod(K) denote the set of models of K).
The update of I with F is defined as follows:

UK(I,F) = {I ′ | I ′ ∈ Mod(K ∪ F) and

there exists no I ′′ ∈ Mod(K ∪ F)

s.t. I 	 I ′′ ⊂ I 	 I ′}

In other words we take some model I of the TBox and consider all the models of the
TBox, that are also models of the update set F and “closest" to the model I.

In the following definition we just unite all such sets of models defined (by the Definition
4.1.11) for all models of the theory K ∪WM .

Definition 4.1.12. Let K be a KB, WM be a working memory and F be an update set.
The update of K ∪WM with F is defined as follows:

(K ∪WM) ◦K F =
⋃

I∈Mod(K∪WM)

UK(I,F).

Definition 4.1.13. Let K be a KB, WM be a working memory, F be an update set and
¬F = {¬Fi |Fi ∈ F}. The erasure of K ∪WM with F is defined as follows:

(K ∪WM) •K F = Mod(K ∪WM) ∪ (K ∪WM) ◦K (¬F)

So, in this semantics update (erasure) is represented as a set of models, each corresponding
to an updated (erased) state of affairs, that we consider possible. And here we encounter
new problem: realization of the update (erasure) in some new working memory WM ′,
that together with the protected set K expresses the update (erasure). That is,

Mod(K ∪WM ′) = (K ∪WM) ◦K F (Mod(K ∪WM ′) = (K ∪WM) •K F).

In our framework update is being performed after erasure. So, in general, there is no
need to materialize a new working memory after erasure is performed, since only models

CHAPTER 4. PRS AND ONTOLOGIES 93

are needed to perform the next operation, that is update. The same is true if the order of
erasure and update operations is inverse. The only requirement is that the last performed
operation (update in our case) has to materialize the resulting working memory.

There is an only open question here: how to find this procedure for building resulting
working memory, and if it is always possible. It is shown in [41], that if we consider an
ontology expressed in some DL as a KB, the update may become not expressible in this
language (see also Example 4.1.19 and Example 4.1.20) and a notion of approximation
should be studied (see Section 4.1.3.2).

4.1.3 Peculiarities of Semantics of Production Rules
over Description Logic Knowledge Bases

FOL is very expressive, but the automated reasoning over it is hard. So, it seems reason-
able to restrict expressivity to get the possibility to use reasoning algorithms and other
techniques, developed for such restrictions of FOL. Here we consider DLs as a family
of such restrictions and investigate a peculiarities of semantics of conditions and actions
over DL KBs.

We employ some classical DL and take some ontologyK = 〈T ,A〉 described in this logic
as a KB.

In a working memory we take all unary and binary predicates as DL atomic concepts
and roles respectively (that is the same) and all unary and binary facts from the working
memory as DL membership assertions to atomic concepts and roles respectively (that is
the same). Then we can consider two parts of the WM separately:

• DL part of the working memory, the part containing all the DL membership asser-
tions,

• Oth part of the working memory, the part containing all the other n-ary facts (n > 2
or n = 0).

By analogy with working memory we can also consider DL and Oth parts of any set of
atomic formulas F, supposing that

• DL part of the set F consists of unary or binary predicates,

• Oth part of the set F contains of all other n-ary predicates (n > 2 or n = 0).

We denote DL and Oth parts of the working memory (set of atomic formulas F) by in-
dexing it by DL and oth respectively. For example WMDL and WMoth (FDL and Foth)
are respectively DL and Oth parts of the working memory WM (set F).

In this section we consider only atomic patterns (atomic formulas).

CHAPTER 4. PRS AND ONTOLOGIES 94

It is logical to expect, that restriction of a general FOL KB to a DL KB and a set of any
patterns to a set of atomic patterns can simplify a process of checking conditions and
performing actions of PRs. And it is really the case.

Since in a DL KB only predicates of arity 1 and 2 occur, the ontology (DL KB) does not
affect matching of patterns from (p)oth and simplify checking satisfiability of conditions
of rules.

Concerning actions, under a supposition WM = WMDL we also present here some proce-
dure of their performing (in PMA semantics) in some DLs from DL− Lite family based
on a DL ABox update and erasure. For some other DLs we introduce a notion of approx-
imation and also give a procedure to find approximate results of actions in the case when
a real result (new working memory) cannot be expressed in this logic.

4.1.3.1 Conditions

For this subsection we assume that any interpretation I respects the unique name assump-
tion (UNA), that is, if a, b are distinct constants, then aI 6= bI .

Prop Given some DL KB K = 〈T ,A〉, some working memory WM consistent with K
and some set of patterns p. For any substitution σ the following equivalence holds:

(∀p′DL ∈ pDL T ∪ A ∪WMDL |= p′DLσ and
∀p′oth ∈ poth p′othσ ∈WMoth)⇐⇒ ∀p′ ∈ p T ∪ A ∪WM |= p′σ

Proof.

"=⇒" Mod(T ∪ A ∪ WM) ⊆ Mod(T ∪ A ∪ WMDL) and Mod(T ∪ A ∪ WM) ⊆
Mod(WMoth), then for any substitution σ

(∀p′DL ∈ pDL T ∪ A ∪WMDL |= p′DLσ and
∀p′oth ∈ poth WMoth |= p ′othσ) =⇒ ∀p′ ∈ p T ∪ A ∪WM |= p′σ.

Since WMoth by definition consists of only atomic sentences (that is atomic formulas with
no free variables), and no dependences are defined between them, then

∀ p ′oth ∈ poth (WMoth |= p ′othσ ⇔ p ′othσ ∈WMoth), (4.1)

and the straight implication holds.

"⇐=" Since WMDL and WMoth are well separated, that is no dependences are defined
between facts from WMDL and facts from WMoth , then for any substitution σ sentences
from WMoth do not influence on logical implication of assertions from pDLσ, and asser-
tions from T ∪ A ∪ WMDL do not influence on logical implication of sentences from
pothσ. Then the implication may be separated:

(∀p′DL ∈ pDL T ∪ A ∪WMDL |= p′DLσ and
∀p′oth ∈ poth WMoth |= p ′othσ)⇐= ∀p′ ∈ p T ∪ A ∪WM |= p′σ.

CHAPTER 4. PRS AND ONTOLOGIES 95

And taking into account statement (4.1), it is evident, that a backward implication also
holds.

It should be noticed, that UNA is important here, and absence of it makes the above
proposition in general false.

Example 4.1.14. Suppose, that we do not make unique name assumption and consider a
DL KB K = 〈T ,A〉, a working memory WM and a set of patterns p, where

T := {(funct R)}
A := {}
WM := {R(a, b), R(a, c), P (a, b, c)}
p := {P (x, y, y)},

(4.2)

where the assertion (funct R) represents the formula ∀x, y, z R(x, y) ∧ R(x, z) → y =
z. Then WMDL = {R(a, b), R(a, c)}, WMoth = {P (a, b, c)}, pDL = {} and poth =
{P (x, y, y)}. For the substitution σ := {x/a, y/b} P (x, y, y)σ = P (a, b, b) and T ∪A∪
WM |= P (a, b, b), but P (a, b, b) 6∈WMoth . Hence, the proposition 4.1.3.1 does not hold.

If we made UNA, we could not consider such a knowledge base K and a working memory
WM together, because the setK∪WM is not satisfiable in this case (if T := {(funct R)}
and we assume UNA, WM can not contain both of the assertions R(a, b) and R(a, c)).

It is evident from the example above, that the crucial thing here is an equality. A pres-
ence of an equality in a language (without UNA) makes the proposition 4.1.3.1 invalid in
general. And we fix this bug by UNA.

Based on the above proposition we get equivalent definitions of a σ-satisfiable set of
patterns and a strongly σ-satisfiable set of patterns that can be derived from propositions
below. Prop Given some DL KB K = 〈T ,A〉, some working memory WM and some
set of positive and negative patterns p = p+ ∪ p−. Then the set p is σ-satisfiable in K
and WM iff WM is consistent with K and there exists some substitution σ such that:

1. ∀x ∈ Var(p) xσ ∈ C,

2. ∀p ′DL ∈ p+
DL T ∪ A ∪WMDL |= p ′DLσ,

3. ∀p ′oth ∈ p+
oth p ′othσ ∈WMoth ,

4. ∀p ′DL ∈ p−DL T ∪ A ∪WMDL 6|= p ′DLσ,

5. ∀p ′oth ∈ p−oth p ′othσ 6∈WMoth .

Prop Given some DL KB K = 〈T ,A〉, some working memory WM and some set of
positive and negative patterns p = p+ ∪ p−. Then the set p is strongly σ-satisfiable in K
and WM iff WM is consistent with K and there exists some substitution σ such that:

CHAPTER 4. PRS AND ONTOLOGIES 96

1. ∀x ∈ Var(p) xσ ∈ C,

2. ∀p ′DL ∈ p+
DL T ∪ A ∪WMDL |= p ′DLσ,

3. ∀p ′oth ∈ p+
oth p ′othσ ∈WMoth ,

4. ∀p ′DL ∈ p−DL = p− T ∪ A ∪WMDL |= ¬p ′DLσ,

5. p−oth = ∅.

4.1.3.2 Actions

Here we consider the PMA semantics for update and erasure.

First, we restrict a working memory to its DL part, i.e. WM = WMDL. Second, we
extend a working memory with all the other ABox assertions allowed in the DL under
consideration. Usually these assertions are membership assertions to general concepts,
that are represented by concept expressions, for example ∃R(a), ¬B(b).

Notation 4.1.15. The extension of a working memory with these general membership as-
sertions is not so critical. Instead of considering in a working memory a membership
assertion C(a), where C is some general concept (for example, ∃R, ¬B) one can intro-
duce a new atomic concept AC , set it equivalent to C by adding an equivalence axiom
AC ≡ C to a TBox of the KB and replace the assertion C(a) by AC(a).

Thus, since a working memory is a finite set, a finite set of such rewritings, introducing a
finite set of new atomic concepts and adding a finite set of new equivalence axioms to the
TBox, has to be done.

In some DLs (for example, some DLs from the DL-Lite family) so called inverse role
membership assertions, that is assertions of the form P−(a, b), where P is an atomic
role,are allowed in the ABox. Any such assertion P−(a, b) can also be replaced by an
equivalent one P (b, a).

As we mentioned above, in general results of an update and an erasure can not always be
expressed in the same logic, in which the knowledge base is expressed (see [41] and also
Example 4.1.19 and Example 4.1.20). In such cases it is useful to use an approximation
of an instance level update and erasure introduced in [26] modified and adapted to our
framework.

Definition 4.1.16. Let K be an ontology (KB) in a DL L, WM be a working memory
and M be a set of models s.t. M ⊆ Mod(K). We say that WM is a sound (L,K)-
approximation ofM in L, if

(i) WM is an ABox in L,

(ii) M⊆ Mod(K ∪WM).

CHAPTER 4. PRS AND ONTOLOGIES 97

Definition 4.1.17. Let K be an ontology (KB) in a DL L, WM be a working memory
andM be a set of models s.t. M ⊆ Mod(K). We say that WM is a maximal (L,K)-
approximation ofM, if

(i) WM is a sound (L,K)-approximation ofM,

(ii) there exists no working memory WM ′ that is a sound (L,K)-approximation ofM,
and is s.t. Mod(K ∪WM ′) ⊂ Mod(K ∪WM).

Similar to a working memory we extend an update set with all the other ABox assertions
allowed in the DL under consideration.

Definition 4.1.18. Let K = 〈T ,A〉 be an ontology (KB) in a DL L, WM , WM ′ two
working memories and F an update set in L. We say that WM ′ is a (L,K)-update of
WM with F ((L,K)-erasure of WM with F) if WM ′ is a maximal (L,K)-approximation
of (K ∪WM) ◦K F ((K ∪WM) •K F).

(L,K)-update ((L,K)-erasure) WM ′ can be considered as a working memory expressed
in the logic under consideration L, such that the set of models of the theory K ∪WM ′,
i.e. Mod(K∪WM ′), is“closest" to the update (K∪WM)◦KF (erasure (K∪WM)•KF)
itself.

(L,K)-update and (L,K)-erasure have some good properties. For example, an approxi-
mation does not influence on the implication of membership assertions expressed in the
same DL L, i.e. for every membership assertion α in Lwe have that (K∪WM)◦KF |= α
iffK∪WM ′ |= α and (K∪WM)•KF |= α iffK∪WM ′ |= α. That is, an approximation
does not influence on satisfiability of conditions of rules and, hence, on their fireability.

4.1.3.2.1 Computing Update and Erasure in DL-Lite Some languages from DL-
Lite family possess a good properties of expressivity of update/erasure or existence of its
approximations.

Let again L be some DL and F be an update set. In the remainder suppose that an ABox
of a DL KBK is empty2. Then the ontology is presented only as a TBox. Since a working
memory WM is an ABox in L, the theory K ∪WM can be viewed as an ontology with
a TBox K and an ABox WM . So, we apply here research results in an area of an ABox
update and erasure.

It is notable, that for DL− LiteFS language a result of an update is expressible in the
same language, that is there exists a working memory WM ′ expressed in DL− LiteFS

such that
(K ∪WM) ◦K F = Mod(K ∪WM ′).

2This supposition is made for the sake of simplicity, and this particular case can be trivially extended to
the general one, when an ABox of K is not empty.

CHAPTER 4. PRS AND ONTOLOGIES 98

And a sound and complete algorithm for computing the updated ABox (that is thw orking
memory in our case) WM ′ in polynomial time (in the size ofK∪WM ∪F) was presented
in [25].

Example 4.1.19. Let us consider DL DL− LiteFS . Let K and WM be a KB and a
working memory expressed in this logic respectively, and F be an update set, where

K = {HighRankedAccomodation v RecentlyRepared ,

OutARepair v ¬RecentlyRepared},
WM = {OutARepair(a)},

Ḟ = {RecentlyRepared(a)}.

(4.3)

Let us compute the update of K ∪ WM with F. According to the aforementioned al-
gorithm a new working memory WM ′ has to include all the assertions from F, all the
assertions from WM , that do not contradict F and all the assertions, that do not con-
tradict F and are logically implied by assertions from WM , that contradict F. Thus,
WM ′ = {RecentlyRepared(a),
¬HighRankedAccomodation(a)}, that is an ABox in DL− LiteFS .

But if we consider initially the logic DL− LiteF (this is possible, because all the asser-
tions fromK, WM , F are allowed also in DL− LiteF), the new working memory WM ′ is
not expressible in the same logic any more, because the assertion¬HighRankedAccomodation(a)
can not be expressed in DL− LiteF .

Example 4.1.20. Let us consider DL DL− LiteFS again. Let K and WM be a KB and
a working memory expressed in this logic respectively, and F be an update set, where

K = {HighRankedAccomodation v RecentlyRepared ,

HighRankedAccomodation v ∃hasBalcony},
WM = {HighRankedAccomodation(a)},

F = {∃hasBalcony(a)}.

(4.4)

Let us compute the erasure ofK∪WM with F. According to the definition 4.1.13, first we
need to compute the update of K ∪WM with ¬F. By analogy with the previous example
an updated working memory is equal to {RecentlyRepared(a),¬∃hasBalcony(a)}. Then
(K∪WM)•KF = Mod(K∪WM)∪(K∪WM)◦K(¬F) = Mod(K∪{HighRankedAccomodation(a)})∪
Mod(K∪{RecentlyRepared(a),¬∃hasBalcony(a)}) = Mod(K∪{RecentlyRepared(a),
(HighRankedAccomodation t ¬∃hasBalcony)(a)}).

Then a new working memory

WM ′ = {RecentlyRepared(a), (HighRankedAccomodation t ¬∃hasBalcony)(a)},

and it is not expressible in DL− LiteFS (and, hence, in DL− LiteF), because a disjunc-
tion of concepts is not allowed in this logic.

CHAPTER 4. PRS AND ONTOLOGIES 99

Although in general update and erasure of a theoryK∪WM with an update set F consid-
ered in DL− LiteF is not expressible in DL− LiteF , and erasure of a theory K ∪WM
with an update set F considered in DL− LiteFS is also not expressible in DL− LiteFS ,
there exists a common algorithm, originally introduced in [26], for computing correspond-
ing approximations. The algorithm has two parameters ((S) and (L)) and consists of two
steps:

1. Compute update of K ∪WM with (S) in DL− LiteFS using the algorithm men-
tioned above,

2. Delete all the membership assertions, that are not allowed in (L).

(L) here stands for logic, in which we consider update or erasure (DL− LiteF or DL− LiteFS).
To compute (L,K)-update of WM with F ((L,K)-erasure of WM with F) we need to
substitute (S) with F (¬F)3.

With this algorithm in place let us recall Example 4.1.19 and Example 4.1.20. Applying
this algorithm we get A′ = {RecentlyRepared(a)} for both examples.

Let us now define the operation Act .

Given a DL KB K, a working memory WM both expressed in DL L, that stands for
DL− LiteF or DL− LiteFS , and an update set F. Then we introduce auxiliary opera-
tions:

ComputeUpdateapp
L (K,WM ,F), ComputeErasureapp

L (K,WM ,F),

that using the algorithm above computes the (L,K)-update of the WM with F and (L,K)-
erasure of the WM with F respectively.

Let R and A be two update sets. The operation Act returning a new working memory
after erasing of the old one with R and updating with A is defined as follows:

Act(K,WM ,R,A) = ComputeUpdateapp
L (K,ComputeErasureapp

L (K,WM ,R),A).

4.1.3.2.2 Alternative Semantics for Update and Erasure over Acyclic TBoxes In
this section having in mind the same notion of "minimal changes" adopted in PMA we
introduce a new model-based semantics of update and erasure for a special kind of a
DL KB, namely finite acyclic set of concept definitions. We transform and adapt an
approach proposed in [41] and introduce new definitions of update and erasure of a model
by explicit and intuitive fixing of interpretations of primitive concepts. This fixing is
simply adding (in the case of update) and removing (in the case of erasure) elements
occurring in the update set to/from interpretations of particular primitive concepts. But
is there any connection between this constructive and intuitive approach and the PMA

3The step 2 in the algorithm is redundant for computing an update in DL− LiteFS , because an update
is expressible in this logic.

CHAPTER 4. PRS AND ONTOLOGIES 100

introduced before? Here we prove a theorem stating that these two approaches give the
same result, i.e update and erasure introduced in this approach coincide with update and
erasure in PMA, so we can use any of them depending on a particular situation.

Suppose here we consider some DL L. A concept definition is of the form A ≡ C,
where A is an atomic concept and C is a concept (concept description allowed in L). The
concept definition is logically equivalent to two concept inclusions: A v C and C v A.

Given a set K of concept definitions, we say that the atomic concept A is directly defined
by the atomic concept B, if K contains a concept definition A ≡ C s.t B occurs in C.
Let is defined be the transitive closure of the relation is directly defined. We say that T is
acyclic, if no concept is defined (directly or indirectly) by itself.

In this section as a KB K we consider a finite acyclic set of concept definitions (TBox)
expressed in L with unique left-hand sides (in contrast with so-called general TBox, i.e. a
finite set of general concept inclusion axioms, that we considered before). Remember, a
working memory is a finite set of concept assertions C(a), where C is a concept (concept
description in L) and role assertions R(a, b), where R is a role.

We call an atomic concept A defined in a K and write A ∈ def(K), if A occurs on
the left-hand side of a concept definition in K. Otherwise we call A primitive and write
A ∈ prim(K).

A primitive interpretation ofK is an interpretation that interprets only the primitive atomic
concepts in K and the atomic roles, but not the defined atomic concepts. In the case of
acyclic TBoxes, as in our case, any primitive interpretation ofK can uniquely be extended
to a model of K. It means, that any KB K is satisfiable, because a primitive interpretation
always exists and it is always extended to a model ofK. In the following we use primK(I)
to denote the primitive interpretation of K that can be extended to the model I of K.
If this model is also a model of a working memory WM , then the original primitive
interpretation of K is said to be a primitive model of a theory K∪WM . In other words, a
primitive interpretation ofK is a primitive model of a theoryK∪WM if it can be extended
to a model of K ∪WM by additionally interpreting the defined atomic concepts. So, the
set of all the models of the theory K∪WM is completely and uniquely defined by the set
of all primitive models of K.

Let us consider a finite set F of primitive concept assertions and atomic role assertions as
an update set. Any update set is satisfiable, because the update set represents its model by
itself.

Prop Let K be a KB and F be an update set. Then F is consistent with K.

Proof. Since F is satisfiable, let us take any model I of F and restrict it to an interpre-
tation that interprets only the primitive concepts and the atomic roles. This restriction is
a primitive interpretation of K by definition, and, hence, we can extend it to a model I ′
of K in a unique way. I ′ is also a model of F, because it interprets the primitive concepts
and the atomic roles equally to I. �

CHAPTER 4. PRS AND ONTOLOGIES 101

Definition 4.1.21. Let K be a KB, F an update set and I = (∆, ·I), I ′ = (∆, ·I′) models
of K (extended primitive interpretations of T). Then I ′ is the result of updating I with F
for K, written I ⇒KF I ′ if the following hold:

• for all atomic concepts A ∈ prim(T)

AI
′
= AI ∪ {a |A(a) ∈ F} (4.5)

• forall atomic roles R

RI
′
= RI ∪ {(a, b) |R(a, b) ∈ F} (4.6)

And I ′ is the result of erasing I with F for K, written I ⇒K(¬F) I ′ if the following hold:

• for all atomic concepts A ∈ prim(T)

AI
′
= AI − {a |A(a) ∈ F} (4.7)

• forall atomic roles R

RI
′
= RI − {(a, b) |R(a, b) ∈ F} (4.8)

Observe, that the relations ⇒KF and ⇒K(¬F) are functional (deterministic) because, as we
said above, in models of a KB, the interpretation of primitive concepts and atomic roles
determines the interpretation of defined concepts in a unique way. Therefore we can write
IF
K to denote the unique I ′ s.t. I ⇒KF I ′ and I(¬F)

K to denote the unique I ′ s.t. I ⇒K(¬F) I ′.

Notation 4.1.22. Since a domain of interpretations ∆ is fixed and is essentially the set of
all constants and in any model of a KB, the interpretation of primitive concepts and atomic
roles determines the interpretation of defined concepts in a unique way, it is possible to
see any model I of a TBox as a subset of B∆

H (a set of all constructible primitive concept
assertions and role assertions):

I = {A(a) ∈ B∆
H | I |= A(a)} ∪ {R(a, b) ∈ B∆

H | I |= R(a, b)} (4.9)

If we consider IF
T and I(¬F)

T as sets of assertions from B∆
H , then

IF
T = I ∪ F (4.10)

I(¬F)
T = I − F (4.11)

The following two theorems build a bridge between PMA semantics and the new se-
mantics introduced in this subsection. The theorem 4.1.23 states that the model updates
coincide. And the theorem 4.1.24 states that the model erasures coincide.

CHAPTER 4. PRS AND ONTOLOGIES 102

Theorem 4.1.23. Let K be a KB in L, I a model of K and F an update set. Then

UK(I,F) = {IF
K} (4.12)

Proof.

1. Let us show that IF
K ∈ UK(I,F). IF

K ∈ Mod(K) by definition of IF
K . For any

primitive concept assertion A(a) from F a ∈ AIFK by definition of IF
K . And for any

atomic role assertion R(a, b) from F (a, b) ∈ RIFK also by definition of IF
K . Hence,

IF
K ∈ Mod(F).

Suppose now, that there exists I ′′ ∈ Mod(K ∪ F) s.t. I 	 I ′′ ⊂ I 	 IF
K , that is

• for every primitive concept A

(AI ∪ AI′′)− (AI ∩ AI′′) ⊂ (AI ∪ AIFK)− (AI ∩ AIFK) (4.13)

• for every atomic role R

(RI ∪RI′′)− (RI ∩RI′′) ⊂ (RI ∪RIFK)− (RI ∩RIFK) (4.14)

If there are primitive concept assertions in F (not only atomic role assertions), then
consider some primitive concept name A, that occurs in F. Then (AI ∪ AIFK) −
(AI ∩ AIFK) = AI

F
K − AI = {a |A(a) ∈ F} − AI . Since I ′′ ∈ Mod(F), AI′′ ⊇

{a |A(a) ∈ F} and AI ∪ AI′′ ⊇ AI
′′ ⊇ {a |A(a) ∈ F}. AI ∩ AI′′ ⊆ AI . Hence,

(AI ∪ AI′′) − (AI ∩ AI′′) ⊇ {a |A(a) ∈ F} − AI = (AI ∪ AIFK) − (AI ∩ AIFK).
Contradiction with 4.13.

If F consists of only atomic role assertions, then consider some atomic role R, that
occurs in F and acting similarly come to contradiction with 4.14.

2. Let us show now that UK(I,F) consists of only one interpretation IF
K . As we

showed in item 1 of the proof, IF
K ∈ Mod(K ∪ F). If IF

K is the only model of
K ∪ F, the current item is proved by definition of UK(I,F). If it is not the case,
consider any interpretation I ′ ∈ Mod(K ∪ F) different from IF

K (i.e., there exists
some primitive concept A or atomic role R s.t. AI′ 6= AI

F
K or RI′ 6= RI

F
K).

As was already shown, for any primitive concept A (AI ∪ AIFK) − (AI ∩ AIFK) =
{a |A(a) ∈ F} − AI . Since I ′ ∈ Mod(K ∪ F), then {a |A(a) ∈ F} ⊆ AI

′ ,
hence {a |A(a) ∈ F} − AI ⊆ AI

′ − AI ⊆ (AI ∪ AI′) − (AI ∩ AI′). Then
(AI ∪AIFK)− (AI ∩AIFK) ⊆ (AI ∪AI′)− (AI ∩AI′). Analogously, for any atomic
roleR (RI∪RIFK)−(RI∩RIFK) ⊆ (RI∪RI′)−(RI∩RI′). Hence, I	IF

K ⊆ I	I ′.
It is easy to show that I 	 IF

K = I 	 I ′ iff IF
K = I ′ (interpretations of all primitive

concepts and atomic roles coincide). But we supposed, that it is not the case. Hence,
I 	 IF

K ⊂ I 	 I ′. Then I ′ 6∈ UK(I,F), that means, UK(I,F) = {IF
K}.

CHAPTER 4. PRS AND ONTOLOGIES 103

Theorem 4.1.24. Let K be a KB in L, I a model of K and F an update set. Then

UK(I,¬F) = {I(¬F)
K } (4.15)

Proof. is similar to proof of the theorem 4.1.23. �

Corollary 4.1.25. Let K be a KB in L, WM a working memory and F an update set.
Then

(K ∪WM) ◦K F = {IF
K | I ∈ Mod(K ∪WM)} (4.16)

(K ∪WM) •K F = Mod(K ∪WM) ∪ {I(¬F)
K | I ∈ Mod(K ∪WM)}, (4.17)

where IF
T and I(¬F)

T are building according to definition 4.1.21 or, if they are considered
as sets of assertions (see Notation 4.1.22), according to 4.10 and 4.11.

In this section we introduced a variant of description of PRs in attempt to combine them
with ontologies, represented as a FO or DL KB. Since this approach is new, it can be
extended in several directions.

In a condition part it would be interesting, for example, to try to combine a kind of se-
mantics for conditions satisfiability we introduced here with standard patterns matching
algorithms, such as RETE [21]. It could allow us to use different kinds of patterns in a
condition, raising its expressivity.

Concerning actions, different kinds of semantics for update (erasure) and maybe even
their combinations can be considered here. Following the PMA semantics it would be
useful to try to find some other DLs, where update (erasure), or at least its approximation,
is expressible.

4.2 Tightly Coupling Production Rules and Ontologies

As discussed in the introduction, there is a set of problems when combining DL ontologies
and production systems which need to be solved. Summarizing:

1. How the ontology affects the PS, and how the PS affects ontology

2. How to model the execution of the system in a fair and still “relevant” way.1

3. Which is the Domain of discourse and which assumption we have about the logic

1With relevant we mean that when reasoning over the model, we can infer relevant information about
the system.

CHAPTER 4. PRS AND ONTOLOGIES 104

In Section 4.2.1 we start tackling point 1, i.e., how to interpret predicates and formulas
when combing the open-world assumption (OWA) of description logics and the closed-
world assumption (CWA) of production systems. In that section we also introduce the
main definitions relating production systems and ontologies. After that, in Section 4.2.2,
we axiomatize in Fix Point logic the possible executions of a production system aug-
mented with an ontology Σ (a Production system). In that section we solve point 2.

4.2.1 Augmenting production systems with ontologies

In this section, we present the formal definitions extending a production system with a DL
ontology (TBox) Σ. The main new concepts are production systems, run, and computation
tree. One of the most critical points of this section is Definition 4.2.6 where we formally
state when a rule is fired in a working memory, and how the resulting working memory
looks like. That definition summarize the answer to the problem presented in point 1 in
the introduction of Section 4.2

A notable difference with traditional production systems (Prod. Sys.), is that the set of
predicates in the Prod. Sys. is divided between description logic (DL) predicates, i.e.
predicates which may occur in the ontology, and production system predicates. In this
way we interpret DL predicates under OWA, and Prod. Sys. predicates under CWA.
Formally, given a production system with a FO signature τ we divide the set of predicates
into two disjoint sets: DL predicates (PDL) and production system predicates (PPS). Now
we proceed to define a Generic Production System.

Definition 4.2.1 (Production System). Given a DL ontology Σ a Generic Production
System is a tuple PS = (τ,Σ, L,R), where
– τ = (P,C) is a first-order signature, with P a set of
predicate symbols (DL and Prod. Sys. predicates), each with an associated nonnegative
arity, and C a nonempty set of constant symbols,
– Σ is a DL TBox which predicates belong to PDL
– L is a set of rule labels, and
– R is a set of rules, which are statements of the form

r : if φr(~x) then ψr(~x)

where

• r ∈ L,

• φr is an FO formula of τ and free variables ~x. and

• ψr(~x) = (a1∧· · ·∧ak∧¬b1∧· · ·∧¬bl), where a1, . . . , ak, b1, . . . , bl are atomic for-
mulas with free variables among ~x, such that no ai and bj share the same predicate
symbol,

CHAPTER 4. PRS AND ONTOLOGIES 105

We assume each rule has a distinct label.
�

Given a Prod. Sys. , the corresponding language L of the Prod. Sys. is P ∪ L ∪ C.

We view rule labels r ∈ L also as n-ary predicates, where n is the number of free variables
in the condition φr; with AL we denote the set of ground atoms constructed from the
predicate symbols in L and the constants in C.

We assume that AT denotes the set of equality-free ground atomic formulas (atoms) of τ .
With LT we mean the set of equality-free ground literals of τ .

Definition 4.2.2. Given a production system PS = (τ,Σ, L,R) such that the production
rule

r : if φr(~x) then ψr(~x)

is in PS, we define:

• ψaddr = a1 ∧ · · · ∧ ak

• ψremovePSr = ¬bj ∧ · · · ∧¬bk such that the predicate symbols in bj . . . bk are in PPS

• ψremoveDLr = ¬bi∧· · ·∧¬bh such that the predicate symbols in bi . . . bh are in PDL.

�

Before going on with the rest of the definitions, we proceed to set some notation. Let S
be a set of literals, by S we mean the set composed by the elements of S complemented
with respect to ¬.

Definition 4.2.3. (Working Memory) A working memory WM for PS is a subset of AT .
�

Definition 4.2.4. Let PS = (τ,Σ, L,R) be a generic production system and let WM0 be
a working memory. Then a concrete production system is a pair (PS,WM0). �

In the beginning of this section we split the predicates of the signature of a Prod. Sys.
in DL predicates (PDL) and Prod. Sys. predicates (PPS). Now we proceed to split the
predicates in the action of a rule, and the predicates of a working memory. We will use
these sets of predicates later on in this section:

Given a production system PS = (τ,Σ, L,R), let r ∈ L be a rule and σ be a valuation,
then:
–NegDLr(σ) = {p(c) : p(c) occurs in σ(ψremoveDLr)}
–PosDLr(σ) = {p(c) : p(c) occurs in σ(ψaddr) and p ∈ PDL}
–NegPSr(σ) = {p(c) : p(c) occurs in σ(ψremovePSr)}

CHAPTER 4. PRS AND ONTOLOGIES 106

–PosPSr(σ) = {p(c) : p(c) occurs in σ(ψaddr) and p ∈ PPS}

We also need to split a working memory WM in two parts:
–WMDL = {p(c) : p(c) ∈ WM and p ∈ PDL}
–WMPS = {p(c) : p(c) ∈ WM and p ∈ PPS}

(Note that p here stand for a predicate).

The next definition is one of the most relevant in this section. Here we formalize the
interaction between the ontology and the Prod. Sys. . We define when a rule’s condition
is satisfied in a working memory given a TBox (i.e., an ontology) and a valuation.

Definition 4.2.5 (Holds). An interpretationM satisfies an FO formula φ with a valuation
σ, relative to a working memory WM , denotedM, σ |=WM φ, iff

• φ = p(~x), p ∈ PPS , and p(σ(~x)) ∈ WM ;

• φ = p(~x), p ∈ PDL, andM |= p(σ(~x));

• φ = ¬ψ andM, σ 6|=WM ψ

• φ = ψ1 ∧ ψ2,M, σ |=WM ψ1, andM, σ |=WM ψ2;

• φ = ∃x : ψ and there is some valuation σ′ such that σ′(y) = σ(y) for every variable
y 6= x andM, σ′ |=WM ψ.

A formula φ holds in a working memory WM with a valuation σ, relative to a theory Σ,
denoted Σ, σ |=WM φ, iffM, σ |=WM φ for every modelM of Σ ∪WM . �

Now we are ready to define when a rule is fireable, and what is the content of the resulting
working memory.

Definition 4.2.6 (Firable). Let PS = (τ,Σ, L,R) be a production system. A rule r ∈ L
is fireable in a working memory WM with a valuation σ iff

• WM ∪ Σ is consistent, i.e., it has a model

• φr holds in WM with a valuation σ

• ψr does not hold in WM with a valuation σ

• The resulting working memory WM ′ is consistent with Σ

Where the resulting working memory WM ′ after firing r in WM is:

WM ′ = WM ′
DL ∪WM ′

PS

CHAPTER 4. PRS AND ONTOLOGIES 107

where:
–WM ′

DL = ((WMDL −NegDLr(σ)) ∪ PosDLr(σ))
–WM ′

PS = ((WMPS −NegPSr(σ)) ∪ PosPSr(σ))
�

Consider a production system with a rule r with action ¬p(c). Suppose that WM is the
working memory resulting from the application of r. It is worth noting that if p ∈ PPS ,
then the formula ¬p(c) holds in WM0 thanks to the CWA in Prod. Sys. . Instead if
p ∈ PDL (assuming the ontology is empty) the ¬p(c) does not hold in WM . It is due to
the fact that Σ ∪WM 6|= ¬p(c).

Note that filtering out theDL augmentation in this definition, what we obtain is a classical
production system.

Definition 4.2.7 (Run). Let PS = (τ,Σ, L,R) be a generic production system. A Run
RunPSWM0

for a Σ concrete production system (PS,WM0) is an (AT)-labeled sequence
(S, V) , such that:

• S = 0 . . . n . . .

• V (0) = WM0,

• and for each element n ∈ S such that it has a successor, there is some rule r, with
some valuation σ such that r is fireable in the working memory WM = V (n)∩AT
using σ, and V (n+ 1) = WM ′ ∪ {r(σ(~x))}, with

WM ′ = WM ′
DL ∪WM ′

PS

as defined in Definition 4.2.6.

There are no other nodes in RunPSWM0
. �

Now we are ready to define computation trees which stands for all the possible runs of
the system.

Definition 4.2.8. A computation tree for a concrete production system (Σ− PS,WM0),
denoted CTΣ−PS

WM0
, is an (AT ∪ AL)-labeled tree (T, V) such that the root of T is 0,

V (0) = WM0, and for each node n ∈ T , every rule r, and every valuation σ such that
r is fireable in the working memory WM = V (n) ∩ AT using σ, there is a child node
n′ ∈ T of n such that V (n′) = WM ′ ∪ {r(σ(~x))}, with WM ′ = WM ′

DL ∪WM ′
PS as

defined in Definition 4.2.6. There are no other nodes in CTΣ−PS
WM0

. �

4.2.2 Axiomatization

In this section we present the axiomatization of a run of a production systems. Given
a language L of a Prod. Sys. , the corresponding language LΦPS of the target FPL

CHAPTER 4. PRS AND ONTOLOGIES 108

axiomatization contain the predicate symbols and constants in L plus the predicates R,B
and A.

We capture the structure of the run using the binary predicate R. To enforce a sequence
structure on R, we introduce the predicate A which elements are totally ordered. The
predicate A contains the elements from the domain which are in R.

The arity of the predicates in LΦPS corresponding to predicate names in L is increased
by one, and the first argument of each predicates will signify the state; p(y, x1, . . . , xn)
intuitively means that p(x1, . . . , xn) holds in state y.

Given a modelM, letMc be a model such that (t1, . . . , tn) ∈ pMc iff p(c, t1 . . . tn) ∈M.
We say that an element c satisfies the TBox Σ iffMc is a model of Σ.

After setting the structure of the model, we define the necessary components of the for-
mula comprising the axiomatization. These components encode the constrains and re-
quirements w.r.t. to the TBox and the production system. Informally, the three main
concepts embedding each component are :

• Time: Each element in R represent a point in the execution, a state.

• TBox: We require that each element in R (each state) satisfies Σ

• Run: We constrain the relation between one element of the sequence and its suc-
cessor depending if it is an intermediate state in the execution of the production
system, or an element representing the end of the run.

A greatest fix point composed of these components restricts the models to the ones which
represent a run of the Prod. Sys. .

A notable difference with the axiomatization of traditional Prod. Sys. presented in [14]
is that the Frame axiom is split into two. One handles the Prod. Sys. facts, i.e., the
atoms which predicate symbol is in PPS . The other one handles DL facts. The main
difference between these two is the DL frame axiom only keeps unchanged atoms which
are true (and not removed) from one state to the next state, while it does not constrain the
behavior of DL atoms which are false.

Before explaining the axiomatization, let us define a formula which encodes when a rule
is fireable:

Let
Firabler(y, ~x) = φr(y, ~x) ∧ ¬(ψaddr (y, ~x) ∧ ψremovePSr (y, ~x))

Note that in this formula is when the conflict resolution strategy shows up in the logic
embedding. It essentially encodes the conflict resolution strategy:

• the current state satisfies the condition φr,

CHAPTER 4. PRS AND ONTOLOGIES 109

• the rule’s action must change the working memory, therefore we check thatψaddr (y, ~x)∧
ψremovePSr (y, ~x) does not hold in the state where r is going to be applied, i.e. the
predecessor of y.

Note that we ignore ψremoveDLr (y, ~x). It is due the fact that ψremoveDLr (y, ~x) dont impose
any constrain but remove one. It does not state what should hold or not in a given working
memory, but what should not necessarily be assumed to be true anymore.

In the remainder, let PS = (τ,Σ, L,R) be a generic production system and let WM0

be a working memory. We first define the foundational axioms, which encode the basic
structure of the models and the sequence shape of R.

We assume that the predicates B (signifying the start state), A and the binary predicate R
are not in P ∪ L.

Now we define the foundational axioms Γfound, which enforce the sequence shape of R:

• There is a total order < over the elements in A

• ∀x, y : R(x, y)→ A(x) ∧ A(y)

• ∀x, y : R(x, y)↔ x < y∧ 6 ∃z : x < z < y

• ∀x, y : B(x)→ A(x) ∧ (x 6= y → x < y)

Now the components of the axiomatization:

Root
B(y) ∧ (

∧
r∈L∀~x : ¬r(y, ~x))

TBox The TBox Σ holds in every state

(
∧
T∈σT (y))

RApp
(
∧
r∈L∀~x : r(y, ~x)→ ψaddr (y, ~x) ∧ ψremovePSr (y, ~x))

Appl
(
∧
r∈L∀~x : ∃w(R(y, w) ∧ r(w, ~x))→ Fireabler(y, ~x))

FrameDL∧
p∈PDL∀x1, . . . , xn([p(y, x1, . . . , xn)→ (∀w : R(y, w)→ p(w, x1, . . . , xn) ∨

(
∨
r∈L.ψremoveDLr (~z)=...¬p(t1,...,tn)∧...∃~z : r(y, ~z) ∧ x1 = t1 ∧ · · · ∧ xn = tn))]

CHAPTER 4. PRS AND ONTOLOGIES 110

Frame
∧
p∈PPS∀x1, . . . , xn([p(y, x1, . . . , xn)→ (∀w : R(y, w)→

p(w, x1, . . . , xn) ∨ (
∨
r∈L.ψr(~z)=...¬p(t1,...,tn)∧...∃~z : r(y, ~z) ∧ x1 = t1 ∧ · · · ∧ xn =

tn))] ∧ [¬p(y, x1, . . . , xn)→ (∀w : R(y, w)→
¬p(w, x1, . . . , xn)∨(

∨
r∈L.ψr(~z)=...p(t1,...,tn)∧...∃~z.r(y, ~z)∧x1 = t1∧· · ·∧xn = tn))])

NoFirable
(
∧
r∈L¬Fireabler(y, ~x))

Firable
∃~x :

∨
r∈L

(Fireabler(y, ~x))

1Rule
(
∨
r∈L

∃~x : r(y, ~x)) ∧ (
∧
r∈L

(∃~z : r(y, ~z)→ ¬
∨

r′∈L&r′ 6=r

∃~x : r′(y, ~x)))

Only A rule can not be applied twice in the same state.

(
∧
r∈L∀~x : r(y, ~x)→ ∃=1~z : (r(y, ~z))

WM-PS ∧
p∈PPS

∀x1 . . . xn(p(y, x1 . . . xn)↔∨
{x1 = c1 ∧ · · · ∧ xn = cn | p(c1, . . . , cn) ∈ WM0})∧

p∈PPS

∀x1 . . . xn(¬p(y, x1 . . . xn)↔∨
{x1 = c1 ∧ · · · ∧ xn = cn | ¬p(c1, . . . , cn) ∈ WM0})

WM-DL ∧
p(c1,...,cn)∈WM0 and p∈PDL

p(y, c1, . . . , cn)

∧
¬p(c1,...,cn)∈WM0 and p∈PDL

¬p(y, c1, . . . , cn)

The main differences with the axiomatization presented in [14] are

CHAPTER 4. PRS AND ONTOLOGIES 111

1. Appl We ask every node resulting from a rule application, to be successor of a node
consistent with Σ

2. FrameDL Only constrains the positive atoms which were not removed to stay over
time

3. TBox To mark consistent nodes

4. NoFirable No consistent nodes are no candidates for fire a rule

5. Firable If a consistent node satisfies a rule, then some rule is fired and there is a
unique successor which is consistent with the ontology.

6. WM-DL Which facts should hold in the initial WM, but not exclusively

Intermediate = RApp∧TBox∧1Rule∧Only∧Appl∧Frame∧FrameDL∧Firable∧
¬B(y)

End = RApp ∧ TBox ∧ 1Rule ∧Only ∧ Frame ∧ FrameDL ∧ NoFirable ∧ ¬B(y)

Analogous to the propositional case, we defined a formula that captures the behavior of
PS:

ΦPS = (∃y : (Root∧NoFirable)∧TBox∨(Root∧Frame∧FrameDL∧TBox∧Appl
∧ Firable ∧ ∀w(R(y, w)→ (ν.X.y.(Intermediate ∨ End)

∧ ∀w(R(y, w)→ X(w)))(w))))

The following notation will be useful. The formula Run(r0 . . . rn) denotes an order in the
rules execution.

Definition 4.2.9. Given a set of rules rules r1 . . . rn of a Prod. Sys. , let Run(r1 . . . rn)
denote the following formula:

B(y1) ∧
∧

i=1...n

R(yi, yi+1) ∧ ri(yi, ~xi)

�

Given a rule r of a Prod. Sys. PS we say that r is fireable in the initial state, if r is
fireable in the initial state of every model of the axiomatization of PS. That is

ΦPS ∪ Σfound |= ∃y1, ~x : B(y1) ∧ Firabler(y1, ~x)

And sequence of rules [r1 . . . rn, r] is fireable in the initial state (or just fireable), if for
every model of the run r1 . . . rn, the rule r is fireable after rn. That is, [r1 . . . rn] is fireable
and

CHAPTER 4. PRS AND ONTOLOGIES 112

ΦPS ∪ Σfound |= ∃y1 . . . yn+1, ~x : Run(r1 . . . rn)→ Firabler(yn+1, ~x1)

We say that a formula in LΦPS is timeless if the predicate names R,B and A do not occur
in α.

Definition 4.2.10. Given a Prod. Sys. , a timeless closed formula α in LΦPS and a set of
rules r1 . . . rn, we say that α holds after r1 . . . rn if and only if

ΦPS ∪ Σfound |= ∃y1 . . . yn+1, ~x1 . . . ~xn : Run(r1 . . . rn)→ α(yn+1)

�

Theorem 4.2.11 states the correspondence between the runs of the production systems,
and the models of our formalization. Informally, the soundness theorem says that given
a production system, its formalization ΦPS ∪ Σfound, and the n first states of R, there is
a run which contain the sequence 1 . . . n such that the models in the i − th state, are the
same as the ones in the sequence point i.

Theorem 4.2.11. (Soundness) Let PS = (τ,Σ, L,R) be a production system and let
(PS,WM0) be a concrete production system. Then for any executable sequence of rules
[r1 . . . rn]; there is a run RunPSWM0

= (S, V) of the Prod. Sys. and valuations σ1 . . . σn
such that

1. S ⊇ 1 . . . n+ 1

2. ri is fireable in V (i) with valuation σi

3. For any formula α in LPS , α holds after [r1 . . . rn] iff V (n+ 1) |=Σ α (modulo the
state argument)

Theorem 4.2.12. (Completeness) Let PS = (τ,Σ, L,R) be a production system and let
(PS,WM0) be a concrete production system. Let RunPSWM0

= (S, V) be a run of the
Prod. Sys. Then for any finite sequence 1 . . . n + 1 ⊆ S where ri is fireable in V (i) with
valuation σi, the sequence [r1 . . . rn] is executable and for any formula α in LPS , α holds
after [r1 . . . rn] iff V (n+ 1) |=Σ α (modulo the state argument)

4.3 Conclusions

We have presented two alternative approaches to combining production rules and OWL
ontologies: a loose coupling and a tight coupling semantics.

In the loose coupling approach we augmented the production rule semantics in a mini-
mal way: we only defined the notion of satisfaction of a rule condition, given a variable
substitution, and we defined the effect actions have on the working memory. Condition

CHAPTER 4. PRS AND ONTOLOGIES 113

satisfaction was defined based on entailment from the ontology plus the working memory
(viewed as an ABox). We considered two approaches for the semantics of actions: the
formula-based approach, where actions effect addition or removal of facts from the work-
ing memory, and the model-based approach, which defines the effects on the model-level,
which allows one to take the ontology into account when modifying the working mem-
ory. As we have seen, it is unfortunately not always possible to materialize the resulting
working memory, but there are known ontology languages for which this is possible.

In the tight coupling approach, we defined an integrated semantics and an axiomatization
of this semantics in fixpoint logic (FPL). Because of the integrated nature of this seman-
tics, it encompasses more aspects of the production system: for example, the conflict-
resolution strategy is an integral part of the definition of the semantics, as well as the
axiomatization, although both have been constructed in such a way as to allow easy inte-
gration of other conflict-resolution strategies. The axiomatization may be used to analyze
combinations and check certain properties, such as termination. Actual analysis of pro-
duction rules and ontology combinations using the FPL axiomatization is future work.

Chapter 5

Production Rules over OWL Ontologies

5.1 Introduction

This chapter describes some issues encountered when trying to use production rules (PRs)
over OWL ontologies.

Our main concern is to facilitate the use of PRs over ontologies expressed in OWL as
opposed to traditional objects. After a quick review of today’s state of the art in mixing
production rules and ontologies, we focus on a “loose-coupling” approach that consists
of implementing a new PR engine that delegates all ontological processing to an OWL
engine.

Based on the theoretical framework for satisfaction of conditions and execution of actions
introduced in Deliverable D3.2 [35], we studied the issues resulting from the combina-
tion of PRs and ontologies. The deep analysis of these issues allows us to enhance the
implementation of XPR〈OWL〉, an execution engine for production rule over ontologies,
and gives us a better comprehension of the impact of replacing a traditional object model
with OWL in a PR engine, as well as the limitations of the “loose-coupling” approach.

The identified issues belong to two categories. On one hand, those on the condition
part of a PR, such as matching sets, counting of property values, or user predicates (or
connectives) in conditions. On the other hand, the issues on the action part of a PR, such
as retracting individuals, or maintanining consistency. As our analysis will clearly show,
many typical constructs in the object world can be captured precisely and formally as OWL
statements. It is also clear that there are many object-oriented assumptions and features
that are at odds with the assumptions or expressive power of OWL. Hence, our general
approach has been to identify a core sublanguage encompassing all XPR〈OWL〉 constructs
that can be delegated safely and correctly to an OWL reasoner. For the parts of XPR〈OWL〉
not fitting this core sublanguage, specific compromise solutions addressing the identified
issue are proposed.

114

CHAPTER 5. PRODUCTION RULES OVER OWL ONTOLOGIES 115

The prototype implementation, based on OWL-API1 and Jena [20] (see [40] for the de-
tails of the implementation), was driven by two aims: (a) bring the theoretical framework
and the implementation in line as much as possible, and (b) make sure that the implemen-
tation respects the OWL semantics, while preserving the peculiarities of the PR engine. It
must be noticed that we have already seen that using the Jena engine does not guarantee
faithfulness to the OWL semantics. In the loose-coupling approach, production rules and
OWL only touch each other when (1) checking satisfaction of conditions and (2) updating
the working memory (in our case, the individuals of an OWL ontology). But we noticed
that the use of OWL ontologies also impacted other components of the PR engine, such us
pattern matching, navigation or assertions.

This chapter is organized as follows. The theoretical rule language is first briefly recalled.
Next, the issues that arise up when trying to adapt a practical production rule language
initially dedicated to objects to OWL are detailed. The issues related to the condition part
of the production rules are isolated from the issues related to the action part. A discussion
finally follows analyzing the impact of replacing the object model of a PR engine with
OWL, and explicating some of the limitations of the “loose-coupling” approach.

5.2 Theoretical framework

In the rule language we are currently considering in the theoretical framework, we dis-
tinguish between conditions and actions. A rule may be fired for a particular variable
substitution S if the condition is satisfied (defined below) for this substitution. In case the
rule is fired, we say how the working memory is updated, based on the action. We do not
say anything about the conflict resolution strategy.

We assume the following:

• A description logic knowledge base K (i.e., the ontology). This is immutable.

• A working memory WM, which is a set of variable-free atomic formulae; i.e., atomic
class and property membership statements.

5.2.1 Conditions

We consider here only positive patterns, and we consider only predicates that are used in
the DL knowledge base.

A rule has a set of positive patterns p that are constant-free atomic formulae of the forms
A(x) or R(x, y), where A is the name of an OWL class (i.e., a concept) and R is an OWL
property (i.e., a role). A rule also has a condition c, which is a first-order logic formula
with free variables among the variables appearing in p. When writing the condition, the

1http://owlapi.sourceforge.net/

CHAPTER 5. PRODUCTION RULES OVER OWL ONTOLOGIES 116

set of patterns can be viewed as a conjunction and can, in turn, be conjoined with the
condition. We can thus write conditions of the form:

Person(x) ∧ ∃y(hasChild(x, y))

which matches with all persons who have at least some child.

A rule is σ-fireable if, for some variable substitution σ:

K ∪ WM |= σ(p), σ(c)

Where, K can be viewed as the ontology, with WM being the instance data of the ontology.
The symbol |= denotes the logical entailment relation.

Consider the example ontology above and the variable substitution σ = {John/x}. We
have:

K ∪ WM |= Person(John) ∧ ∃y(hasChild(John, y))

and thus our rule is σ-firable if and only it can be inferred from the WM’s OWL ABox data
that an individual John exists who has at least one child.

5.2.2 Actions

The action of a rule consists of:

remove r
add a

where r and a are sets of atomic formulas whose variables appear free in the condition.

Consider, for example, an “aging” rule that makes someone old. The variable x is as-
sumed to appear in the condition, and denotes an aging person:

remove hasAge(x,young)
add hasAge(x,old)

Note here that we add and remove facts; i.e., statements. We do not add or remove objects.

Note also that adding statements to the working memory may make the working memory
inconsistent with respect to the ontology. For example, one could do:

add owl:Nothing(a)

Thus making the ontology inconsistent by definition. The problem of having an incon-
sistency is that everything follows, and thus every rule becomes firable for every possible
variable substitution, making them meaningless.

CHAPTER 5. PRODUCTION RULES OVER OWL ONTOLOGIES 117

There are three possible ways to deal with such inconsistencies; we may:

1. stop execution as soon as an inconsistency is reached;

2. make firable only those rules that do not introduce inconsistency (this would require
runtime reasoning); or,

3. fix inconsistencies on the fly (this is a really hard problem, and most methods for
repairing inconsistencies require user intervention).

Where adding facts may introduce inconsistency, removing facts may lead to unexpected
situations when removing is done naively, particularly when removing implicit (i.e., im-
plied) facts.

As an illustration, consider the following ontology K:

SubClassOf (:Student :Person)

and the working memory WM:

ClassAssertion(:Student :Kate)

We have that, combined, they imply that Kate is a Person:

K ∪ WM |= Person(Kate)

Let’s say, we want to have a rule that removes all persons:

IF Person(x) THEN remove Person(x)

Clearly, this rule is triggered for the person Kate. However, executing this rule does
not result in removing anything about Kate from the working memory, since the fact
Person(Kate) is not explicitly present in the WM; it is only implied by it.

5.2.3 OWL

The syntax of OWL is described in the OWL2 specification. What is important for us is that
OWL statements essentially correspond to description logic statements. In turn, description
logic statements correspond to statements in first-order logic.

As an example, consider the following expressions stating that the concept of parent
is equivalent to (defined as) the union of mother and father (i.e., every parent is a
mother or father, and vice versa), John is a father, and John has two children: Mary
and Kate. Namely,

CHAPTER 5. PRODUCTION RULES OVER OWL ONTOLOGIES 118

EquivalentClasses (:Parent ObjectUnionOf (:Mother :Father))
ClassAssertion (:Father :John)
ObjectPropertyAssertion (:hasChild :John :Mary)
ObjectPropertyAssertion (:hasChild :John :Kate)

In DL syntax, this is written as:

Parent = Mother t Father
Father(John)
hasChild(John, Mary)
hasChild(John, Kate)

This, again, corresponds to the following first-order logic theory:

∀x(Parent(x)↔ Mother(x) ∨ Father(x))
Father(John)
hasChild(John, Mary)
hasChild(John, Kate)

Since John has two children, Mary and Kate, one may be tempted to view the value of
the hasChild predicate as a set {Mary, Kate}. Indeed, the OWL-API suggests that
hasChild is a set-valued property, and returns the set {Mary, Kate} as the value of
the property. However, one must keep in mind that, from the OWL language point of view,
we have two separate statements, and thus we have a property that has two values.

5.3 Issues

We have identified a number of discrepancies between the proposed theoretical framework
and the current XPR〈OWL〉 implementation. These discrepancies are described below as
issues on the condition part and the action part of the rule.

We have recognized that, in practice, it may be the case that users will desire certain
functionality that is not easily captured in a nice theoretical framework. We can thus
think of a core production rule language that has proper theoretical foundations in OWL
semantics. This core may be extended with certain (e.g., scripting) functionality as per
request by the users. Of course, we strive to capture as much as possible of the useful
functionality of the current JRules system in the theoretical framework. The solutions to
the issues described below have in mind that we stay in the core fragment of the language
that has solid foundations in the OWL semantics.

CHAPTER 5. PRODUCTION RULES OVER OWL ONTOLOGIES 119

5.3.1 Condition Part

5.3.1.1 Matching Sets

The implementation of XPR〈OWL〉 currently allows matching sets. From a semantic point
of view it is not always clear what this should mean, in particular when matching sets of
statements. Also sets of values may be a problem, or at least a discrepancy with the theo-
retical framework. However, in some cases such conditions can be reduced to conditions
without sets, in particular when the set is only used for enumeration. For example, the
following condition will match with all children of any parent, and thus the rule is fired
for every child y of every parent x:

Parent(x) and hasChild(x,y)

Note that sets (and other aggregates) are just examples of monoids. A set is just a value,
and any basic calculus (say, the λ-Calculus or the Relational Calculus) can accommodate
them without complication. See for example the Fegaras-Maier SIGMOD’95 paper [19].
However it is simpler to start without sets or aggregates over collections.

Incidentally, the above “special case” of use of collections is deemed useful as it “hap-
pens” to match the semantics of:

∀x ∃y. Parent(x) ∧ hasChild(x, y).

All such (“operational”) iterations over collections may be thus formally interpreted using
the paradigm of monoid comprehensions, which too have a simple set-theoretic (and thus
FOL) semantics.

The issue is one of understanding what is meant. Let’s take as an example the con-
dition Parent(x). If variable x is matched with individual John, we can check
whether Parent(John) is entailed. However, if x is matched with a set such as
{John,Jack}, it is unclear what to do, since Parent({John,Jack}) is not a well-
formed FOL expression. This means we need to figure out what to do in such cases.

Here is a more detailed example with sets to help our understanding.

CHAPTER 5. PRODUCTION RULES OVER OWL ONTOLOGIES 120

rule MyRule1 {
when {

foreach person as myonto:Person {
myonto:friends friends;

};
foreach friend from friends;
if (friend.age > 24);

}
then {

insert friend;
}

}

In the condition part of Rule MyRule1, it is assumed that:

1. the range of the property myonto:friends is myonto:Person and the prop-
erty is not functional; and,

2. the variable friends has the type set<myonto:Person> because operationally
OWL-API will return a set for the objects when passed a subject and a property.

Therefore, it should be possible to use it as a set in the rule and in function calls. For
instance here, it is used as the source collection value of a foreach pattern in the second
part of the condition. In the nested when condition, only the friends of the persons of the
WM whose age is greater than 24 are relevant.

rule MyRule11 {
when {

foreach person as myonto:Person {
myonto:friends friends;

};
}
then {

insert friends;
}

}

The action part of MyRule11 is syntactic sugar to add all the elements of the set to the
working memory (an OWL ontology) one after the other (thus saving an interation loop).
It will not add the set itself as a single individual as it has no meaning in OWL. Only values
with an OWL type (a.k.a., description) can be added to the WM. Thus a value with a type
in the rule type system built over the OWL’s own type system will be refused and a value
with an OWL DataRange type will also be refused as compile-time errors.

CHAPTER 5. PRODUCTION RULES OVER OWL ONTOLOGIES 121

rule MyRule2 {
when {

let friend_collector = new set<myonto:Person>();
do {

aggregate friend_collector(friend);
}
when {

foreach as myonto:Person {
myonto:friends friends;

};
foreach friend from friends;
if (friend.age > 24);

}
}
then {

doSomething(friend_collector);
}

}

Rule MyRule2’s condition illustrates how sets may be combined with a do pattern. This
is useful to collect only relevant data from patterns. In the nested do condition part, the
relevant friends are collected.

In the condition part of MyRule2, the pattern is used to build a set. In the action part, a
single instance of the rule is created and not as many as the number of Person instances
times the number of instances in the set friends.

5.3.1.2 Counting of property values

5.3.1.2.1 Issue The current implementation relies on the set of values for a particular
property returned by the OWL-API. The problem is that, in the OWL world, several of
these property values may actually be identifiers of the same object and there may be
values of the property that do not have an associated identifier, and are thus not returned
by the OWL-API.

For example, to test if John has more than one child, implementation will ask the
OWL-API for all known children of John, in this case the OWL-API will return the
set {Mary, Kate}. From this it is not valid to conclude that John has two children,
since Mary and Kate may actually be the same person e.g., Mary might have changed
her name to Kate at some point during her life).

5.3.1.2.2 Solution The solution would be to query the OWL ontology when checking
the condition. For example, the following may be part of the condition:

x.hasChildren.size > n

CHAPTER 5. PRODUCTION RULES OVER OWL ONTOLOGIES 122

where x and n are variables. At the time of execution, these variables will be instantiated;
e.g., x is instantiated with John and n is instantiated with the number 1. The resulting
condition is thus:

John.hasChildren.size > 1

which corresponds to the OWL statement:

ClassAssertion(ObjectMinCardinality(2 :hasChild) :John)

It is thus possible to check entailment of this statement from K ∪ WM. If this statement is
entailed, it is then indeed true that John has more than one child.

Note that the above is just an example where the solution is to generate an appropriate
OWL statement that expresses exactly the needed semantics. Indeed, it is quite possible
to find examples for which generating an OWL expression with equivalent semantics is
non-trivial or simply impossible. For instance, if a rule’s condition requires to compare
the size of two sets in the PR language, this cannot be reduced to checking an appropriate
OWL entailment.

The general solution, then, would be to restrict the core sublanguage only to those ex-
pressions that can be translated into equivalent OWL. A more systematic generic solution
would thus require to be able to identify which expressions belong in the core and which
do not. For the former an appropriate equivalent OWL can be generated as required; as for
the latter, such expressions are to be flagged as problematic (i.e., reported as exceptions).

5.3.1.3 User predicates in condition

5.3.1.3.1 Issue In the implementation, it is possible to include user-defined functions
in a rule condition. Of course, we cannot specify the semantics of such functions com-
pletely, but such functions would simply reduce to user-defined predicates in the theoret-
ical framework. The only remaining problem is that user defined functions may take sets
as arguments.

5.3.1.3.2 Solution For now, disallow the users to define functions that takes sets as
arguments.

CHAPTER 5. PRODUCTION RULES OVER OWL ONTOLOGIES 123

5.3.1.4 Connectives in conditions

The use of certain logical connectives in the conditions (disjunction, negation, universal
quantification) raise problems2, because they operate only on the variable substitutions
that have been matched, and not on the OWL models.

Consider, for example, the condition:

not(Person(Jake))

Arguably, this condition should only be satisfied if:

K ∪ WM |= ¬Person(Jake)

i.e., if it is known that Jake is not a person. However, according to the current mecha-
nism, the condition is satisfied if it is not known that Jake is a person:

K ∪ WM 6|= Person(Jake)

So it may still be the case that there are some models in which Jake is a person, and it is
thus arguably not reasonable to assume that he is not.

For a disjunction example, let us consider an OWL ontology K with the following state-
ments:

Person v (Man t Woman)
Person(Jane)

which state that every Person is a Man or a Woman and that Jane is a Person. Let us
then consider the disjunctive condition :

Man(Jane) ∨ Woman(Jane).

Using the current (closed-world) mechanism in the XPR〈OWL〉 implementation, this con-
dition is not satisfied, because :

K ∪ WM 6|= Man(Jane)
K ∪ WM 6|= Woman(Jane)

which states that neither Man(Jane) nor Woman(Jane) is entailed by the ontology.
However, because of the axiom:

Person v (Man t Woman)

it comes that Jane is either a Man or a Woman in every model of the ontology and thus
Man(Jane) ∨ Woman(Jane) is entailed:

K ∪ WM |= Man(Jane) ∨ Woman(Jane).

2Many of these problems derive from the discrepancies between ontologies and rules, due to open vs.
close world as introduced in D3.2 [35, 5.4.1]

CHAPTER 5. PRODUCTION RULES OVER OWL ONTOLOGIES 124

Here is an example of the issue with using “for all” quantification in a PR condition.

Consider an ontology K:

Person(Jane)
Woman(Jane)

stating that Jane is a Person and a Woman, and a condition:

∀x
(
Person(x) =⇒ Woman(x)

)
that is satisfied if every Person is a Woman. Now, the ontology does not entail that every
Person is a Woman; indeed:

K ∪ WM 6|= Person v Woman.

However, the condition is satisfied using the current XPR〈OWL〉 mechanism, since every
Person that is explicitly mentioned in the ontology is also a Woman.

From a semantic point of view, to consider conditions with arbitrary logical connectives
as queries on the DL knowledge base poses no problem. However, it is known that an-
swering such queries is a hard problem, and not decidable in general. From a practical
point of view, it is also hard to get reasoning support for such arbitrary queries. Many
DL reasoners only support tree-shaped queries; i.e., queries that correspond to concept
expressions.

A possible solution would be to see which kind of queries can be reduced to tree-shaped
queries, and in which cases it is possible to split the matching of the condition in various
parts. In particular, this can always be done in the case of a conjunction between two
formulas that do not share any quantified variables.

Yet another solution would be to view OWL statements as oracle calls separate from the
PR world, and view the Boolean connectives as an algebra that just does simple syntactic
manipulation.

5.3.1.5 A note on iterations

In the XPR〈OWL〉 language, it is possible to express iterations over matching variable
substitutions in the conditions. This means that the rule is applied to all matching sub-
stitutions, rather than just one. In the theoretical framework, we currently only consider
matching individual variable substitutions.

Consider the rule:3

foreach x: Person(x) do remove(x)

3This is informal syntax.

CHAPTER 5. PRODUCTION RULES OVER OWL ONTOLOGIES 125

meaning to remove all Person objects from the working memory. This rule is essentially
the same as the rule:

if Person(x) then remove(x)

along with a conflict resolution strategy that says that when this rule is applied, it is
applied for all matching substitutions before any other rule is applied.

There are various possible ways of dealing with this mismatch, including:

• Saying that the theoretical framework is only concerned with matching individual
substitutions, and thus not say anything about the order of rule applications.

• Including a special kind of rule in the theoretical framework that is fired for all
matching substitutions, rather than just one.

For now, we choose the former.

5.3.2 Action Part

5.3.2.1 Retracting individuals

5.3.2.1.1 Issue In the object world of production rules it is typical to retract individu-
als. The current implementation tries to mimic this behavior by retracting all statements
found using the OWL-API involving the particular individual. Indeed, actual retraction
of an individual would mean changing the signature of the language, which is a problem
from a semantic point of view. The current XPR〈OWL〉 implementation using OWL-API
mimics this behavior, since OWL-API only allows querying objects that are present in
the ontology, and removing all statements involving objects, including membership in
owl:Thing, would mean the object is no longer present in the ontology.

Consider, for example, the action remove(a) removing the individual a. Consider now
a rule with a condition owl:Thing(x).

This condition matches all possible variable substitutions;i.e., all possible substitutions of
variables with constant symbols in the signature of the language.

Should this condition match with all individuals, including a? For instance, if some rule
now removes all statements about some individual a:

remove(a)

the constant symbol a is still in the signature of the language and clearly

K ∪ WM |= owl : Thing(a)

CHAPTER 5. PRODUCTION RULES OVER OWL ONTOLOGIES 126

and thus the condition owl:Thing(x) should match with the substitution θ = {x 7→
a}. However, the current implementation will not match the condition with the substitu-
tion θ, because the statement owl:Thing(a), which the OWL-API uses to keep track
of the signature, is removed from the ontology.

5.3.2.1.2 Solution When removing statements about an individual a, the statement
owl:Thing(a) should not be removed.

5.3.2.2 Inconsistency

5.3.2.2.1 Issue There are actually two issues here regarding inconsistency of the WM
as the result of a rule application: (1) type satisfaction may be violated; and (2) some
arbitrary logical insonsistency is introduced.

As an example of changing type resulting from an action, consider the ontology K:

Woman(Jane)
Woman v Person

and consider the rule:

if
Person(x)

then
remove(Woman(x));
myPersonFunction(x);

where myPersonFunction is a user-defined function expecting a Person as pa-
rameter. Now, Person(Jane) is entailed by K and thus the condition of the rule
matches with substitution {x 7→ a}. After Woman(Jane) is removed from the ontology,
Person(Jane) is no longer entailed, and thus the argument of myPersonFunction
is no longer a Person.

For an example of logical inconsistency, consider the following ontology K:

Man 6v Woman

Man(Jack)
WantsSexChange(Jack)

stating that the classes Man and Woman are disjoint; i.e., there may be no individual that
is both a Man and a Woman, and Jack is a man who wants a sex change. Now consider
the rule (in informal syntax):

if
Man(x), WantsSexChange(x)

then
performSexChange(x);
add(Woman(x));

CHAPTER 5. PRODUCTION RULES OVER OWL ONTOLOGIES 127

where performSexChange is a user-defined function. When this rule is executed, the
statement Woman(Jack) is added to the ontology, making the ontology inconsistent,
since Man(Jack) is in the ontology while Man and Woman are disjoint.

5.3.2.2.2 Solution

• Enforce that all user-defined functions in the action part must be executed before
the working memory is changed.

• The second problem is an update in the working memory causing an inconsistency
with respect to the ontology. The considerations here are exactly the same as the
considerations in the action part in the theoretical framework (see Section 5.2.2 on
Page 117).4

5.4 Practical impacts on the rule engine

From a practical point of view, the impact of moving from OM to OWL is related to the
ability to build, introspect and reason about descriptions. The OWL reasoning involved
here is T-Box reasoning. With the production rule engine the impact is moving on the
ability to reason about the content of the working memory. The OWL reasoning now
involved is A-Box reasoning.

The following sections will discuss in more details the impact of moving from objects to
OWL assertions for:

• the working memory.

• the pattern matching.

• the navigation from a subject individual to related individuals.

• the assertions.

5.4.1 Impact on the working memory

In a PR engine over OM, the working memory is a set of objects managed internally by
the rule engine. The objects are added to, removed from the working memory or updated
because one of their attributes has changed. The objects are the instances of the classes
defined in the OM. Contrariwise with OWL, the working memory is made of the individuals

4Note that in this case it may be possible to perform static analysis to discover that the rule is problematic
since the concept: ManuWantsSexChangeuWoman is unsatisfiable. For example, if there are only insertions
in the action, it is possible simply to conjoin the facts added by the action with the condition and check for
satisfiability.

CHAPTER 5. PRODUCTION RULES OVER OWL ONTOLOGIES 128

of the OWL ontology who are at least the members of the owl:Thing class. XPR〈OWL〉
is still providing means to add, remove and update the individuals themselves. A working
memory is still available. This is the object-oriented approach. But XPR〈OWL〉 is also
providing means to add, remove and in some limited cases update OWL statements about
the individuals. The OWL assertions will be discussed in more details below.

While in OM, there is a built-in mecanism to define a custom object identity: an instance
comparator that is provided for each class of the OM. In OWL, there is no unique name
assumption for the individuals. The reasoner should always be invoked to check whether
an individual is identical to another one in particular each time an individual is added to a
set. In XPR〈OWL〉, only a representative individual is asserted in the working memory and
propagated in the Rete network. This representative can evolve as individuals are removed
or new identity assertions are added. The working memory and the whole state of the
Rete network need to be updated each time a representative is changing. XPR〈OWL〉is
also providing the set type as a built-in collection type. Each instance of set created from
XPR〈OWL〉 is using representative individuals.

5.4.2 Impact on pattern matching

The main task of the pattern matching is to check whether a runtime value is of the ex-
pected type. If it is not the case, the pattern matching will fail. If it is the case, the pattern
matching will succeed and it is safe to consider the value as an instance of the type in the
remaining patterns.

With an OM, each time an object is reaching a Rete class node, the OM is invoked to check
whether it is an instance of the class.

With OWL, each time an OWL individual is reaching a Rete class node, the OWLreasoner is
invoked to check whether it is an instance of an OWL class expression.

5.4.3 Impact on navigation

Navigation is a classical mecanism in PRs that is used within object patterns and when
the dot notation is used in a traditional expression.

Classical Rete implementations are based on class conditions. In the body of a class
condition, the matched object is becoming the this object. The attribute names that
are specified are automatically translated to this.name. But no nested patterns can be
introduced for the attribute values. In XPR〈OWL〉, the provided OWL individual patterns
are similar to class patterns. The matched object is becoming the "subject". But nested
patterns can be specified for the “objects” that are connected to the “subject” thanks to a
property.

In classical PR over OM, each time a navigation is encountered at runtime, the subject
value is known and the OM is asked to give the value of the attribute. But when using

CHAPTER 5. PRODUCTION RULES OVER OWL ONTOLOGIES 129

OWL, each time a navigation is encountered at runtime, the subject OWLindividual is know
and the OWL reasoner is asked to provide the objects that are related to this subject. Cu-
riously, the OWL-API is returning a java.util.Set of OWL individuals, assuming
here that an object property is involved and not a data property. In other words, it is
only returning what is materialized in the OWL ontology. One would have expected an
OWL implementation to return a more sophisticated kind of set description adapted to the
open world assumption that would summarize what is kwnown about the object values.
For instance, if an onto:Car is defined to be equivalent to an onto:Vehicle == 4
onto:wheels and only 2 distinct wheels are materialized in the OWL ontology for a
Car, it is interesting to know that 2 other distinct wheels are expected to exist somewhere
but are not yet known. With OWL-API, what you get is the 2 available wheels. Well,
most people who are familiar with the closed world object-oriented approach will think
"it’s a bike, not a car, this rule about car should not have matched". Here, the distance
that exists between logical descriptions and the object-oriented mechanisms should be-
come a bit more clear. It is the same with Jena except that the returned type is a Jena
NodeIterator which does not help a lot here when compared to java.util.Set.

For functional properties, a tricky mechanism has been implemented in XPR〈OWL〉 to be
able to keep the object-oriented navigation, the so called "dot notation" as a production
rule language construct. The result here is still a set of values. But this set may be
empty in the case where the single expected value is not yet known. This is not really
compliant with traditional object-oriented navigation expressions that are not expected to
fail on unknown values. In this case the XPR〈OWL〉 engine will propagate a local pattern
matching failure if the navigation expression is involved in a pattern and throw a global
runtime exception if it is involved in an action. This illustrates once again the difference
that may exist between the OWL logical statement manipulations and the traditional object-
oriented mechanisms.

5.4.4 Understanding production rule semantics for assertions

The action part of the production rules may cause assumptions that were used in the
condition part to fail. While in logical rules, this is considered as an inconsistency, in
production rules this behaviour is perfectly acceptable. The meaning of a change in the
action part is that a new state needs to be considered for the condition parts of all the rules
of the ruleset under processing. We must notice here that such changes are manageable
when only the production rule engine side is considered. In the past there used to be
complex instructions in the condition part of the production rules that matched different
states, the so called « watchdogs ». Those complex instructions are not used anymore in
the modern PR engine and have not been implemented in XPR〈OWL〉.
But in the context of XPR〈OWL〉 a change is not as manageable on the OWL reasoner side.
XPR〈OWL〉 is doing its best to avoid introducing inconsistencies in the OWL ontology due
to changes. The best XPR〈OWL〉 can do to properly manage the changes of the OWL

CHAPTER 5. PRODUCTION RULES OVER OWL ONTOLOGIES 130

ontology is first to introspect the OWL ontology and second to use OWL queries to extract
the precious derived knowledge from the hands of the OWL reasoner.

All those control steps and round-trips between the production rule engine and the OWL
reasoner are obviously extremely costly in time and in transient memory consumption.

5.4.5 Pre-requisites for assertions

The first mandatory pre-requisite is that the OWL manager which is used must accept
ontology changes. This is the case for Jena where the concept of mutable OWL ontology
is supported.

The second pre-requisite is not mandatory and is related to incrementality. The OWL
manager which is used should provide support for incremental changes. In our experi-
ments with OWL-API, we noticed that OWL-API is providing pretty good support for
such changes, even if the quality of all this ultimately depends on the OWL reasoner im-
plementation. With OWL-API, a change is defined as an object. Several changes can
be considered at once. Listeners can be specified in order to be notified of OWL ontol-
ogy changes. Jenais providing less sophisticated goodies of this kind. However in both
cases, it is not clear at all when an inconsistency due to a bad change is really detected: is
it precisely when the change is done or is it at the next reasoning step?

5.4.6 Impact on assertions

In classical PR engines, only the capability to add to, remove from objects of the working
memory is provided. An update action is also provided to notify the Rete that some
attribute value of an object has changed and that it should be checked again whether the
object is still compliant with the patterns it has already matched.

In XPR〈OWL〉 this capability is maintained because our working memory is similar to the
object-oriented one. The object-oriented "new" instruction of XPR〈OWL〉 is able to create
new OWL individuals. Those OWL individuals are not automatically added to the work-
ing memory. They need to be added to the working memory with an add object action
explictly. When they are created, they are nothing else than constant objects. But OWL in-
dividuals created from the rules are automatically associated their OWL instantiation class
descriptor which is statically available as part of the object-oriented "new" instruction.
This OWL class descriptor is used for strong type checking whenever the new OWL indi-
vidual is used in the rest of the rule. It is also used to automatically convert an add object
action involving this individual to an OWL add class assertion.

In addition, the following action are provided in XPR〈OWL〉 :

Class assertion updates The OWL add class assertion is available as an XPR〈OWL〉 action
to assert the fact that an OWL individual is an instance of an OWL class. In OWL,

CHAPTER 5. PRODUCTION RULES OVER OWL ONTOLOGIES 131

individuals do not have a single instantiation class as it is the case for objects. Many
assertions can be added this way to state all the OWL classes an OWL individual is
an instance of. When this assertion is interpreted, the XPR〈OWL〉 rule engine will
first check whether this direct assertion is not already in the ontology and will only
add it to the mutable OWL ontology if it is not the case.

The OWL retract class assertion is available as an XPR〈OWL〉 action to retract any
similar class assertion already in the OWL ontology. Any attempt to retract the fact
that an OWL individual is an owl:Thing is silently discarded. In OWL, an in-
dividual is always at least an owl:Thing and can be referenced in many other
OWL model elements, OWL class expressions and enumerations in particular. In
XPR〈OWL〉, an OWL individual can be removed from the working memory but can-
not be removed as a whole from the OWLmodel. Provided the OWL class specified is
not owl:Thing, the OWL individual is also automatically removed from the mem-
bers of all the sub classes of the class to maintain the consistency. The OWLreasoner
is used to collect the set of sub classes. Only the direct assertions involving those
sub classes that exist in the OWL ontology are removed from the OWL ontology.

Negative OWL class assertions are also supported in XPR〈OWL〉 but have not been
really used so far.

Property assertion updates The OWL add property assertion is available as an XPR〈OWL〉
action to assert that an OWL individual is related to a value thanks to a property.
When this assertion is interpreted, the XPR〈OWL〉 rule engine will first check whether
an equivalent direct assertion is not already in the ontology and will only add it to
the OWL ontology if it is not the case. For functional properties, only a unique value
should be kept. Any assertion already in the OWL ontology which involves the same
subject but a different value is automatically removed.

The OWL retract property assertion is available as an XPR〈OWL〉 action to retract
any similar property assertion already in the OWL ontology. Assertions already in
the OWL ontology that involve the same subject but that are related to sub-properties
are automatically removed from the OWL ontology to maintain the consistency. The
OWL reasoner is used to collect the set of sub-properties of a property.

The OWL update property assertion is also available as an XPR〈OWL〉 action. When
this assertion is interpreted, the XPR〈OWL〉 rule engine will first check whether an
equivalent assertion cannot be derived from the OWL ontology and will only add an
assertion for the new object value to the OWL ontology if it not the case. The OWL
reasoner is used to perform this check. For functional properties, only a unique
value should be kept. Any assertion already in the OWL ontology which involves
the same subject but a different value is automatically removed.

Negative OWL property assertions are also supported in XPR〈OWL〉 but have not
been really used so far.

Individual assertion updates The OWL same individuals assertion is available as an XPR〈OWL〉

CHAPTER 5. PRODUCTION RULES OVER OWL ONTOLOGIES 132

action to state that two individuals are equivalent. It means that the two OWL indi-
viduals will have the same representative.

The OWL different individuals assertion is available as an XPR〈OWL〉 action to state
that two individuals are distinct. It means that the two OWL individuals will not
have the same representative.

Each time an OWL individual is involved in an assertion whatever it is, an automatic
update is automatically propagated through the Rete network to check that this OWL
individual is still matching the patterns it has already matched.

XPR〈OWL〉 is also providing an auto-update feature. Each time an OWL individual
is modified, all the OWL individuals which are related to this individual as subject of
a property assertion are automatically updated. The inverse of the property is used
to collect all the subjects given a particular object. In order to limit the scope of the
auto-update feature, only the properties that are really used in the set of rules are
considered. The OWL reasoner is used to collect the subjects and to automatically
consider the sub-properties.

We must keep in mind here that modifying an OWL ontology with production rules is not
really an easy task. The assertion available in an OWL ontology are only the materialized
level. The OWL reasoner should systematically be used to also consider all the derived
knowledge.

5.4.7 Strong typing versus dynamic classification

The rule checker is expected to implement strong typing. This strong typing is possible in
an object-oriented context because an object do not change its class. But with production
rules that manage OWL assertion changes as described in the previous section, the OWL
individuals may definitely change class. For instance an onto:GoodCustomer can
become an onto:BadCustomer even if the two classes have been declared as disjoint.
It corresponds to two different states for the same person. Production rules are mainly
used to do that kind of changes in a business context.

Let us consider the following XPR〈OWL〉 program:

rule Good2Bad {
when {
foreach x as onto:GoodCustomer;

}
then {

retract x as onto:GoodCustomer;
insert x as onto:BadCustomer;
notifyChange(x);

}

CHAPTER 5. PRODUCTION RULES OVER OWL ONTOLOGIES 133

}

function owl:Nothing notifyChange(onto:GoodCustomer x) {
// not relevant here

}

The variable x is always matching an onto:GoodCustomer. This is compatible with
the signature of the utility function « notifyChange » which is precisely expecting an ar-
gument of this class. The problem is that at runtime, as the action part is executed, the
individual x is bound to, has become an onto:BadCustomer thanks to the class as-
sertions just before the function call. With the assumption that onto:GoodCustomer
and onto:BadCustomer have been declared as disjoint in the OWL ontology, there is
a mismatch between the static type checking and the dynamic classification. This is an
odd behaviour. It seems that any PR system tightly connected to OWL should either drop
strong static type checking in favor of dynamic type checking or limit the expressiveness
of the action language so that this kind of situation cannot occur.

The example above can also be used to show how much easy it is to introduce an incon-
sistency in an OWL ontology while modifying it:

rule Good2Bad {
when {
foreach x as onto:GoodCustomer;

}
then {

insert x as onto:BadCustomer;
}

}

Adding the fact that x is an onto:BadCustomer in the action part without removing
the fact x is an onto:GoodCustomer before is introducing an inconsistency with the
assumption that the two classes are disjoint. This assumption is typically stated as an
owl:disjointClasses axiom in the OWLontology. The individual x cannot be an
onto:BadCustomer and an onto:GoodCustomer at the same time.

Even if XPR〈OWL〉 will do its best to avoid introducing inconsistencies, it is still possible
to do this. The reason is that XPR〈OWL〉 is not taking into account all the axioms of the
OWL ontology. XPR〈OWL〉 is implementing some changes in a consistent way, but not
all. XPR〈OWL〉 is not an OWL reasoner able to manage consistent changes on the derived
knowledge. XPR〈OWL〉 is simply using an OWL reasoner that has not been designed to
accept changes. An OWL reasoner is designed to answer deductive queries on a consistent
OWL ontology that does not change. Since OWL components are not ready to deal with
changes, XPR〈OWL〉 has to manage the changes from its side. But the more XPR〈OWL〉 is
doing to avoid inconsistencies and the more it digs into derived knowledge, the more it is
behaving itself as an OWL reasoner.

CHAPTER 5. PRODUCTION RULES OVER OWL ONTOLOGIES 134

This simple remark is illustrating why the next step is to build a new production rule
engine which is able to manage changes in an OWL ontology in a consistent way, including
the derived knowledge.

5.5 Discussion

This section discusses the work accomplished, does a general recapitulation toward the
objectives of XPR〈OWL〉. We review the steps taken in the process of combining PRs with
OWL: the limitations of our current settings, what the recognized issues are and how to fix
them. This is strongly connected to the theoretical part of Deliverable D3.2 [35] but we
introduce examples written in the new XPR〈OWL〉 syntax to illustrate issues and potential
solutions.

In our approach proposing an environment for PRs with the objective of staying perfectly
synchronized with an OWL ontology management environment, IBM has kept a rather
conservative approach.

Clearly, Rete-based PR systems do not activate rules based on general logical entailment.
They do so based on clever pattern matching of explicit objects populating a working
memory. The whole benefit of such systems is the efficiency of the procedure for deciding
what objects in the working memory are matched thanks to the Rete Algorithm [21]. The
Rete method’s benefits rely crucially on the fact that (1) objects are structured records,
and (2) all objects reside explicitly in the working memory.

In XPR〈OWL〉, the entirety of the logical inference task is delegated to the OWL reasoner.
Our experience has shown that, in practice, even though such reasoners do seem to carry
out useful bits of inference rather nicely, many times they unfortunately stay rather evasive
and inconclusive. This is essentially due to the assumptions made by OWL to live in an
open world by default, as opposed to object-oriented or constraint-oriented systems [1]
that rely on a closed-world assumption.

In a loosely-coupled design such as XPR〈OWL〉’s, because the rule engine’s world and the
ontology reasoner’s world are orthogonal, the system takes care of maintaining a Business
Ontology, which may then be indexed efficiently thanks to the closed-world assumption
required by the Rete-method. Synchronization problems that arise in the course of this
consistency-maintenance between the two worlds are essentially due to the fact that, on
one hand, a PR system deals with a world on individual objects defined in extension while,
on the other hand, OWL reasons over models defined in intension.

From a PR’s perspective when dealing with rule conditions, the knowledge that is implicit
in an OWL knowledge base is not readily available. So the PR system must constantly
probe the OWL reasoner for known facts. To this end, there is only one means: sending
explicit queries. Even so doing, the only facts that will materialize in the working memory
as a result (provided the query actually gets a meaningful reply) are those relevant to
answering the query—not all that are implied by them. As a consequence, a Rete-style

CHAPTER 5. PRODUCTION RULES OVER OWL ONTOLOGIES 135

method only has partial information—it doesn’t know as much as could be inferred by the
reasoner.

As for the effect of a rule’s actions, a PR system must also be careful making modifications
in the working memory since they cannot be only extensional (i.e., adding, removing,
or updating existing objects) since the OWL reasoner will not take care of keeping its
intensions consistent with the working memory’s extension. It is therefore up to the PR
system to manage such discrepancies. However, the PR system “knows” only partially
what the OWL reasoner “knows.” Missing in between the two systems is a component that
would “patch this mismatch” by maintaining a dual intensional/extensional view of the
working memory.

In the current XPR〈OWL〉 design, such (incomplete) maintenance is diffused all over the
place in the structure of the software. However, it is our observation that a great majority
of actual use cases of rules over ontologies encountered in practice, as opposed to fictitious
ones designed for academic pursuits, face similar situations. Therefore, designing such
a generic interfacing component makes great sense as this would be of great practical
benefit.

It must also be recognized that it may not be a good idea to flesh out the explicit extension
of all intensional knowledge. Such sets may indeed become rather large. The solution may
then be to materialize such extensions by need as they are required for making the Rete-
method effective. For example, if a rule set matching only on partial aspects of objects,
and not others, it is then sufficient to flesh out only those parts of the extensional repre-
sentation of the KB relevant to the indexing. If such a dynamic consistency-maintenance
interface module were available, the PR system would no longer need to worry about the
OWL reasoner—it would only need an OWL Interface Format to communicate with it.

On the other hand, when one sees actual applications of rules over ontologies as done
in practice in the Arcelor-Mittal and AUDI use cases [2], such problems often do not
arise since a closed-world assumption comes handy for the largest part, if not all, of the
KB. This does not mean that these use cases may not evolve to need more than simply
using an OWL KB as a data base. It simply means that it would be most useful to try and
characterize precisely the Design Pattern proper to what kinds of rules and what kinds of
ontologies appear in actual situations.

5.6 Conclusion

The limitations of a combination where a production rule engine delegates reasoning tasks
and ontology management to a separate OWL reasoner are now identified. But does it
mean that such a weakly coupled combination is not valuable? The answer is no. Many
practical use cases are actually based on compliance rules that are not there to modify the
ontology but are rather there to react to relevant ontology configurations. In this context,
the production rules will not introduce inconsistencies. The XPR〈OWL〉 implementation

CHAPTER 5. PRODUCTION RULES OVER OWL ONTOLOGIES 136

has been designed for maximum expressivity in this context without too much a focus on
inference. The XPR〈OWL〉 production rules are likely to introduce inconsistencies when
they are used to perform stateful inference on the ontology with actions that modify the
ontology while the rules are still in the process of matching this same ontology.

Another discrepency is related to open world vs closed world assumption. The current
production rules technlogy is strongly connected to the classical data base technology
where all the data is ground and extensively available. A migration from data to logically
organized knowledge, in other words from data base to knowledge base, means building
a brand new production rule technology. Building a brand new technology from scratch
is very risky. It is always better to proceed step by step. The XPR〈OWL〉 implementation
is the first step. The next step is to combine more tightly production rules and ontology
reasoning. The issues listed in this document are clearly pointing out that the production
rule engine is not fully aware of what the reasoner has inferred and is not necessarilly
properely notified of the inconsistencies. Moreover, the production rules are modifying
the ontology, at least the values of the ontology, something logical reasoning hardly ap-
preciates.

A first step might be to improve the communication of the reasoner with the outside
world. Typically, a finer grained event based interface w.r.t. queries woud be welcome
to be aware of all the intermediate knowledge a reasoner is inferring while answering a
query. But reasoners are not likely to provide this kind of service in the timeframe of this
project.

Hence, the next step will be to build a brand new production rule technology that is also
able to perform reasoning without dropping the main feature of the production rules :
the ability to incrementally modify the values of the ontology as the rules are matching
it. Some compromise will certainly need to be done, once again to proceed step by step
toward a tight combination of production rules and ontologies. Here, closed world as-
sumption and unique name assumption seem to be good candidates. But when taking a
look at practical use cases, it does not seem odd to select those two simplifying assump-
tions. Ultimately, an even tighter combination that fully complies with the standard OWL
semantics could be derived.

We have an example here on how much it is difficult to design and implement practical
programmatic interfaces to a complex standard like OWL. With the available interfaces it
is easy to build OWL ontologies but it is difficult for a software component to use them
and in particular to update them once they have been built. OWL is looking very intrusive
on the environment it is expected to live in. Production rules is not the only technology
which is impacted here, traditional programming languages which are not logic aware are
impacted in the same way. But the introduction of OWL is also creating a challenging
context to build new technologies.

XPR〈OWL〉 has been extremely useful to assess the impact of OWL on the current produc-
tion rule technology. Not only combinations of OWL with production rules have been tried
but also combinations of OWL with all the artefacts that are connected to production rules.

CHAPTER 5. PRODUCTION RULES OVER OWL ONTOLOGIES 137

The discussions with FUB have pointed out that the main discrepancy between objects
and OWL is that the last is manipulating knowledge made of statements about individuals
and is not directly dealing with the individuals as it is the case in an object-oriented
approach. A definitive executable production rule suite tightly combined to OWL must
provide means to manage OWL assertions at runtime and not directly OWL individuals.
It is also mandatory that all the possible derived knowledge is kept consistent each time
an OWL assertion is added, removed or updated from the production rule engine. On
this particular subject, XPR〈OWL〉 has reached the limits of the coupling between an OWL
reasoner and a production rule engine. Hopefully this document is explaining why a new
single production rule engine able both to manage production rules and to perform OWL
reasoning on ever changing knowledge needs to be built and why it cannot be derived
from the available production rule technology. This last remark is both annoying and
exciting. It will certainly be annoying for customers and sales people who will have to
manage a change of tools just because OWL is coming. A very good story will have to
be told about the benefits of OWL when compared to OM to convince the ever growing
population of cost killers who is ultimately taking decisions. But in the case this story is
convincing, this is also exciting for tool builders because they have a rare opportunity to
build refreshing new software.

Appendix A

Tree-shaped queries

We give here the description of tree-shaped queries; i.e., queries that can be rewritten to
OWL class expressions, so that standard dl reasoners (e.g., Pellet) can be used for evaluat-
ing the conditions.

Formulas in XPR〈OWL〉 rule conditions are essentially queries. We make a distinction
between “distinguished” and “non-distinguished” variables. Distinguished variables are
the free variables in the query; i.e., they do not appear in the scope of a quantifier (∀, ∃).
Non-distinguished variables are those variables that are not distinguished; i.e., they appear
in the scope of a quantifier.

Below is a description of queries that can be evaluated using standard dl reasoning. We
call these queries “tree-shaped” because the graph of the non-distinguished variables has
a tree shape; i.e., they are rooted, contain no cycles, and all their nodes have at most one
immediate ancestor. Tree-shaped queries can be written as dl class expressions, and thus
checking tree-shaped conditions can be reduced to checking membership of individuals in
dl classes. Checking a conjunction of tree-shaped conditions can be reduced to a number
of individual class membership checks, one for each conjunct.

Atomic queries are atomic formulas with unary or binary predicates that do not contain
non-distinguished variables.1 Therefore, they are a special case tree-shaped queries. Ex-
amples of atomic queries are:

person(X),person(john),hasChild(X, Y),hasChild(john,mary).

Atomic queries can be answered by checking entailment of class membership or property
value assertions. Every atomic query is a tree-shaped query.

Non-atomic tree-shaped queries have a root variable or a constant—say, “X .” Other
tree-shaped queries are Boolean combinations of atomic formulas that use “X” (e.g.,
person(X),hasChild(john, X)) and do not contain non-distinguished variables,
with the exception of binary atomic formulas that have a data value as the first argument.

1Unary predicates correspond to classes, binary predicates to properties in OWL.

138

APPENDIX A. TREE-SHAPED QUERIES 139

When rewriting tree-shaped queries to class membership assertions, we rewrite:

• conjunction “A ∧ B” as “objectIntersectionOf (A B),”

• disjunction “A ∨ B” as “objectUnionOf (A B),” and

• negation “¬ A” as “objectComplementOf (A).”

Class expressions of the form “class(X)” are simply written as “class,” object prop-
erty expressions of the form “property(X, Y)” as “objectHasValue (property Y)”
and object property expressions of the form “property(Y,X)” as “objectHasValue
(objectInverseOf (property) Y).” Data property expressions (i.e., where the
value is a data value rather than a logical constant; e.g., “hasAge(X,32)”) are denoted
using “dataHasValue ” as in, e.g.:

dataHasValue (hasAge,"32"^^xs:integer).

For example, the query:

person(X) ∧ hasChild(Y,X) ∨ car(X)

is written as the assertion:

classAssertion (
objectUnionOf (

objectIntersectionOf (
person
objectHasValue (

objectInverseOf (hasChild)
Y

)
car
)
X

)
).

In place of atomic formulas, one can also use quantified formulas of a specific shape. In
particular, the following six forms may be used:

• ∀Y.
(
property(X, Y) =⇒ class(Y)

)
;

• ∀Y.
(
property(Y,X) =⇒ class(Y)

)
;

• ∃Y.
(
property(X, Y) ∧ class(Y)

)
;

• ∃Y.
(
property(Y,X) ∧ class(Y)

)
;

• ∃Y.
(
property(X, Y)

)
;

APPENDIX A. TREE-SHAPED QUERIES 140

• ∃Y.
(
property(Y,X)

)
.

Here, “class(Y)” is a tree-shaped query with “Y ” being the root or a datatype.

Here are the rewritings for these six forms, for “class(Y)” being a tree-shaped query:2

• objectAllValuesFrom (property class);

• objectAllValuesFrom (objectInverseOf (property) class);

• objectSomeValuesFrom (property class);

• objectSomeValuesFrom (objectInverseOf (property) class);

• objectSomeValuesFrom (property owl:Thing);

• objectSomeValuesFrom (objectInverseOf (property) owl:Thing).

Here, “class” is the rewriting of “class(Y).”

Here is a more involved example of a tree-shaped query and its rewriting:(
person(X) ∧ ∀Y.

(
hasChild(Y,X) =⇒ person(Y) ∧ hasAge(Y,6)

))
∨ car(X)

is rewritten as:

classAssertion (
objectUnionOf (

objectIntersectionOf (
person
objectAllValuesFrom (

objectInverseOf (hasChild)
objectIntersectionOf (

person
dataHasValue (

hasAge,
"6"^^xs:integer

)
)

)
car

)
X

)
).

2If “class” is a datatype, we replace “object... ” with “data... .”

Appendix B

Analysis of Issues in Use Cases

B.1 Introduction

Task 3.2 is an activity that monitors the issues arising in combinations of rules and on-
tologies in the case studies, and analyzes and categorizes them according to the survey of
Deliverable D3.1 [13]. Additionally, the survey will be updated if necessary in subsequent
deliverables in WP3.

B.2 Analysis of the “Steel Industry Use Case"

This analysis is based on the description of the use case in D5.2 Business Layer of the
Steel Domain, D5.3 Ontology for the Steel Domain, and D5.4 First steel industry internal
demonstrators.

B.2.1 Analysis of Steel Industry Use Case Ontology

We analyze the ontology from D5.3 focused on expressiveness and complexity, taking
into account the technologies available in WP3.

The ontology is classified by Protégé 4.1 in the DL fragment ALCHIF(D). In other
words, it extends the basic DL ALC with role hierarchies, inverse roles, functional roles,
and datatypes. In general, checking concept satisfiability as well as checking ABox con-
sistency is EXPTIME-complete. We investigate in the subsequent points whether the ac-
tual fragment is less expressive, in particular whether it falls in one of the tractable OWL
2 Profiles or the new Datalog-rewritable DL LDL+ introduced in chapter 2.

• No ranges were set for the data type properties, such that a restriction to the OWL 2
EL, OWL 2 QL, and OWL 2 RL data types is from that perspective not a problem.

141

APPENDIX B. ANALYSIS OF ISSUES IN USE CASES 142

• Inverse properties are not allowed in OWL 2 EL, they are however present in the
ontology, e.g., location is the inverse of locationOf. Thus, the ontology does not
fall in the OWL 2 EL profile of OWL.

• The only explicit subclass axioms are of the form A v B where A and B are con-
cept names. Indeed no expressive class expressions such as union or disjunction are
used. The only expressive class expressions occur in ObjectPropertyDomain and
ObjectPropertyRange axioms (which are the only subclass axioms that implicitly
occur with more expressive left and right hand sides than just concept names). Both
ObjectPropertyDomain and ObjectPropertyRange axioms are supported by OWL
2 EL, QL, and RL.

• The ontology contains functional roles, which is not supported by OWL 2 EL
and OWL 2 QL. Functional roles are supported by OWL 2 RL though.

• The ontology contains disjoint classes axioms, functional data properties, and data
properties inclusion axioms, which are not supported by LDL+.

• All constructs appearing in the ontology are supported by OWL 2 RL.

In summary, the ontology for the Steel use case is falling in the tractable OWL 2 RL
profile.

B.2.2 Analysis of Steel Industry Use Case Rules

This analysis is based on the description of the use case in D5.2 Business Layer of the
Steel Domain, D5.3 Ontology for the Steel Domain, and D5.4 First steel industry internal
demonstrators.

Rules for the Steel Industry Use Case are described in D5.4 First steel industry internal
demonstrators.

The rules are described using the Production Rule dialect of RIF (RIF-PRD) and have an
equivalent translation in JRules.

The Production Rule dialect was chosen for modeling the rules for the Steel Industry Use
Case, as during the modeling process, as mentioned in Deliverable D5.4, the need of rules
which allow for existentials in the head appeared. While the tractable approaches studied
in the context of Ontorule do now allow for this feature, the formalism studied in the
context of tightly-coupled approaches, Forest Logic Programs, adopts the Open World
Assumption and allows for unsafe rules, thus offering the possibility of modeling such
rules. However this comes at a high computational cost: reasoning with FoLPs takes in
the worst case double exponential time. Also, at this stage, FoLPs do not offer support
for datatypes and aggregates.

APPENDIX B. ANALYSIS OF ISSUES IN USE CASES 143

For an in-depth discussion on the usage of these rules, we refer the reader to Section 3.3
of D5.4. In summary, RIF-PRD showed to be expressive enough to capture the intended
business meaning of the rules, even though lacking native support for aggregates. Another
disadvantage of RIF-PRD is its lack of editing and validation tools.

B.3 Analysis of the Automotive Use Case

This analysis is based on the description of the use case from D4.2 Semantic integration
of BOMs and public demonstrator [50]. We also consider the extract of the M32 use-case
which was provided by Audi for the purpose of the integrated M24 demonstrator [56].

The Automotive M18 Use Case described in D4.2 is concerned with sharing, interchang-
ing, and consolidating Bills of Materials (BOMs) specific to different Computer Aided
Methods used in the development of a car. In particular, the Digital MockUp BOM and
the AVx BOM have been considered: two ontologies corresponding to each BOM have
been generated and then translated to F-Logic. Rules which interlink these two BOMs
were also created using F-Logic. The rules corresponding to the BOMs together with
the rules for the mapping were stored in a single F-Logic file. This rule repository falls
into the stratified fragment of F-Logic. Aggregates and data-types are extensively used.
Recursivity is not employed by the rules. However, it might make sense to introduce re-
cursivity for modeling knowledge about the ’parent’ of rang k of a part (for now, this is
modelled up to depth 3 using non-recurvise rules). Such a modification would not render
the KB unstratifiable and it will be considered for the future version of the use case.

The acquisition part of the M24 demonstrator generated an ontology which is used then by
the other components of the demonstrator. IBM extended this ontology by adding some
concepts and properties contained in the regulation reg16 document, which is a document
that explains the seat belt domain including tests and concept descriptions issued by the
United Nations Economic Commission for Europe. Both these ontologies fall within
every OWL 2 profile and also within the new Datalog-rewritable DL introduced in this
deliverable: LDL+. As part of the demonstrator, some Object Logic Rules and XPR-
OWL rules have been created. Note that, neither these rules, nor the OWL ontologies
available at this stage, capture the full knowledge requirements for the AUDI use case
which is due only at M32 in the project. We expect new requirements regarding data
modeling to arise during the subsequent development of the ontology and rules. We will
monitor these requirements and discuss them in further reports of task T3.2.

Bibliography

[1] Hassan Aït-Kaci. Data models as constraint systems—a key to the semantic web.
Constraint Processing Letters, 1(1):33–88, November 2007. http://www.cs.
brown.edu/people/pvh/CPL/Papers/v1/hak.pdf.

[2] Hassan Aït-Kaci, Hugues Citeau, and Roman Korf. Processing of initial combina-
tions of rules and ontologies. Ontorule Project Deliverable D3.5, December 2009.
http://ontorule-project.eu/wiki/InitialCombinationDemos.

[3] Jürgen Angele, Michael Kifer, and Georg Lausen. Ontologies in f-logic. In Hand-
book on Ontologies. 2009.

[4] The OWL API. Internet Web Page. http://owlapi.sourceforge.net/.

[5] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. IJCAI, pages
364–369. Morgan-Kaufmann Publishers, 2005.

[6] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope further. In Proc.
OWLED08DC, 2008. http://ceur-ws.org/Vol-496.

[7] F. Baader and U. Sattler. Number restrictions on complex roles in DLs: A prelimi-
nary report. In Proc. KR, pages 328–339, 1996.

[8] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider (eds). The description logic handbook: Theory, implementa-
tion, and applications. In Description Logic Handbook. Cambridge University Press,
2003.

[9] Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D Ullman. Magic
sets and other strange ways to implement logic programs (extended abstract). In
PODS ’86: Proceedings of the fifth ACM SIGACT-SIGMOD symposium on Princi-
ples of database systems, pages 1–15, New York, NY, USA, 1986. ACM.

[10] C. Baral and V. S. Subrahmanian. Dualities between alternative semantics for logic
programming and nonmonotonic reasoning. JAR, 10(3):399–420, 1993.

144

http://www.cs.brown.edu/people/pvh/CPL/Papers/v1/hak.pdf
http://www.cs.brown.edu/people/pvh/CPL/Papers/v1/hak.pdf
http://ontorule-project.eu/wiki/InitialCombinationDemos
http://owlapi.sourceforge.net/
http://ceur-ws.org/Vol-496

BIBLIOGRAPHY 145

[11] D. Calvanese, G. de Giacomo, D. Lembo, M. Lenzerini, and Riccardo Rosati.
Tractable reasoning and efficient query answering in description logics: The DL-
Lite family. JAR, 39(3):385–429, 2007.

[12] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity
and expressive power of logic programming. In CCC ’97: Proceedings of the 12th
Annual IEEE Conference on Computational Complexity, page 82, Washington, DC,
USA, 1997. IEEE Computer Society.

[13] Jos de Bruijn. D3.1 - state-of-the-art survey of issues. Technical report, ONTORULE
IST-2009-231875 Project, 2009.

[14] Jos de Bruijn and Martín Rezk. A logic based approach to the static analysis of
production systems. In 3rd International Conference on Web Reasoning and Rule
Systems (RR 2009), pages 254–268, Chantilly, VA, USA, 2009.

[15] T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining
answer set programming with description logics for the Semantic Web. Artificial
Intelligence, 172(12-13):1495–1539, 2008.

[16] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Well-founded semantics
for description logic programs in the Semantic Web. In Proc. RuleML, pages 81–97,
2004. Full paper ACM TOCL, (to appear).

[17] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. Ef-
fective integration of declarative rules with external evaluations for semantic-web
reasoning. In York Sure and John Domingue, editors, ESWC, volume 4011 of Lec-
ture Notes in Computer Science, pages 273–287. Springer, 2006.

[18] F. Fages. A new fix point semantics for generalized logic programs compared with
the wellfounded and the stable model semantics. New Generation Computing, 9(4),
1991.

[19] Leonidas Fegaras and David Maier. Optimizing object queries using an effective
calculus. ACM Transactions on Database Systems, 25(4):457–516, December 2000.
http://lambda.uta.edu/tods00.ps.gz.

[20] Jena A Semantic Web Framework for Java. Internet Web Page. http://jena.
sourceforge.net/.

[21] Charles Forgy. Rete: A fast algorithm for the many patterns/many objects match
problem. Artif. Intell., 19(1):17–37, 1982.

[22] U. Furbach, H. Günther, and C. Obermaier. A Knowledge Compilation Technique
for ALC TBoxes. In Proc. of the Twenty-Second International Florida Artificial In-
telligence Research Society Conference, May 19-21, 2009, Sanibel Island, Florida,
USA, 2009.

http://lambda.uta.edu/tods00.ps.gz
http://jena.sourceforge.net/
http://jena.sourceforge.net/

BIBLIOGRAPHY 146

[23] Allen Van Gelder, Kenneth Ross, and John S. Schlipf. The well-founded semantics
for general logic programs. Journal of the ACM, 38(3):620–650, 1991.

[24] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
Proc. ICLP, pages 1070–1080. The MIT Press, 1988.

[25] Giuseppe De Giacomo, Maurizio Lenzerini, Antonella Poggi, and Riccardo Rosati.
On the update of description logic ontologies at the instance level. In AAAI. AAAI
Press, 2006.

[26] Giuseppe De Giacomo, Maurizio Lenzerini, Antonella Poggi, and Riccardo Rosati.
On the approximation of instance level update and erasure in description logics. In
AAAI, pages 403–408. AAAI Press, 2007.

[27] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs:
Combining logic programs with description logic. In Proc. WWW 2003, pages 48–
57. ACM, 2003.

[28] Y. Guo, Z. Pan, and J. Heflin. An evaluation of knowledge base systems for large
owl datasets. Technical report, CSE Department, Lehigh University, 2004. Y. Guo,
Z. Pan, and J. Heflin. An Evaluation of Knowledge Base Systems for Large OWL
Datasets. Technical Report LU-CSE-04-012, CSE Department, Lehigh University,
2004.

[29] Volker Haarslev and Ralf Möller. Racer system description. In Rajeev Goré, Alexan-
der Leitsch, and Tobias Nipkow, editors, IJCAR, volume 2083 of Lecture Notes in
Computer Science, pages 701–706. Springer, 2001.

[30] Harry Halpin and Patrick J. Hayes. When owl:sameAs isn’t the same: An analysis
of identity links on the semantic web. April 2010.

[31] Ivan Herman. OWLRL - proof of concept implementation. http://www.ivan-
herman.net/Misc/2008/owlrl/, 2008.

[32] S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Conceptual Logic Programs.
Annals of Mathematics and Artificial Intelligence (Special Issue on Answer Set Pro-
gramming), 47(1–2):103–137, 2006.

[33] S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Open Answer Set Program-
ming for the Semantic Web. Journal of Applied Logic, 5(1):144–169, 2007.

[34] S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Open answer set programming
with guarded programs. Transactions on Computational Logic, 9(4):1–53, August
2008.

BIBLIOGRAPHY 147

[35] Stijn Heymans, Jos de Bruijn, Martín Rezk, Hassan Aït-Kaci, Hugues Citeau, Ro-
man Korf, Jörg Pührer, Cristina Feier, and Thomas Eiter. D3.2 - Initial combinations
of rules and ontologies. Technical report, ONTORULE IST-2009-231875 Project,
2009.

[36] I. Horrocks. Implementation and optimisation techniques. In F. Baader, D. Cal-
vanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors, The Descrip-
tion Logic Handbook: Theory, Implementation, and Applications, pages 306–346.
Cambridge University Press, 2003.

[37] I. Horrocks and P. F. Patel-Schneider. Reducing OWL entailment to description
logic satisfiability. Journal of Web Semantics, 1(4):345–357, 2004.

[38] I. Horrocks, P. F. Patel-Schneider, and Frank van Harmelen. From SHIQ and RDF
to OWL: The making of a Web ontology language. Journal of Web Semantics,
1(1):7–26, 2003.

[39] U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ− description logic to dis-
junctive datalog programs. In Proc. of KR, pages 152–162. AAAI Press, 2004.

[40] Eva Maria Kiss, Hugues Citeau, Adil El Ghali, Thomas Krekeler, Roman Korf, An-
tonia Schwichtenberg, and Jürgen Angele. D3.6 - Efficient processing of expressive
combinations. Technical report, ONTORULE IST-2009-231875 Project, 2010.

[41] Hongkai Liu, Carsten Lutz, Maja Milicic, and Frank Wolter. Updating description
logic ABoxes. In Patrick Doherty, John Mylopoulos, and Christopher A. Welty,
editors, KR, pages 46–56. AAAI Press, 2006.

[42] John W. Lloyd. Foundations of logic programming. Springer-Verlag New York, Inc.,
1987.

[43] B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz, editors.
OWL 2 Web Ontology Profiles. 2008. W3C Rec. 27 Oct. 2009.

[44] B. Motik, P. F. Patel-Schneider, and B. Parsia, editors. OWL 2 Web Ontology Lan-
guage: Structural Specification and Functional-Style Syntax. 2008. W3C Working
Draft April 2009.

[45] B. Motik, R.Shearer, and I. Horrocks. Optimized reasoning in description logics
using hypertableaux. In CADE’07, volume 4603 of LNCS, pages 67–83. Springer,
2007.

[46] Boris Motik. Reasoning in Description Logics using Resolution and Deductive
Databases. PhD thesis, University of Karlsruhe, Karlsruhe, Germany, January 2006.

[47] OWL 2 web ontology language structural specification and functional-style syntax.
Recommendation 27 October 2009, W3C, 2009.

BIBLIOGRAPHY 148

[48] OWLIM. Semantic repository. http://ontotext.com/owlim/index.html, 2008.

[49] R. Rosati. On the decidability and complexity of integrating ontologies and rules.
Journal of Web Semantics, 3(1):41–60, 2005.

[50] Peter Rosina and Thomas Syldatke. Semantic integration of boms – pub-
lic demonstrator. Ontorule Project Deliverable D4.2, June 2010. http://
ontorule-project.eu/wiki/M18_CAx_Demonstrator.

[51] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden
Katz. Pellet: A practical OWL-DL reasoner. J. Web Sem., 5(2):51–53, 2007.

[52] M. K. Smith, C. Welty, and D. L. McGuinness, editors. OWL Web Ontology Lan-
guage Guide. 2004. W3C Recommendation 10 February 2004.

[53] Michael Smith, Ian Horrocks, Markus Krötzsch, and Birte Glimm, editors. OWL 2
Conformance and Test Cases. 2009. W3C Rec. 27 Oct. 2009.

[54] T. Swift. Deduction in ontologies via ASP. In Proc. of LPNMR, pages 275–288,
2004.

[55] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal
of Mathematics, 5:285–309, 1955.

[56] Roman Korf et al. Ontorule M24 show-case demonstrator. Technical report, 2011.
http://ontorule-project.eu/wiki/M24_Demonstrators.

[57] M. Y. Vardi. Reasoning about the Past with Two-way Automata. In Proc. 25th Int.
Colloquium on Automata, Languages and Programming, pages 628–641. Springer,
1998.

[58] George Eadon Vladimir Kolovski, Zhe Wu. Optimizing enterprise-scale owl 2 rl
reasoning in a relational database system. In P.F. Patel-Schneider, Y. Pan, P. Hitzler,
P.Mika, L. Zhang, J.Z. Pan, I. Horrocks, and B. Glimm, editors, Proceedings of the
9th International Semantic Web Conference, volume 6497 of Lecture Notes in Com-
puter Science, pages 436–452. ISWC 2010, Springer-Verlag, Heidelberg, Germany,
November 2010.

[59] M. Winslett. Reasoning about action using a possible models approach. In aaai88,
pages 89–93, 1988.

[60] M. Winslett. Updating Logical Databases. Cambridge University Press, 1990.

http://ontorule-project.eu/wiki/M18_CAx_Demonstrator
http://ontorule-project.eu/wiki/M18_CAx_Demonstrator
http://ontorule-project.eu/wiki/M24_Demonstrators

Glossary

Assertion Box The Assertion Box is the population of assertions. Another way of look-
ing at an assertion is to consider it as a fact. The Assertion box in OWL is restricted
to unary and binary facts., 128

Datalog Datalog is a query and rule language for deductive databases that syntactically
is a subset of Prolog., 7

Description Logics Description Logics (DLs) are a family of knowledge representation
languages. The modeling primitives in most DLs are classes, which represent sets
of objects, properties, which are relations between classes, and individuals. Con-
stants may be defined using logical axioms. The language constructs available for
writing such axioms depends on the DL at hand. Typical language constructs in-
clude class intersection, union, and complement, as well as universal and existential
property restrictions., 4, 6, 81, 93

DL-Programs DL-Programs is a loosely coupled approach of integration of Ontology
and Rules., 6, 10

DReW DReW (Datalog ReWriter) (http://www.kr.tuwien.ac.at/research/systems/drew/)
is a solver which can either be used as a prototype DL reasoner over LDL+ on-
tologies or as a prototype reasoner for DL-Programs over LDL+ ontologies under
well-founded semantics, 6, 28

Fixpoint Logics Fixpoint logics (or fixed point logics) are regarded as logics with a fix-
point operator. Typical examples of fixpoint logics are propositional mu-calculus,
which is more expressive then temporal logics, and common knowledge logic,
which is an extension of multi-agent logics., 2, 81

Forest Logic Programs (FoLPs) FoLPs is a decidable subset of OASP which has the
forest-model property., 1, 5, 35

ObjectLogic ObjectLogic is a newly developed ontology language which is based on the
development of F-logic F-logic, et al., 1995 and it’s new development et al., 2008,
F-logic forum. It is developed at ontoprise GmbH., 57

149

Glossary 150

Open Answer Set Programming (OASP) OASP is an extension of (unsafe) function-
free Answer Set Programming with open domains: while the syntax is unchanged,
and the semantics is still stable-model based, programs are interpreted w.r.t. open
domains, i.e., non-empty arbitrary domains which extend the Herbrand universe.
OASP is undecidable., 1, 5

Open-World-Assumption In the Open World Assuption one considers that not all facts
are known., 82

OWL The Web Ontology Language OWL is an ontology language for the Semantic Web
that extends Description Logics. To RDFS it adds features such as class intersec-
tion, union and complement, local property restrictions, cardinality restrictions, and
reflexive, symmetric, functional, transitive and inverse properties., 114

Rule Engine A Rule Engine is a generic activity which is responsible for applying a set
of rules (derivation rules in SBVR and part of the domain specific Terminology box
(T-Box) in OWL) to a set of values (called ground facts in SBVR and assertions in
OWL)., 129

	Introduction
	Theoretical Foundations
	Introduction
	Tractable Reasoning with DL-Programs over Datalog-rewritable Description Logics
	Introduction
	Preliminaries
	Datalog and Datalog
	Description Logics
	DL-Programs under Well-Founded Semantics

	Reducing DL-Programs to Datalog
	The Description Logic LDL+
	Basic Definitions
	Immediate Consequence Operator

	LDL+ is Datalog-rewritable
	The OWL 2 Profiles
	Implementation and Evaluation
	Implementation
	Evaluation

	Conclusion

	Optimizations for Tableaux Algorithms for F-Hybrid Knowledge Bases
	Preliminaries
	Forest Logic Programs
	An Algorithm for Forest Logic Programs
	Expansion Rules
	Applicability Rules
	Termination, Soundness, Completeness

	Optimized Reasoning with FoLPs
	Optimized Reasoning with FoLPs
	Unit Completion Structures
	Redundant Unit Completion Structures
	Reasoning with FoLPs Using Unit Completion Structures
	Termination, Soundness, Completeness

	Discussion

	OWL 2 RL in Object Logic
	Introduction
	Preliminaries
	OWL 2
	OWL 2 Syntax
	OWL 2 RL Profile

	OntoBroker
	ObjectLogic

	Requirements
	Property Hierarchies and Chains
	Algebraic Properties
	Cardinality Restrictions
	Equality

	Implementation
	Syntax
	Semantics
	owl:Thing
	Equality
	Equivalent Classes
	Disjoint Classes
	OneOf Class Description
	HasValue Class Description
	SomeValuesFrom Class Description
	AllValuesFrom Class Description
	MaxCardinality Class Descriptions
	Union of Classes
	Intersection of Classes
	Complement of a Class
	Algebraic and Inverse Properties
	Functional and Inverse Functional Properties
	Equivalent and Disjoint Properties
	Property Chains
	Keys

	Tests
	Semantic Tests
	Tests with Optimization Switches

	Conclusions
	OWL 2 RL in ObjectLogic Syntax Reference

	PRs and Ontologies
	Loose Coupling of Production Rules and Ontologies
	Preliminaries
	First-Order Logic
	Description Logics
	Production Rules

	Semantics of Production Rules over First-Order Knowledge Bases
	Conditions
	Actions
	Formula-Based Approach
	Model-Based Approach

	Peculiarities of Semantics of Production Rules over Description Logic Knowledge Bases
	Conditions
	Actions

	Tightly Coupling Production Rules and Ontologies
	Augmenting production systems with ontologies
	Axiomatization

	Conclusions

	Production Rules over OWL Ontologies
	Introduction
	Theoretical framework
	Conditions
	Actions
	OWL

	Issues
	Condition Part
	Matching Sets
	Counting of property values
	User predicates in condition
	Connectives in conditions
	A note on iterations

	Action Part
	Retracting individuals
	Inconsistency

	Practical impacts on the rule engine
	Impact on the working memory
	Impact on pattern matching
	Impact on navigation
	Understanding production rule semantics for assertions
	Pre-requisites for assertions
	Impact on assertions
	Strong typing versus dynamic classification

	Discussion
	Conclusion

	Tree-shaped queries
	Analysis of Issues in Use Cases
	Introduction
	Analysis of the ``Steel Industry Use Case"
	Analysis of Steel Industry Use Case Ontology
	Analysis of Steel Industry Use Case Rules

	Analysis of the Automotive Use Case

	Glossary

